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Abstract

An iterative algorithm for computing an interval vector containing
the solution to the inverse symmetric eigenvalue problem is proposed.
The iterative process in this algorithm involves only cubic complexity per
iteration. Uniqueness of the contained solution can moreover be verified by
the algorithm. Numerical resultsillustrate the properties of the algorithm.
As an application of the proposed algorithm, an algorithm for enclosing
a solution to an inverse singular value problem is also sketched.
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1 Introduction

Let A(c) be the affine family

A(c) = A0 +

n∑
i=1

ciAi,

where c ∈ Rn and A0, . . . , An are real symmetric n×nmatrices. Denote the eigenvalues
of A(c) by λ1(c), . . . , λn(c), where λ1(c) ≤ · · · ≤ λn(c). The following is called the
inverse symmetric eigenvalue problem treated in this paper:

Problem 1 Given real numbers λ∗1 < · · · < λ∗n, find c∗ ∈ Rn such that λi(c
∗) = λ∗i ,

i = 1, . . . , n.

Problem 1 arises in a variety of applications such as inverse Sturm-Liouville problems,
the inverse vibrating string problem, nuclear spectroscopy and molecular spectroscopy
[10]. There is a large amount of literature (e.g. [8, 9]) on conditions for existence and
uniqueness of the solution to Problem 1.
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Solving Problem 1 is equivalent to solving the equation f(c) = 0 in Rn, where the
function f : Rn → Rn is defined by

f(c) := (λ1(c)− λ∗1, . . . , λn(c)− λ∗n)T . (1)

If c∗ exists, λi(c), i = 1, . . . , n are continuously differentiable around c∗ (see e.g. [21]).
Therefore, so is f . The Jacobian matrix J(c) of f(c) is given such that (cf. [10])

J(c)ij =
∂λi(c)

∂cj
= q(i)(c)TAjq

(i)(c), i, j = 1, . . . , n, (2)

where q(i)(c) is a unit 2-norm eigenvector corresponding to λi(c). For solving Prob-
lem 1, Newton and Newton-like methods exploiting f(c) and J(c) have been proposed
(see [10] for example).

The work presented in this paper addresses the problem of computing verified so-
lutions to Problem 1, specifically, computing an interval vector which is guaranteed to
contain the solution. Numerical algorithms cannot provide exact solutions in general,
and usually give approximations. One approach to providing reliability for the com-
puted approximation is to numerically compute an interval containing the solution.
Since the midpoint of the interval is usually the approximation, the radius can be
regarded as an error bound. If the radius is small, therefore, we can conclude that the
approximation is reliable. By utilizing the intervals containing the solutions, moreover,
we can mathematically prove that the solution to Problem 1 for specific A0, . . . , An

and λ∗1, . . . , λ
∗
n is not unique. Specifically, if two intervals containing the solutions are

disjoint, then we can assert with mathematical rigor that the specific problem has at
least two solutions. No matter how accurate two numerical solutions are, distinctness
of them does not prove non-uniqueness. In fact, non-uniqueness of the solution to an
example of Problem 1 is proved in [1, Section 5] based on the verified computation,
which is not noted in the previous paper [10].

Pioneering work for computing verified solutions to Problem 1 seems to be the
iterative algorithms in [1, 2]. The algorithms in [1] and [2] are based on the Krawczyk
[13] and interval Newton operators, respectively. Let c̃ and z be a numerical solution to
Problem 1 and an interval n-vector, respectively. In both of the algorithms, an interval
n-vector and n×n interval matrix containing f(c̃) and {J(c) : c ∈ c̃+z}, respectively,
are required. Since f(c) and J(c) are not explicitly represented as a function of c,
computing these intervals is not trivial. In [2], the algorithm in [14] is adopted for
obtaining the interval vector and matrix. The algorithm in [14] computes intervals
containing an eigenvalue and its corresponding eigenvector of an interval matrix, and
is summarized in [2, Algorithm 3.7]. This algorithm is also mentioned in [1] as one
of the methods for obtaining the interval vector and matrix mentioned above. The
iterative processes of the algorithms in [1, 2] require O(n4) operations per iteration.

The purpose of this paper is to propose an iterative algorithm for computing ver-
ified solutions to Problem 1. This algorithm is also based on the Krawczyk operator,
and requires the above interval vector and matrix. We develop new methods for ob-
taining them. With the aid of the new methods, the iterative process of the algorithm
requires only O(n3) operations per iteration, although it contains a process involving
O(n4) operations before the iterative process. The new methods are applications of
the results developed in [18, 19]. Although new error bounds for the eigenvalue per-
turbation have been developed in past decades (see [15, 16, 17, 20, 28], e.g.), utilizing
the results in [18, 19] seems to be more suitable for our purpose, since A(c) is real
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symmetric and all eigenvalues and eigenvectors must be considered. The proposed
algorithm moreover verifies uniqueness of the contained solution.

