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Abstract

Enclosure methods based on interval analysis construct state enclo-
sures of dynamical systems. Parallelotope state enclosures are well known
and widely used in the context of discrete-time dynamical systems and
continuous-time ODE-driven dynamical systems. They drastically reduce
the wrapping effect in the case of small initial conditions (small enough so
that linearizations are accurate). We propose and experimentally evalu-
ate a new parallelotope method for hybrid systems. Our method provides
much sharper enclosures than the current methods for small initial con-
ditions, it allows a correct timing associated with state enclosures to be
maintained, and it computes space derivatives along the trajectory.
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1 Introduction

Computing a sharp enclosure of the state of a dynamical system is a key issue that has
been addressed frequently in the context of discrete-time dynamical systems xk+1 =
ω(xk) [14, 15, 16, 25], continuous-time dynamical systems x′(t) = f(x(t)) [28, 32, 35,
45], and hybrid dynamical systems [2]. A common issue addressed in all these works
is the wrapping effect, first addressed in Moore’s early paper [32]: “Under the flow
itself a box y0 is carried after time t into the set of points Yt which will in general
not remain a box excepted for a few simple flows.” The wrapping effect appears in
both a continuous-time rotation x′1(t) = x2(t) and x′2(t) = −x1(t) (box enclosures for
x(π

4
) and x(π

2
) are illustrated in Figure 1, reproduced from [32]) and a discrete-time

rotation ω(x) := Rπ
4
x.
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Figure 1: Image of a box through a simple rotation (dashed line). Box enclosures
(full line) introduce a strong wrapping effect. Figure reproduced from [32].

One key improvement in the parallelotope method for reducing the wrapping effect
is the use of parallelotope-shaped sets for the enclosing states. A parallelotope is an
image of a box under an affine map; therefore, an image of a parallelotope under an
affine map is also a parallelotope. An image of a parallelotope under a map is enclosed
accurately by another parallelotope provided the given map has a small nonlinearity
with respect to the values within the given parallelotope. This idea was proposed by
Moore (see the first paragraph of Section 1.4 of [32]), wherein a local coordinate frame
moving along a trajectory is defined by an auxiliary nonlinear system that maps boxes
to sets that are close to the boxes. Therefore, the box-based enclosure of the state
of this auxiliary system is expected to suffer a weaker wrapping effect, giving rise to
the idea of a parallelotope enclosure for the initial system. This idea is implemented
by most enclosing methods for ordinary differential equations (ODEs) [28, 32, 38, 45]
(see [35] for a survey). Larger classes of enclosing sets have been proposed, e.g., zono-
topes [25] and images of boxes under polynomial maps (generalizing parallelotopes to
nonlinear sets) [4, 26, 30]. Parallelotope methods also have been designed to overcome
the wrapping effect for discrete-time dynamical systems [14, 25].

A hybrid system interleaves continuous and discrete systems: Starting from an
initial condition x0, the state follows a continuous-time dynamical system x′(t) =
f(x(t)) until a guard constraint is met at time tc, when a discrete-time dynamical
system transition map δ(x(tc)) enforces a discrete jump. The state then follows an-
other continuous-time dynamical system. Although there have been several enclo-
sure methods and tools that aim for an efficient reachability analysis of hybrid sys-
tems [3, 5, 6, 11, 23], no parallelotope method is available for the simulation of hybrid
systems. Some of the existing methods use parallelotope methods to simulate contin-
uous flows; however, boxes are used to evaluate guard constraints and jump functions,
and a strong wrapping effect may occur. Recently, [29] addressed this issue by splitting
the initial condition and merging the resulting images through a discrete transition
map producing an enclosing parallelotope-like shape. These approaches consider no
derivative with respect to the initial condition, preventing any attempt to apply an
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interval Newton operator to prove the existence of a periodic orbit.
In this paper, we propose a different approach for simulating discrete transitions

in hybrid systems. This approach is inspired by the discontinuity mapping [44, 46]
classically used to assess the behavior of a hybrid system near a given trajectory,
usually near a tangential guard crossing.1 However, we revisit this approach to obtain
an interval simulation method completely based on parallelotopes. This both reduces
the wrapping effect in the simulation and allows the derivative of a flow to be computed
with respect to the initial condition, even though the map involves a discrete transition.

This paper is organized as follows: The background necessary for interval analysis,
continuous-time dynamical systems, and hybrid systems is presented in Section 2. A
parallelotope method for discrete-time dynamical systems is presented in Section 3
and used in Section 4, which describes the proposed parallelotope method for hybrid
dynamical systems. Finally, preliminary experiments are presented in Section 5.