As an application of the proposed algorithm, we also sketch an algorithm for
enclosing a solution to an inverse singular value problem, which is stated as follows:

Problem 2 Let A(c) := A0+
∑n

i=1 ciAi, where c ∈ Rn, and A0, . . . , An are real m×n
matrices with m ≥ n. Denote the singular values of A(c) by σ1(c), . . . , σn(c), where
σ1(c) ≤ · · · ≤ σn(c). Given real numbers 0 < σ∗1 < · · · < σ∗n, find c∗ ∈ Rn such that
σi(c

∗) = σ∗i , i = 1, . . . , n.

Problem 2 has practical applications, such as construction of Toeplitz-related matrices
from prescribed singular values [4], the inverse problem in some quadratic group [22],
passivity enforcement in nonlinear circuit simulation [25], and the optimal sequence
designed for direct-spread code division multiple access [29].

This paper is organized as follows: In Section 2, notation and theories used in
this paper are introduced. In Sections 3 and 4, the methods for computing the above
interval vector and matrix are established, respectively. In Section 5, the verification
algorithm is proposed. In Section 6, numerical results are reported. In Section 7,
the verification algorithm for the solution to Problem 2 is sketched. Section 8 finally
summarizes the results in this paper and highlights possible extension and future work.

2 Preliminaries

Let IR, IRn and IRn×n be the sets of all real intervals, interval n-vectors and n × n
interval matrices, respectively. For a ∈ IR, let mid (a) and rad (a) be the midpoint and
radius of a, respectively, and |a| := maxa∈a |a|. For v ∈ Rn, define ‖v‖2 :=

√∑
i v

2
i .

For M = (Mij) ∈ Rn×n, let |M | := (|Mij |), ‖M‖∞ := maxi

∑
j |Mij | and ‖M‖1 :=

maxj

∑
i |Mij |. We can then define |v| ∈ Rn and |M | ∈ Rn×n for v ∈ IRn and M ∈

IRn×n, respectively. Define ‖v‖2 := ‖|v|‖2, ‖M‖∞ := ‖|M |‖∞ and ‖M‖1 := ‖|M |‖1.
Let eps, realmin and I be machine epsilon, the smallest positive normalized floating
point number (especially eps = 2−52 and realmin = 2−1022 in IEEE 754 double
precision), and the n× n identity matrix, respectively, and e := (1, . . . , 1)T ∈ Rn. For
Mc,Mr ∈ Rn×n with mini,j M

r
ij ≥ 0, 〈Mc,Mr〉 denotes the interval matrix whose

midpoint and radius are Mc and Mr, respectively. The notation fl(·) denotes a result
of floating point computation, where all operations inside the parentheses are executed
by ordinary floating point arithmetic in rounding to nearest mode. The notations fl(·)
and fl(·) denote rigorous upper and lower bounds for the insides of the parentheses
obtained by rounding mode controlled floating point computations, respectively.

We cite Lemmas 1 to 5, and present Lemma 6. Lemma 1 is a modification of the
Rump’s theorem, whose statement and proof can be found in [20, Theorem 1].

Lemma 1 (Miyajima et al. [18]) Let A ∈ Rn×n be symmetric, q̃(i) ∈ Rn \{0} and
λ̃i ∈ R, i = 1, . . . , n with λ̃1 ≤ · · · ≤ λ̃n be given, λi be the eigenvalues of A such
that λ1 ≤ · · · ≤ λn, Q̃ := (q̃(1), . . . , q̃(n)), D̃ := diag(λ̃1, . . . , λ̃n), R := AQ̃ − Q̃D̃ and
G := I − Q̃T Q̃. If ‖G‖∞ < 1, then

|λi − λ̃i| ≤ δ, i = 1, . . . , n, where δ :=

√
‖R‖∞‖R‖1
1− ‖G‖∞

.
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Lemma 2 (Wilkinson [30]) Let A, q̃(i), λ̃i, λi and R be as in Lemma 1, and r(i)

be the i-th column of R. It then holds that

min
j
|λj − λ̃i| ≤ εi, i = 1, . . . , n, where εi :=

‖r(i)‖2
‖q̃(i)‖2

.

Lemma 3 (Miyajima et al. [18]) Let δ and εi be as in Lemmas 1 and 2, respec-
tively. Then, εi ≤ δ holds for all i.

Lemma 4 (Miyajima et al. [18]) Let λi and λ̃i, i = 1, . . . , n be sequences of real
numbers such that λ1 ≤ · · · ≤ λn and λ̃1 ≤ · · · ≤ λ̃n, respectively. Assume |λi−λ̃i| ≤ δ
for all i, and

λ̃i+1 − λ̃i > 2δ (i = 1)

λ̃i − λ̃i−1 > 2δ and λ̃i+1 − λ̃i > 2δ (2 ≤ i ≤ n− 1)

λ̃i − λ̃i−1 > 2δ (i = n)

for some i. Then, minj |λj − λ̃i| = |λi − λ̃i| for some i.

Lemma 5 (Miyajima et al. [18]) Let λi, λ̃i and δ be as in Lemma 4. Assume
minj |λj − λ̃i| ≤ εi for each i, and some partial sequence λ̃k, . . . , λ̃k with 1 ≤ k <
k ≤ n are clustered such that λ̃k − λ̃k−1 > 2δ, λ̃k+1 − λ̃k > 2δ and λ̃k+1 − λ̃k ≤ 2δ

for all k = k, . . . , k − 1. If εk + εk+1 < λ̃k+1 − λ̃k for all k = k, . . . , k − 1, then
minj |λj − λ̃k| = |λk − λ̃k| for all k = k, . . . , k.

Lemma 6 is a modification of [19, Theorem 6] suited for enclosing eigenvectors of a
real symmetric matrix having unit 2-norm.

Lemma 6 Let A, q̃(i), λ̃i and λi be as in Lemma 1, εi be as in Lemma 2, q(i) ∈ Rn\{0}
with ‖q(i)‖2 = 1 be an eigenvector corresponding to λi, ρi ∈ R fulfills 0 < ρi ≤
minj 6=i |λj − λ̃i|, and ξi := εi/ρi. If ξi ≤ 1, then∥∥∥∥q(i) − 1

‖q̃(i)‖2
q̃(i)
∥∥∥∥
2

≤ ωi, i = 1, . . . , n, where ωi :=
√

2

√
1−

√
1− ξ2i .

Proof Since A is real symmetric, we can take {q(1), . . . , q(n)} as an orthonormal
basis. Then, there exist d1, . . . , dn ∈ R such that (1/‖q̃(i)‖2)q̃(i) =

∑
j djq

(j). By

updating q(i) = −q(i) if necessary, we can assume di ≥ 0 without loss of generality.
From ‖(1/‖q̃(i)‖2)q̃(i)‖22 = ‖

∑
j djq

(j)‖22, we have 1 =
∑

j d
2
j , so that (1 +di)(1−di) =∑

j 6=i d
2
j . From di ≥ 0, we obtain 1 + di > 0, which gives

1− di =

∑
j 6=i d

2
j

1 + di
≥ 0. (3)

Since q(1), . . . , q(n) are the orthonormal eigenvectors, we moreover have∥∥∥∥A( 1

‖q̃(i)‖2
q̃(i)
)
− λ̃i

(
1

‖q̃(i)‖2
q̃(i)
)∥∥∥∥2

2

=

∥∥∥∥∥A
(∑

j

djq
(j)

)
− λ̃i

(∑
j

djq
(j)

)∥∥∥∥∥
2

2

=
∑
j

d2j (λj − λ̃i)
2 ≥

∑
j 6=i

d2j (λj − λ̃i)
2 ≥ min

k 6=i
(λk − λ̃i)

2
∑
j 6=i

d2j .
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From this and 0 < ρi ≤ minj 6=i |λj− λ̃i|, we obtain ε2i ≥ ρ2i
∑

j 6=i d
2
j , so that

∑
j 6=i d

2
j ≤

ξ2i , which shows d2i = 1−
∑

j 6=i d
2
j ≥ 1−ξ2i . Thus, di ≥ 0 and ξi ≤ 1 yield di ≥

√
1− ξ2i ,

so that (3) gives (1− di)2 ≤ (1−
√

1− ξ2i )2. This and
∑

j 6=i d
2
j ≤ ξ2i finally show

∥∥∥∥q(i) − 1

‖q̃(i)‖2
q̃(i)
∥∥∥∥2
2

=

∥∥∥∥∥∥(1− di)q(i) −
∑
j 6=i

djq
(j)

∥∥∥∥∥∥
2

2

= (1− di)2 +
∑
j 6=i

d2j

≤
(

1−
√

1− ξ2i
)2

+ ξ2i = 2

(
1−

√
1− ξ2i

)
= ω2

i ,

which completes the proof. 2

3 An Interval Enclosing the Residual

As mentioned in Section 1, solving Problem 1 is equivalent to solving f(c) = 0, where
f(c) is defined in (1). A standard approach for computing an interval vector contain-
ing a solution to nonlinear systems is the Krawczyk method, which is based on the
following theorem:

Theorem 1 (Krawczyk [13]) Assume f : D ⊂ Rn → Rn is continuously differen-
tiable in D. Let c̃ ∈ D and z ∈ IRn satisfy c̃ + z ⊆ D, let J(c) be the Jacobian
matrix of f at the point c ∈ D, and let S ∈ Rn×n. Suppose J ∈ IRn×n satisfies
J ⊇ {J(c) : c ∈ c̃+ z} and define k(c̃,z) := −Sf(c̃) + (I − SJ)z. If k(c̃, z) ⊆ int(z),
then f has a zero in c̃+ k(c̃,z) ⊆ c̃+ z, and this zero is unique in c̃+ z.