Notation: The derivative of f : Rn → Rm is denoted by ∂f : Rn → Rn×m, and
partial derivatives of f(x, y) are denoted by ∂xf and ∂yf . Intervals symbols are repre-
sented in boldface. Symbols φ and ψ denote continuous flows Rn×R→ Rn associated
with ODEs. The symbol ω denotes the discrete-time dynamical system Rn → Rn.

2 Background

The main concepts of interval analysis, continuous-time dynamical systems, and hybrid
systems that will be used in the sequel are presented in this section.

2.1 Interval Analysis

Modern interval analysis was born in the 60’s with [33]. Since then, it has been
developed widely and is today an important branch of numerical analysis (see [1, 19,
21, 36] and extensive references).

Interval analysis usually considers the set of closed intervals denoted by IR. An
interval is usually denoted using brackets, and the bounds of the interval x are denoted
by x and x, i.e., x = [x, x], and an element of x by x. Interval vectors (boxes) can
be defined in two equivalent ways: First, as a vector of intervals x = (x1, . . . ,xn). In
this case, x ∈ x is defined by x1 ∈ x1, ..., xn ∈ xn. Second, as an interval of vectors
x = [x, x] where x, x ∈ Rn such that x ≤ x, the inequality being defined component-
wise. In this case, x ∈ x is defined by x ≤ x ≤ x. Both definitions are obviously
equivalent, and used indifferently. Interval matrices are defined in the same way.

The main concept of interval analysis is the extension of real functions to interval
functions, which is defined as follows: Let f : Rn −→ Rm be a continuous real function,
and f : IRn −→ IRm be an interval function. Then f is an interval extension of f if
and only if for every x ∈ IRn, {f(x) : x ∈ x} ⊆ f(x).

Remark 1 The exact range of the function over x, f(x) = {f(x) : x ∈ x}, while
f(x) is the evaluation of an interval function. The symbol f is used for an interval
extension of the real function f , in which case, f(x) ⊆ f(x).

1Tangential guard crossings are not well handled: First, usual methods for locating cross-
ings are based on Newton’s method, which fails at a tangential guard crossing. Second, hybrid
models are not well defined at a tangential guard crossing, usually leading to nondeterministic
solutions, where two simulations have to be performed, with and without the transition.
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Hence, an interval extension computes an enclosure of the image of a box by a
real function. This definition is very useful in many contexts, including reachability
analysis. Next, we show how to compute such extensions.

First, we compute formally the interval extension of elementary functions. For
example, x + y := [x + y, x + y]. Similar simple expressions are obtained for other
functions −, ×, ÷, xn,

√
x, exp, etc., giving rise to interval arithmetic.

Then, an interval extension for real functions composed of these elementary oper-
ations is obtained by changing the real operations to their interval counterparts. This
interval extension is called the natural interval extension.

Example 1 Let f(x, y) = x(y − x). The interval function f(x,y) = x(y − x) is the
natural interval extension of f . Hence, for example

f([0, 1], [−1, 1]) = [−2, 1] ⊇ {f(x, y) : x ∈ [0, 1], y ∈ [−1, 1]}. (1)

The exact range is f([0, 1], [−1, 1]) = [−2, 1/4], and the natural interval extension
is thus pessimistic. A main issue of interval analysis is to overcome this pessimism
introduced by the interval evaluation of a function.

There are other interval extensions, including the mean-value interval extension,
which uses the natural extension of the derivatives to try improving the enclosure;
see [36] for details. Interval arithmetic also allows extending vector/matrix and ma-
trix/matrix multiplications. Such definitions preserve the enclosing property of interval
extensions (these are actually generic cases of interval extensions).

Finally, the univariate interval Newton method will be used: Let f : R→ R, ∂f its
derivative, x ∈ IR and x̃ ∈ x. Then every solution of f(x) = 0 inside x is also inside

x̃− ExtDiv
(
f(x̃), ∂f(x),x− x̃

)
, (2)

where ExtDiv
(
z,y,x

)
is the standard three argument extended interval division:

ExtDiv
(
z,y,x

)
:= {x ∈ x : ∃y ∈ y,∃z ∈ z, z = yx}, (3)

which is equal to z
y
∩ x if 0 /∈ y. Furthermore, if the interval (2) is nonempty and

strictly contained inside x, then it is proved to contain a unique solution of f(x) = 0.

Remark 2 When numbers are represented with a finite precision [12], the interval
operators cannot be computed exactly in general. The outer rounding is then used so to
preserve the interpretations. For example in three decimal digit arithmetic, [1, 2]/[3, 7]
would result in [0.142, 0.667]. Such an outwardly-directed rounding is implemented in
most interval libraries, e.g. [22, 37, 41].