In practical applications, c̃ is a numerical solution to f(c) = 0, S is an approximate
inverse of the midpoint of J , and an interval vector enclosing f(c̃) is required for
computing k(c̃,z). As mentioned in Section 1, computing J and the interval vector
is not trivial, since f(c) and J(c) in Problem 1 are not explicitly represented as the
function of c. In this section, we develop a new method for computing the interval
vector enclosing f(c̃). A new method for computing J will be proposed in Section 4.

Let c̃ be as the above. Assume as a result of numerical spectral decomposition of
A(c̃), we have D̃, Q̃ ∈ Rn×n with D̃ = diag(λ̃1, . . . , λ̃n) such that A(c̃)Q̃ ≈ Q̃D̃ and Q̃
is approximately orthogonal. We consider computing ηi ∈ R satisfying λi(c̃) ∈ 〈λ̃i, ηi〉,
i.e., |λi(c̃) − λ̃i| ≤ ηi, i = 1, . . . , n. If ηi can be obtained, we can enclose fi(c̃) such
that fi(c̃) ∈ 〈λ̃i, ηi〉 − λ∗i .

Let R := A(c̃)Q̃− Q̃D̃, G := I − Q̃T Q̃, and q̃(i) and r(i) be the i-th columns of Q̃
and R, respectively, for i = 1, . . . , n. We can then expect R ≈ 0, G ≈ 0 and r(i) ≈ 0.
Suppose ‖G‖∞ < 1 and q̃(i) 6= 0, and define δ :=

√
‖R‖1‖R‖∞/(1 − ‖G‖∞) and

εi := ‖r(i)‖2/‖q̃(i)‖2. Then, Lemma 1 gives |λi(c̃)− λ̃i| ≤ δ for all i. From Lemma 2,
moreover, minj |λj(c̃)− λ̃i| ≤ εi. Taking Lemma 3 into account, we compute the above
ηi such that

ηi =

{
εi (If minj |λj(c̃)− λ̃i| = |λi(c̃)− λ̃i| is proved)
δ (otherwise)

.

To verify minj |λj(c̃)− λ̃i| = |λi(c̃)− λ̃i|, we can apply Lemmas 4 and 5 to λi := λi(c̃).
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4 An Interval Containing the Jacobian Matrix

As mentioned in Section 3, we need to compute J ∈ IRn×n such that J ⊇ {J(c) : c ∈
c̃+ z} for J(c) in (2). We formulate and prove Theorem 2 for this purpose.

Theorem 2 Let c̃, λ̃i, q̃
(i) and r(i) be as in Section 3, z ∈ IRn be given, B(z) :=∑n

i=1 ziAi, r
(i)(z) := r(i) + B(z)q̃(i), ηi(z) satisfy |λi(c)− λ̃i| ≤ ηi(z), ∀c ∈ c̃+ z,

ρi(z) :=


λ̃2 − λ̃1 − η2(z) (i = 1)

min (λ̃i − λ̃i−1 − ηi−1(z), λ̃i+1 − λ̃i − ηi+1(z)) (2 ≤ i ≤ n− 1)

λ̃n − λ̃n−1 − ηn−1(z) (i = n)

, (4)

and εi(z) := ‖r(i)(z)‖2/‖q̃(i)‖2 for i = 1, . . . , n. Assume ρi(z) > 0 and define ξi(z) :=

εi(z)/ρi(z). Suppose ξi(z) ≤ 1 and let ωi(z) :=
√

2
√

1−
√

1− ξi(z)2. Then, for J(c)

in (2), {J(c)ij : c ∈ c̃+ z} ⊆ J ij, where

J ij :=

〈
q̃(i)

T

Aj q̃
(i)

q̃(i)T q̃(i)
,

2ωi(z)eT |Aj q̃
(i)|

‖q̃(i)‖2
+ ωi(z)2eT |Aj |e

〉
, i, j = 1, . . . , n.

Proof Let c be an arbitrary n-vector included in c̃ + z and s(i)(c) := q(i)(c) −
(1/‖q̃(i)‖2)q̃(i). Since AT

j = Aj , we have

q(i)(c)TAjq
(i)(c) =

(
1

‖q̃(i)‖2
q̃(i) + s(i)(c)

)T

Aj

(
1

‖q̃(i)‖2
q̃(i) + s(i)(c)

)
=

q̃(i)
T

Aj q̃
(i)

q̃(i)T q̃(i)
+

2s(i)(c)TAj q̃
(i)

‖q̃(i)‖2
+ s(i)(c)TAjs

(i)(c)

∈

〈
q̃(i)

T

Aj q̃
(i)

q̃(i)T q̃(i)
,

2|s(i)(c)|T |Aj q̃
(i)|

‖q̃(i)‖2
+ |s(i)(c)|T |Aj ||s(i)(c)|

〉

⊆

〈
q̃(i)

T

Aj q̃
(i)

q̃(i)T q̃(i)
,

2‖s(i)(c)‖2eT |Aj q̃
(i)|

‖q̃(i)‖2
+ ‖s(i)(c)‖22eT |Aj |e

〉
.