2.2 Continuous-Time Dynamical Systems

The solution operator (or the flow) is introduced noting that the ODE x′(t) = f(x(t))
maps an initial condition x(t0) ∈ Rn and a duration t ∈ R to a unique vector x(t0+t).2

Therefore, the ODE defines an operator φ : Rn × R −→ Rn, characterized by

φ
(
x(t0), t

)
= x(t0 + t), (4)

2Existence and uniqueness are assumed here, and follow from some hypotheses on the
function φ that are usually verified and checked a posteriori by the method.
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and called the ODE solution operator. It abstracts the simulation of the ODE into a
simple function evaluation. On the other hand, the evaluation of the solution operator
requires integration of the ODE, so each evaluation of φ is computationally expensive.
The Jacobian ∂φ : Rn×R −→ Rn×(n+1) of the solution operator allows us to quantify
the sensitivity of φ, in particular with respect to the initial condition. For convenience,
it is split into two sub-matrices ∂tφ : Rn × R −→ R1×n (where ∂tφ(x, t) = f(φ(x, t))
holds) and ∂xφ : Rn×R −→ Rn×n. These derivatives allow linearizations of the ODE:

φ(x+ h, t+ s) ≈ φ(x, t) + ∂xφ(x, t)h+ ∂tφ(x, t)s. (5)

Standard integrators (e.g., Runge-Kutta, Adams method, etc.; see e.g. [18]) com-
pute approximations of the ODE solution. Therefore, they can be used to evaluate
approximately φ and its derivatives. On the other hand, interval integrators (see [35]
for review and references therein for the theory of interval integrators) enclose the
solution of the ODE for interval initial conditions. Therefore interval integrators give
rise to interval enclosures φ and ∂φ of φ and ∂φ, respectively. As a consequence, the
linearization (5) can be made rigorous:

φ(x+ h, t+ s) ∈ φ(x, t) + ∂xφ(x, t)h+ ∂tφ(x, t)s, (6)

where x ⊇ [x, x+ h] and t ⊇ [t, t+ s].

In practice, φ and ∂xφ are actually computed using an iterative procedure, usually
with adaptive time steps. For the sake of simplicity of the presentation of the proposed
algorithms, this iterative procedure will not be mentioned explicitly. Instead, the
flow φ and its derivatives will be evaluated only from the initial state to the final
state. Practically, this requires storing a polynomial approximation of the trajectory
for each step, so the evaluation of the flow can be accelerated by using these stored
approximations instead of re-simulating the ODE. Such a feature is easily implemented,
e.g., using CAPD [45].3

2.3 Hybrid Systems

A continuous-time dynamical system is extended to a hybrid system by introducing
a discrete transition (or a jump) specified by a guard constraint h(x) = 0 ∧ g(x) < 0
and a jump function δ : Rn → Rn. The flow of the hybrid system before and after
a transition is separated into two locations (also called modes, or discrete states). A
system first behaves as the flow φ(x, t) : Rn × R → Rn until the guard constraint
h(x(tc)) = 0 ∧ g(x(tc)) < 0 holds at time tc. Then, the state x(tc) jumps to δ(x(tc))
toward the second location before following the second flow ψ(x, t) : Rn×R→ Rn. This
process is then repeated for each guard intersection along the trajectory. The extension
to the case where more than two locations and flows are present is straightforward.

Remark 3 Flows φ and ψ are useful abstractions of the actual ODE system, but each
evaluation of these functions or their derivatives requires integrating the ODE, with
interval evaluations requiring the computation of interval extensions of the flows.

Example 2 We consider a simple rotation system, which is made hybrid by braking
the rotation in two locations. Here, we split the variables into b and x; b represents

3CAPD: Computer Assisted Proofs in Dynamics group, a C++ package for rigorous nu-
merics, http://capd.ii.uj.edu.pl/.

http://capd.ii.uj.edu.pl/


168 Goldsztejn and Ishii, Parallelotope Method for Hybrid System Simulation

two locations with the constant value 0 or 1; the jump function switches its value. The
system is specified as

b′(t) = 0,

x′(t) =

(
0 1
−1 0

)
x(t),

(b(0), x(0)) ∈ {1} × (1 + [−10−6, 10−6])× [−10−6, 10−6],

h(b, x) = x1 − x2 + ε,

g(1, x) = −x1, g(0, x) = x1,

δ(b, x) = (−b, x)T .

The trajectories are 2π periodic and follow circles centered on 0. The function g
ensures that the guard is deactivated just after a jump, which is necessary for a fully
deterministic simulation. The system is parameterized by ε, used in the guard function
h to translate the boundary.

3 A Parallelotope Method for Discrete-Time
Dynamical Systems

Parallelotope methods enclose a state of a discrete-time or continuous-time dynamical
system by a parallelotope instead of a box. Several parallelotope methods have been
proposed (see [9, 24, 27, 33, 38, 45] and [35] for a review); they are very efficient for
small initial conditions (i.e., when the nonlinear map is close enough to its tangent
so that the image of a parallelotope is close to a parallelotope, and hence is enclosed
accurately by another parallelotope).

In this section, we present a new parallelotope method,4 which applies to discrete-
time and continuous-time dynamical systems; the method will be extended for hybrid
systems in the next section.

3.1 Parallelotopes

A parallelotope (or parallelepiped) is the image of a box under an affine map. It is
defined by a triplet in Rn×n × IRn × Rn,

〈A,u, x̃〉 := {x̃+Au : u ∈ u}. (7)

A parallelotope will be denoted by 〈x〉. A parallelotope has several representations,
e.g., 〈A,u, x̃〉 = 〈A,u + b, x̃ − Ab〉 for some b ∈ Rn, but keeping u approximately
centered on 0 has several advantages (it allows reducing the roundoff errors, simplifying
the expression of the method; it is interpreted as a central vector x̃ with an error
domain around it). For the sake of simplicity of the parallelotope method presented so
far, we consider only parallelotopes such that 0 ∈ u, or, equivalently, x̃ ∈ 〈A,u, x̃〉. A
box x ∈ IRn is identified as the parallelotope 〈I,x−midx,midx〉. The interval hull
of a parallelotope 〈x〉 = 〈A,u, x̃〉, the smallest box that contains this parallelotope, is
denoted by �〈x〉 and equals Au+ x̃ computed using interval arithmetic.

4This parallelotope method was first presented at the 12th GAMM - IMACS International
Symposium on Scientific Computing, Computer Arithmetic and Verified Numerical Compu-
tations (SCAN 2010), see [14].
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3.2 Discrete-Time Dynamical Systems

Consider a map ω : Rn −→ Rn, and suppose that we have interval extensions
ω : IRn → IRn and ∂ω : IRn → IRn×n of ω and ∂ω, respectively. We consider a
parallelotope 〈x〉 = 〈A,u, x̃〉 and aim to compute a parallelotope 〈y〉 := 〈B,v, ỹ〉 that
encloses ω(〈x〉). Then, this process can be repeated to obtain an enclosure of recursive
map applications.

When computing a parallelotope 〈y〉 = 〈B,v, ỹ〉, given a map ω and a parallelotope
〈x〉, the proposed method first computes ỹ and B and then computes v to make the
parallelotope 〈y〉 proper enclosure of the considered image ω(〈x〉). Both ỹ and B can
be chosen arbitrarily, with the requirement that B is nonsingular, but correct choices,
detailed below, will improve the accuracy of the resulting parallelotopes. Accordingly,
v is computed by evaluating the map ω using a mean-value form in the auxiliary basis,
as formalized by the following theorem.

Theorem 3.1 Let 〈x〉 = 〈A,u, x̃〉 such that 0 ∈ u. Consider interval enclosures
y := ω(x̃) and J := ∂ω(�〈x〉), a real vector ỹ such that ỹ ∈ y, and a nonsingular real
matrix B. Then, the parallelotope 〈y〉 = 〈B,v, ỹ〉 with

v := B−1(y − ỹ) + (B−1JA)u, (8)

where B−1 is an enclosure of the inverse of B,5 satisfies 0 ∈ v, and 〈y〉 ⊇ ω(〈x〉).

Proof: Obviously, 0 ∈ v since ỹ ∈ y and 0 ∈ u. When ω̃(u) := B−1
(
ω(Au + x̃) − ỹ

)
,

for an arbitrary x ∈ 〈x〉, ω(x) ∈ 〈y〉 is equivalent to ω̃(u) ∈ v. Then, ω̃(0) =
B−1ω(x̃)−ỹ ∈ B−1(y−ỹ), and by the chain rule ∂ω̃(u) = B−1∂ω(Au+x̃)A ∈ B−1JA
holds for all u ∈ u. As a consequence, Equation (8) is actually a mean-value interval
extension of ω̃, which implies ω̃(u) ∈ v for all u ∈ u.