From this and (2), it suffices to show ‖s(i)(c)‖2 ≤ ωi(z), ∀c ∈ c̃+z. From |λi(c)−λ̃i| ≤
ηi(z), ∀c ∈ c̃+z and (4), we have ρi(z) ≤ minj 6=i |λj(c)− λ̃i|, ∀c ∈ c̃+z (see Figure 1).

λ̃i−1 λ̃i λ̃i+1λi−1(c) λi+1(c)

ηi+1(z)ηi−1(z)

λ̃i − λ̃i−1 − ηi−1(z) λ̃i+1 − λ̃i − ηi+1(z)

ρi(z)

Figure 1: The explanation for ρi(z) ≤ minj 6=i |λj(c)− λ̃i|, ∀c ∈ c̃+ z.

Any c can be written as c = c̃+ z, where z ∈ z, so that A(c) = A(c̃) +A(z)−A0 and

‖A(c)q̃(i) − λ̃iq̃
(i)‖2 = ‖r(i) + (A(z)−A0)q̃(i)‖2 ≤ ‖r(i) + B(z)q̃(i)‖2 = ‖r(i)(z)‖2,

which shows
‖A(c)q̃(i) − λ̃iq̃

(i)‖2
‖q̃(i)‖2

≤ εi(z), ∀c ∈ c̃+ z. (5)
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Thus, 0 < ρi(z) ≤ minj 6=i |λj(c) − λ̃i|, ∀c ∈ c̃ + z, ξi(z) ≤ 1 and Lemma 6 gives
‖s(i)(c)‖2 ≤ ωi(z), ∀c ∈ c̃+ z. 2

In practical applications, we need to numerically compute ηi(z) in Theorem 2. Let D̃,
Q̃, R and G be as in Section 3, R(z) := R+ B(z)Q̃ and

δ(z) :=
√
‖R(z)‖∞‖R(z)‖1/(1− ‖G‖∞).

We then have

A(c)Q̃− Q̃D̃ = R+ (A(z)−A0)Q̃ ∈ R+ B(z)Q̃ = R(z), ∀c ∈ c̃+ z,

so that ‖A(c)Q̃ − Q̃D̃‖∞ ≤ ‖R(z)‖∞ and ‖A(c)Q̃ − Q̃D̃‖1 ≤ ‖R(z)‖1 hold for all
c ∈ c̃ + z. This and Lemma 1 imply |λi(c) − λ̃i| ≤ δi(z), ∀c ∈ c̃ + z. From (5) and
Lemma 2, moreover, minj |λj(c)− λ̃i| ≤ εi(z), ∀c ∈ c̃ + z. Taking these inequalities
and Lemma 3 into account, |λi(c)− λ̃i| ≤ ηi(z), ∀c ∈ c̃+z holds by determining ηi(z)
such that

ηi(z) =

{
εi(z) (If minj |λj(c)− λ̃i| = |λi(c)− λ̃i|, ∀c ∈ c̃+ z is proved)
δ(z) (otherwise)

.

To verify minj |λj(c)− λ̃i| = |λi(c) − λ̃i|,∀c ∈ c̃ + z, we can again apply Lemmas 4
and 5 to λi := λi(c), δ := δ(z) and εi := εi(z).

5 Proposed Algorithm

We first consider the representation of J in Theorem 2, with a view towards its efficient
computation. Let Jmid := (q̃Ti Aj q̃i/(q̃

T
i q̃i)), v := (eT |A1|e, . . . , eT |An|e)T ,

U := 2diag(‖q̃(1)‖2, . . . , ‖q̃(n)‖2)−1

 eT |A1q̃
(1)| · · · eT |Anq̃

(1)|
...

. . .
...

eT |A1q̃
(n)| · · · eT |Anq̃

(n)|

 ,

and Jrad := diag(ω1(z), . . . , ωn(z))U + (ω1(z)2, . . . , ωn(z)2)T vT . We then have
2ω1(z)eT |A1q̃

(1)|
‖q̃(1)‖2

· · · 2ω1(z)eT |Anq̃
(1)|

‖q̃(1)‖2
...

. . .
...

2ωn(z)eT |A1q̃
(n)|

‖q̃(n)‖2
· · · 2ωn(z)eT |Anq̃

(n)|
‖q̃(n)‖2

 = diag(ω1(z), . . . , ωn(z))U,

 ω1(z)2eT |A1|e · · · ω1(z)2eT |An|e
...

. . .
...

ωn(z)2eT |A1|e · · · ωn(z)2eT |An|e

 =

 ω1(z)2

...
ωn(z)2

 vT ,

so that J can be written as J = 〈Jmid, Jrad〉. Based on this representation and
Sections 3 and 4, we propose Algorithm 1 for enclosing c∗.
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Algorithm 1 Let kmax and % be a positive integer and real number, respectively. This
algorithm computes c ∈ IRn such that c 3 c∗. The uniqueness of the solution contained
in c is also verified.