We now turn back to the choice of ỹ and B, which aims to minimize the size of v
in (8). We start by fixing

ỹ := midω(x̃) (9)

to minimize B−1(y− ỹ) in (8). Note that ỹ can be computed with floating point arith-
metic.6 Next, the choice of B is critical for the efficiency of the method; B represents
the orientation of the parallelotope 〈y〉. Choosing B := I leads to a box enclosure
with strong wrapping effect, even when 〈x〉 is very small. The most obvious choice is
B :≈ (midJ)A, which makes the orientation of 〈y〉 closest to the orientation of ω(〈x〉).
However, when (midJ)A is not well conditioned, this choice may lead to inaccurate
enclosures (see [34] for details). In this case, a better enclosure is obtained by choos-
ing B by orthogonalizing the columns of (midJ)A (usually by a QR-decomposition).
Eventually, we propose the following simple heuristic for determining B:

Bκ :=

{
(midJ)A if κ

(
(midJ)A

)
≤ κ

orthogonalize
(
(midJ)A

)
otherwise,

(10)

where κ is a threshold for the condition number of (midJ)A; large condition numbers
require an orthogonalization. This generalizes the previous two approaches: B∞ never

5Such an enclosure can be computed from an approximate inverse C of B using B−1 ∈
C + ν

1−ν [−|C|, |C|], with ν = ‖CB − I‖∞, CB − I being computed using interval arithmetic

to provide a rigorous upper bound of the norm (see Theorem 4.1.11 in [36]).
6Several formulae can be used to compute an approximation of the midpoint of an interval

in floating point arithmetic, see [17]. They present different accuracies, but most ensure that
the approximate midpoint is actually inside the interval.



170 Goldsztejn and Ishii, Parallelotope Method for Hybrid System Simulation

changes the directions of midJ , and B1 always performs an orthogonalization (except
when midJ is already orthogonal). The value κ = 100 has shown in our experiments
to be efficient, on average. A different switching strategy was proposed in [34], but our
experiments have shown that the strategy proposed here is simpler and more efficient.

Remark 4 The order in which the columns of (midJ)A are orthogonalized may mat-
ter, but this is out of the scope of this paper. See [28] or Section 5.2 of [34] for a
further discussion.

The computation of 〈y〉 = 〈B,v, ỹ〉 presented so far requires only some interval ex-
tensions of both ω and ∂ω. Given these interval extensions, the parallelotope enclosure
defined by the equations (8), (9) and (10) is denoted by

EncloseParallelotope(〈x〉,y,J) := 〈Bκ,v, ỹ〉, (11)

where y ⊇ ω(x̃) and J ⊇ ∂ω(〈x〉).

4 A Parallelotope Method for Hybrid Systems

This section presents a parallelotope method for the simulation of hybrid systems.
Given an initial parallelotope 〈x0〉, which contains the state at time 0, we attempt

to compute a sharp interval enclosure tc = [tc, tc] of the first crossing time at which
the flow satisfies the guard (formally defined in Subsection 4.1). This process can
fail, e.g., in case of tangential guard crossing for some initial condition, or because
no crossing time is found within a maximal time window.7 In case of success, we
compute a parallelotope enclosure 〈xtc〉 of the state at time tc, just after all the states
emanating from each initial value have jumped (Subsection 4.2). The process can be
repeated with the initial parallelotope 〈xtc〉 to simulate the following trajectory.

4.1 First Crossing Time Enclosure

Formally, we are going to compute the first crossing time enclosure tc := [tc, tc] that
satisfies the two conditions

∀x ∈ 〈x0〉, ∀t ∈ [0, tc), H(x, t) 6= 0 ∨G(x, t) > 0, and (12)

∀x ∈ 〈x0〉, ∃!t ∈ [tc, tc], H(x, t) = 0 ∧G(x, t) < 0 ∧ ∂tH(x, t) 6= 0, (13)

where H(x, t) := h(φ(x, t)) and G(x, t) := g(φ(x, t)). Time derivatives of these func-
tions are obtained using the chain rule:

∂tH(x, t) := ∂h(φ(x, t))∂tφ(x, t); (14)

∂tG(x, t) := ∂g(φ(x, t))∂tφ(x, t), (15)

which can be easily extended to interval functions. Condition (12) enforces that there
is no guard intersection before the lower bound of the interval. Condition (13) enforces
that the time interval contains a unique transverse guard intersection for each initial