Step 1: Compute c̃ by numerically solving Problem 1 via a known algorithm.

Step 2: Compute an interval matrix enclosing A(c̃). Calculate D̃ and Q̃ by perform-
ing a numerical spectral decomposition of the midpoint of the interval matrix.

Step 3: Compute an interval matrix enclosing G (during this process, intervals en-

closing q̃(i)
T

q̃(i), i = 1, . . . , n are also obtained). Calculate fl(‖G‖∞) using this
interval matrix. If fl(‖G‖∞) ≥ 1, terminate with failure.

Step 4: Compute an interval matrix enclosing R reusing the interval matrix in Step 2.
Calculate fl(δ) and fl(εi) using this interval matrix and fl(‖G‖∞). Determine ηi
by applying Lemmas 4 and 5 to λi := λi(c̃), δ := fl(δ) and εi := fl(εi).

Step 5: Compute interval matrices enclosing AiQ̃, i = 1, . . . , n.

Step 6: Compute fl(U), fl(v) and Jmid ∈ IRn×n such that Jmid 3 Jmid using the

intervals containing q̃(i)
T

q̃(i) and interval matrices in Step 5. Calculate S such
that S = fl(mid (Jmid)−1).

Step 7: Compute g ∈ IRn such that g 3 −Sf(c̃) using ηi, and initialize z and k such
that z = 〈0, %〉e and k = 1, respectively.

Step 8: If k = kmax, terminate with failure. Otherwise, compute fl(δ(z)) and fl(εi(z))
reusing fl(‖G‖∞) and the interval matrix in Step 4, determine ηi(z) by applying
Lemmas 4 and 5 to λi = λi(c), δ := fl(δ(z)) and εi := fl(εi(z)), and calculate
fl(ρi(z)).

Step 9: If mini fl(ρi(z)) ≤ 0, terminate with failure. Otherwise, compute fl(ξi(z)).

Step 10: If maxi fl(ξi(z)) > 1, terminate with failure. Otherwise, compute fl(ωi(z)).

Step 11: Compute fl(Jrad) using fl(ωi(z)), fl(v) and fl(U). Calculate J := Jmid +
〈0,fl(Jrad)〉. Then J ⊇ J .

Step 12: Compute w := g+ (I−SJ)z. If w ⊆ int(z), go to Step 13. Otherwise, up-
date z and k such that z = 〈1, eps〉w+〈0, realmin〉e and k = k+1, respectively,
and go back to Step 8.

Step 13: Compute c = c̃+ w. Terminate.

The update of z in Step 12 is based on epsilon inflation [6, 23], which has precise
theoretical justification [23]. Computing enclosures of B(z), B(z)Q̃ and SJ involves
O(n3) operations. The other computations in Steps 8 to 12 are possible with O(n2)
operations by reusing the matrices obtained in Steps 1 to 7. Hence, Steps 8 to 12
require only O(n3) operations, i.e., the iterative process in Algorithm 1 involves only
cubic complexity per iteration. On the other hand, Step 5 involves O(n4) operations.
If the number of iterations is O(n), therefore, Algorithm 1 requires O(n4) operations.

6 Numerical Results

We used a computer with Intel Core 1.2GHz CPU, 16GB RAM, MATLAB R2012a
with Intel MKL and IEEE 754 double precision. Throughout this section, let lam

:= (λ∗1, . . . , λ
∗
n)T , and α ∈ R satisfy 0 < α ≤ 1. We set lam such that lam = (1, fl(1 +

α), 3, . . . , n)T . Observe that λ∗1 and λ∗2 become closely clustered when α is small.
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We denote the compared algorithms as follows:

AM: [2, Algorithm 3.8],

AGM: The algorithm in [1, Section 4], and

M: Algorithm 1.

In AM, we used intgauss.m in [12, Section A] to execute the interval Gaussian algo-
rithm, and we skipped the improvement step based on the discussion in [2, Section 4].
In AM and AGM, we adopted [2, Algorithm 3.7] to compute intervals containing all
eigenvalues and unit 2-norm eigenvectors of interval matrices. In Step 1 of M, we
executed the Newton method discussed in [1, 2] with the stopping criterion (18) in
[1, Section 4]. We set kmax and % in M as kmax = 50 and % = ηk, respectively,
where ηk is defined as in (13) in [1, Section 4] and satisfies (18) in the paper. See
http://web.cc.iwate-u.ac.jp/~miyajima/ISEP.zip for details of the implementa-
tions, where the INTLAB [24] codes of the compared algorithms (denoted by AM.m,
AGM.m and M.m) are uploaded.

Let A0 := A0, A be a 3-dimensional array storing A1, . . . , An, and ex_sol :=
(1, . . . , n)T . In the examples below, we obtained A0 from A and ex_sol by the following
code for making c∗ approximately satisfy c∗ ≈ ex_sol:

setround(0);

Ac = zeros(n); for i = 1:n, Ac = Ac + ex_sol(i)*A(:,:,i); end;

[Q,D] = eig(Ac); d = diag(D); A0 = Q*diag(lam - d)*Q’; A0 = (A0 + A0’)/2;

Let c ∈ IRn contain c∗ in Problem 1. To assess the qualities of the enclosure,
define the maximum radius (MR) as maxi rad (c)i. In some examples, the compared
algorithms failed. The reasons for the failure of AM and M are that intgauss.m caused
error, and that mini fl(ρi(z)) ≤ 0 in Step 9 occurred, respectively.

Example 1

Consider the case where Ai, i = 1, . . . , n are Toeplitz matrices such that

A1 = I, A2 =



0 1 0 . . . 0

1 0 1
. . .

.

.

.

0 1
. . .

. . . 0

.

.

.
. . .

. . . 0 1
0 . . . 0 1 0


, . . . , An =



0 0 . . . 0 1

0
. . .

. . . . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . .
. . .

. . . 0
1 0 . . . 0 0


.

The matrix set {Ai}ni=1 has been used extensively; see for instance [3, 7, 26, 27]. We
set the initial guess c0 in the Newton method by setround(0); c0 = ex_sol + 0.01*

min(abs(ex_sol))*ones(n,1);. Table 1 displays the MR and CPU times (sec) of the
algorithms for various α and n.

We see from Table 1 that the MR by M was larger and smaller than that by AGM

when n was small and large, respectively. The algorithm M was faster than the other
algorithms. This result coincides with the fact that the iterative process in M requires
only O(n3) operations per iteration, whereas those in the other algorithms involve
O(n4) operations per iteration.

http://web.cc.iwate-u.ac.jp/~miyajima/ISEP.zip
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Table 1: The MR (left part) and CPU times (right part) in Example 1.

α n AM AGM M AM AGM M

1 10 2.1e–12 2.1e–14 4.1e–14 5.0e–1 2.0e–1 1.6e–2
1 20 5.0e–9 1.0e–13 2.1e–13 1.2e+0 4.1e–1 2.6e–2
1 30 failed 3.1e–13 6.2e–13 failed 7.1e–1 4.4e–2
1 310 failed 1.0e–8 2.8e–10 failed 3.9e+1 8.4e+0
1 320 failed 1.2e–8 3.4e–10 failed 4.1e+1 8.8e+0
1 330 failed failed 4.2e–10 failed failed 9.9e+0
2−9 10 3.2e–12 2.1e–14 3.9e–14 6.2e–1 2.3e–1 1.8e–2
2−9 20 5.7e–9 1.4e–13 2.9e–13 2.0e+0 4.5e–1 2.8e–2
2−9 30 failed 4.7e–13 1.1e–12 failed 8.0e–1 4.5e–2
2−9 310 failed 8.6e–9 9.5e–10 failed 3.8e+1 7.9e+0
2−9 320 failed 1.0e–8 1.3e–9 failed 4.1e+1 8.6e+0
2−9 330 failed failed 1.8e–9 failed failed 9.7e+0
2−18 10 2.7e–12 9.8e–14 1.7e–13 9.2e–1 2.4e–1 1.9e–2
2−18 20 failed 8.6e–12 1.8e–11 failed 4.6e–1 4.2e–2
2−18 30 failed 7.0e–11 1.8e–10 failed 8.2e–1 5.1e–2
2−18 310 failed failed failed failed failed failed
2−18 320 failed failed failed failed failed failed
2−18 330 failed failed failed failed failed failed

Example 2

Consider the case where A1 = (1/m1)e(1)e(1)
T

,

Ai =

(
1√
m1

e(1) − 1√
mi

e(i)
)(

1√
m1

e(1) − 1√
mi

e(i)
)T

, i = 2, . . . , n,

e(i) is the i-th column of I, m1 = 2, and m2 = · · · = mn = 0.2. The set {Ai}ni=1 is an
extension of that in [26, Example 4.2]. We computed Ai via floating point operations
in rounding to nearest mode, and set c0 by setround(0); c0 = ex_sol + 0.001*

min(abs(ex_sol))*ones(n,1);. Table 2 shows the quantities similar to Table 1.
It can be seen from Table 2 that in some examples, M succeeded whereas the other

algorithms failed. This result shows the robustness of M.

7 Application to Inverse Singular Value
Problems

Let A(c), Ai, σi(c), σ
∗
i for i = 1, . . . , n and c∗ be as in Problem 2, let c̃ be a numerical

solution to Problem 2, let z ∈ IRn be given, and let A(c) = U(c)Σ(c)V (c)T be a
singular value decomposition of A(c), where Σ(c) = diag(σ1(c), . . . , σn(c)) ∈ Rm×n,
and U(c) = (u(1)(c), . . . , u(m)(c)) ∈ Rm×m and V (c) = (v(1)(c), . . . , v(n)(c)) ∈ Rn×n

are orthogonal. Assume as a result of numerical singular value decomposition of A(c̃),
we have Ũ = (ũ(1), . . . , ũ(m)) ∈ Rm×m, Σ̃ = diag(σ̃1, . . . , σ̃n) ∈ Rm×n and
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Table 2: The MR (left part) and CPU times (right part) in Example 2.