7In practice, the computation of first crossing time interval is restricted to an arbitrarily
large but finite time horizon [t0, t0 + tmax] to prevent non-halting execution if there is actually
no guard intersection. Dealing with such a situation requires analyzing the reachable set of
an ODE in the location, e.g., using [8], but is not in the scope of this paper.
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condition (transversality is enforced by ∂tH(x, t) 6= 0, which means by (14) that the
speed is not in the tangent plane of the guard constraint). This interval tc must
be as thin as possible, since any overestimation here entails some overestimation in
the subsequent state enclosures. It is computed in three steps: 1) Compute a sharp
lower bound tc (Subsection 4.1.1; by enforcing the safeguard tc < tmax as discussed in
Footnote 7); 2) Compute a crude upper bound tcrude (Subsection 4.1.2); 3) Compute
a sharp tc ≤ tcrude (Subsection 4.1.3). These three procedures comprise an algorithm
for finding with certification the first zero of a parametric time function (here the
parameter is the initial condition, which is enclosed in a parallelotope domain). This
first zero algorithm turns out to be efficient when the parameter domain (here, the
initial condition) is sufficiently small. In the following, we use a box initial condition
x0 = �〈x0〉 for the crossing time computation. This simplifies the presentation and
has no sensitive impact on the quality of the enclosure.

4.1.1 Sharp Lower Bound

In the first step, we compute a sharp lower bound tc of the first crossing time interval.
The procedure described in Algorithm 1 is similar to the box-consistency enforcement
proposed in [13]. Each iteration attempts to remove a slice on the left of the interval
[tc, tc+δ] by applying an interval Newton operator to the time constraints H(x0, t) = 0
(Line 5) and G(x0, t) ≤ 0 (Line 7). The interval Newton operator removes slices of
t that contain no solution of the constraints for any value of x ∈ x0, hence enforc-
ing (12). The standard three argument extended interval division is used to implement
an interval Newton operator expanded on the lower bound of the time interval. The
loop is stopped when no further reduction occurs. The parameter δ > 0 restricts the
size of the slice to be removed per iteration, and it allows us to evaluate the derivative
of the flow within a finite time window.

Remark 5 The contraction performed at Line 7 is useful only when restarting the
algorithm just after a jump where the guard equation h(x) = 0 is still satisfied, but not
g(x) < 0. It is actually critical in this situation, since h(x) = 0 cannot start reducing
such a time interval. A typical example is when a flow in Example 2 has just crossed
the guard h(b, x) = 0 and reset as b := −b; the constraint h(b, x) = 0 is still satisfied
after the jump, hence Line 5 cannot prune the time interval, but the value of x1 is
inverted and g(b, x) < 0 holds, hence Line 7 can prune.

Remark 6 The best value of δ in Algorithm 1 depends on the problem and the current
time. It can be dynamically adapted, as proposed in [13]. This may improve the
efficiency of Algorithm 1, in particular when the vector field behaves badly just after
the guard.

4.1.2 Crude Enclosure

The sharp lower bound tc is a good approximation of the zero for some x ∈ x0.
Therefore, in the second step, we use this value as an initial guess for the parametric
zero of h(x0, t) = 0. Then, we apply an inflation process based on the interval Newton
operator to compute an enclosure. Such a process is well known [20, 31, 39, 40, 42,
41, 43]; its implementation is given in Algorithm 2 for completeness.
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Input: x0 ∈ IRn ; G,H : IRn × IR→ IR ; ∂tG, ∂tH : IRn × IR→ IRn
Output: tc ∈ R>0

Data: δ ∈ R>0 ; tmax ∈ R>0

1 tc ← 0;
2 repeat
3 tc

prev ← tc;
4 t← [tc, tc + δ] ∩ [−∞, tmax];

5 t← t− ExtDiv
(
H(x0, t), ∂tH(x0, t), t− t

)
;

6 if t 6= ∅ then
7 t← t− ExtDiv

(
G(x0, t) + [0,∞], ∂tG(x0, t), t− t

)
;

8 end
9 if t = ∅ then tc ← tc + δ;

10 else tc = inf t;

11 until tc
prev = tc or tc ≥ tmax;

12 if tc < tmax then return tc;
13 else fail;

Algorithm 1: Computation of a sharp lower bound using the box con-
sistency. The values of the parameters δ and tmax shall depend on the
problem (δ = 0.1 and tmax = 10 in the problems treated in Section 5).

Input: x0 ∈ IRn ; G,H : IRn × IR→ IR ; ∂tH : IRn × IR→ IRn ;
tc ∈ R>0

Output: t ∈ IR
Data: ρ ∈ R>1 ; ε ∈ R>0

1 t← tc;
2 repeat
3 t′ ← mid t+ ρ (t−mid t) + [−ε, ε];
4 if 0 /∈ ∂tH(x0, t

′) then t← mid t′ − H(x0,mid t′)
∂tH(x0,t′)

;

5 else fail;

6 until t ⊆ int t′ or safeguard;
7 if t ⊆ int t′ and supG(x0, t) < 0 then return t;
8 else fail;

Algorithm 2: Computation of a crude enclosure using an inflation process
based on the interval Newton. Meaningful values of the parameters are
ρ = 1.01 and ε = 10−12.

Remark 7 This method succeeds only if the guard intersection is transverse for every
initial condition, i.e., 0 /∈ ∂tH(x0, t), and therefore actually proves this property in
case of success, as described in (13).

If we successfully enclose the parametric zero of h(x0, t) = 0 in t, we need to check
that the inequality guard constraint is satisfied (Line 7). If Algorithm 2 succeeds,
the system is proven to have a guard intersection for all initial conditions in x0 with
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Input: x0 ∈ IRn ; H : IRn × IR→ IR ; ∂tH : IRn × IR→ IRn ;
tc < tcrude ∈ R>0

Output: t ∈ IR
1 t← [tc, tcrude];
2 repeat
3 tc

prev ← sup t;

4 t← sup t− ExtDiv
(
H(x0, sup t), ∂tH(x0, t), t− sup t

)
;

5 until tc
prev

= sup t;
6 return t;

Algorithm 3: Computation of a sharp upper bound using the box con-
sistency.

crossing time in [tc, tcrude], where tcrude is the upper bound of the crossing time t
returned by Algorithm 2; the lower bound tc should be more accurate than t in general.

4.1.3 Sharp Upper Bound

The time interval is pruned less accurately with the interval Newton than with the
box consistency. Therefore, to obtain the tightest enclosure of the crossing time, the
third step applies the box consistency to improve the upper bound tcrude in a similar
way as in Subsection 4.1.1 (the process will be simpler; in particular, the initial time
interval is bounded, the constraint g(x) < 0 is useless, and t cannot be empty since
some solutions are proved to be contained). The process is described in Algorithm 3.

4.2 Parallelotope Enclosure of Post Jump States

Given an initial parallelotope enclosure 〈x0〉 at t = 0, we computed a crossing time
enclosure [tctc] in the previous section. Therefore, we have a parallelotope 〈xtc〉 =
〈A,u, x̃〉 that encloses the states before the jump at the lower bound tc, which corre-
sponds to all initial conditions 〈x0〉 at time 0. In this section, we compute a parallelo-
tope 〈xtc〉 that encloses all the states after the jump at the upper bound tc.

Classically, we define the crossing time function τ : 〈x0〉 → tc, which associates
to each initial condition its crossing time. Let ω(x) be the state at time tc reached
by the state x ∈ 〈x0〉 at time t0. The jump performed by ω(x) can be described as
follows: x first follows the flow φ for a duration of τ(x), by definition of τ(x), then
jumps through the transition map δ, and then follows the flow ψ for a duration of
α− τ(x), where α = tc − tc. This leads to the following formal expression of ω:

ω(x) := ψ
(
δ
(
φ(x, τ(x))

)
, α− τ(x)

)
. (16)

The argument of ω is an initial condition (or a set of initial conditions), and the
evaluation of the flows over [tc, tc] is embedded in ω.

Remark 8 Another mapping, called the discontinuity mapping, is defined in [44, 46].
With our notation, it is defined as

D(x) := ψ
(
δ
(
φ(x, τ(x))

)
,−τ(x)

)
. (17)
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Input: x̃ ∈ Rn ; H : IRn × IR→ IR ; ∂tH : IRn × IR→ IRn ;
tc, tc ∈ R>0

Output: ω(x̃) ∈ IRn
1 t← [0, α]; /* α = tc − tc */

2 repeat
3 t′ ← t;

4 t←
(

mid t− H(x̃,mid t)
∂tH(x̃,t)

)
∩ t;

5 until t = t′;
6 return ψ(δ(φ(x̃, t)), α− t);

Algorithm 4: Computation of a sharp enclosure of ω(x̃).

Then, the flow ψ is applied to obtain the state at tc: ω(x) = ψ(D(x), α). We define
and use (16) instead of (17). The latter involves a simulation backward in time, which
raises several issues. First, most solvers should be able to simulate backward in time,
but this has to be checked carefully. Second, this part of the trajectory is not actually
performed by the system, which could be bad behaved, or even undefined, in this region.
Third, this backward simulation is then followed by a forward simulation that exactly
compensates for it, leading to some overestimation.