α n AM AGM M AM AGM M

1 10 4.6e–14 4.5e–14 6.3e–14 4.7e+0 2.0e–1 1.7e–2
1 20 2.5e–9 1.4e–10 1.9e–10 2.9e+0 6.1e–1 6.1e–2
1 21 6.3e–9 3.5e–10 4.8e–10 8.8e+0 6.7e–1 7.4e–2
2−18 10 4.6e–14 1.1e–13 7.7e–14 2.2e+0 2.3e–1 1.9e–2
2−18 20 2.9e–9 failed 2.0e–10 6.0e+0 failed 8.8e–2
2−18 21 failed failed 4.9e–10 failed failed 1.4e–1
2−21 10 4.6e–14 5.4e–13 2.7e–13 1.5e+0 2.1e–1 1.9e–2
2−21 20 failed failed 2.3e–10 failed failed 2.6e–1
2−21 21 failed failed failed failed failed failed

Ṽ = (ṽ(1), . . . , ṽ(n)) ∈ Rn×n such that A(c̃) ≈ ŨΣ̃Ṽ T , and Ũ and Ṽ are approximately
orthogonal.

Solving Problem 2 is equivalent to solving f(c) = 0, where

f(c) := (σ1(c)− σ∗1 , . . . , σn(c)− σ∗n)T .

The function f is differentiable around c∗, and the singular vectors corresponding to
{σi(c)}ni=1 are continuous around c∗ (cf. [5]). The Jacobian matrix J(c) of f(c) is
given such that (see [5] for example)

J(c)ij =
∂σi(c)

∂cj
= u(i)(c)TAjv

(i)(c), i, j = 1, . . . , n.

From these and Sections 3 and 4, the verified computation for c∗ is possible if σi(c̃)
can be enclosed, and upper bounds for ‖u(i)(c) − (1/‖ũ(i)‖2)ũ(i)‖2 and ‖v(i)(c) −
(1/‖ṽ(i)‖2)ṽ(i)‖2, ∀c ∈ c̃ + z can be computed for i = 1, . . . , n. Note that upper
bounds for ‖u(j)(c)− (1/‖ũ(j)‖2)ũ(j)‖2, ∀c ∈ c̃+ z, j = n+ 1, . . . ,m are not required.

Let U1(c) := (u(1)(c), . . . , u(n)(c)), U2(c) := (u(n+1)(c), . . . , u(m)(c)),
Ũ1 := (ũ(1), . . . , ũ(n)), Ũ2 := (ũ(n+1), . . . , ũ(m)),

A(c) :=

(
0 A(c)T

A(c) 0

)
, Q(c) :=

1√
2

(
V (c) V (c) 0

U1(c) −U1(c)
√

2U2(c)

)
,

D(c) := diag(σ1(c), . . . , σn(c),−σ1(c), . . . ,−σn(c), 0, . . . , 0︸ ︷︷ ︸
m− n

),

Q̃ :=
1√
2

(
Ṽ Ṽ 0

Ũ1 −Ũ1

√
2Ũ2

)
,

D̃ := diag(σ̃1, . . . , σ̃n,−σ̃1, . . . ,−σ̃n, 0, . . . , 0︸ ︷︷ ︸
m− n

),

and let q(i)(c) and q̃(i) be the i-th columns of Q(c) and Q̃, respectively, for i =
1, . . . ,m + n. We then have A(c)Q(c) = Q(c)D(c) (see [11]), i.e., the singular values
and vectors of A(c) can be obtained by considering eigenvalues and eigenvectors of
A(c), respectively. Therefore, intervals containing σi(c̃), i = 1, . . . , n can be obtained
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by enclosing the largest n eigenvalues of A(c̃) based on Section 3 using Q̃ and D̃. More-
over, the upper bounds for ‖u(i)(c)− (1/‖ũ(i)‖2)ũ(i)‖2 and ‖v(i)(c)− (1/‖ṽ(i)‖2)ṽ(i)‖2,
∀c ∈ c̃+ z, i = 1, . . . , n can be computed by calculating an upper bound for ‖q(i)(c)−
(1/‖q̃(i)‖2)q̃(i)‖2, ∀c ∈ c̃+ z, i = 1, . . . , n based on Section 4.

8 Conclusion

In this paper, we have proposed an algorithm for computing an interval containing the
solution to Problem 1, we have reported the numerical results, and have sketched the
algorithm for enclosing the solution to Problem 2. If Ai, i = 1, . . . , n have the special
structure which is taken into account to reduce the computational cost, then the cost
of Algorithm 1 may become O(n3) operations. Our future work will be to develop
a verification algorithm which is applicable even when {λ∗1, . . . , λ∗n} includes multiple
eigenvalues.
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