Our parallelotope method for simulating hybrid systems computes the parallelotope
enclosure 〈xtc〉 = 〈A,u, x̃〉 of the state at time tc by applying the discrete-time paral-
lelotope method in Section 3 to the map ω

〈xtc〉 := EncloseParallelotope(〈xtc〉,y,J), (18)

where y 3 ω(x̃) and J ⊇ ∂ω(�〈xtc〉). In the next two subsections, we compute such
y and J .

4.2.1 Interval Enclosure of the Midpoint Image

In this subsection, we compute the image of x̃, the center of the parallelotope 〈xtc〉 =
〈A,u, x̃〉, under the map ω. Since the initial condition is now a vector and the sim-
ulation time is very short, we can use a simple guard crossing detection based on a
box evaluation. To this end, we need an enclosure of τ(x̃), which can be computed
by contracting [tc, tc] using an interval Newton method. Since the interval Newton
was strictly contracting for 〈x0〉, it is contracting for x̃, and no safeguard is required.
Then, we use an interval extension of ω to obtain ω(x̃) 3 ω(x̃). This procedure is
implemented as Algorithm 4.

4.2.2 Interval Enclosure of the Derivative

Since the guard intersection is transverse, the implicit function theorem shows that
τ(x) is locally differentiable, and by the uniqueness of the crossing time inside tc, it is
differentiable inside 〈x0〉. Therefore, ω is differentiable inside 〈x0〉, and its derivative
can be computed using the chain rule. First, ∂τ is computed in the same way as in
the context of Poincaré map: τ(x) satisfies

h
(
φ(x, τ(x))

)
= 0. (19)
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Therefore, differentiating both sides gives

∂h
(
φ(x, τ(x))

)︸ ︷︷ ︸
R1×n

(
∂xφ(x, τ(x))︸ ︷︷ ︸

Rn×n

+ ∂tφ(x, τ(x))︸ ︷︷ ︸
Rn×1

∂τ(x)︸ ︷︷ ︸
R1×n

)
= 0. (20)

After expanding and grouping, we obtain

∂τ(x) := −∂h(y) ∂xφ(x, τ(x))

∂h(y) ∂tφ(x, τ(x))
, (21)

where

y := φ(x, τ(x)). (22)

We apply the chain rule to the expression (16) of ω to obtain its derivative,

∂ω(x) := ∂xψ
(
δ(y), α− τ(x)

)
∆− ∂tψ

(
δ(y), α− τ(x)

)
∂xτ(x), (23)

with

∆ := ∂xδ(y)
(
∂xφ(x, τ(x)) + ∂tφ(x, t(x))∂xτ(x)

)
. (24)

Remark 9 It can be checked that this expression of ∂ω(x) is equivalent to the one
given in Equation (A.11) of [46], because ∂tφ(x, t) is the vector field f(φ(x, t)) associ-
ated to the flow φ.

Finally, the interval matrix J is obtained by evaluating expression (23) for the
interval �〈xtc〉.

5 Experiments

We implemented our method and experimented on several hybrid system models to
evaluate the the effectiveness of the method. Experiments were run on a 3.4 GHz Intel
Xeon processor with 16 GB of RAM.

5.1 Implementation

We implemented our method in C++ and OCaml. The Filib++ and CAPD libraries
were used to implement interval arithmetic and the ODE solving process.

5.2 Example Hybrid System Problems

5.2.1 A Simple Periodic Hybrid System (rotationε)

We consider the hybrid system described in Example 2. In the experiments, we tested
two instances of the system, rotation0 and rotation0.1.
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5.2.2 A Simple Hybrid System with Linear ODE (disk)

This is a simple model described by a linear ODE, a nonlinear guard function, and a
linear jump function.

x′(t) =

(
0 −1
1 0

)
x(t),

x(0) ∈ (1 + [−10−6, 10−6])× [−10−6, 10−6],

h(x) = (x1 − 1)2 + x22 − 1,

g(x) = −2x2,

δ(x) = (−x1 + 2,−x2)T .

A solution trajectory draws arcs centered at 0 clockwise. The guard condition detects
the intersection of the arcs and the circle of radius 1 centered at (1, 0). When the guard
condition is satisfied, the jump function moves the current position to the location at
the opposite side of the circle, which is symmetric with respect to the center (1, 0).
The solution trajectories are periodic along with each two steps of flows and jumps.

5.2.3 Simple Bouncing Ball (bb-simple)

A ball bouncing in one dimension is modelled as

x′(t) = (x2(t),−1)T ,

x(0) = (1, 0)T ,

h(x) = x1,

g(x) = −x2,
δ(x) = (x1,−x2)T .

Bounce are perfectly elastic, so the trajectory has period 2
√

2.

5.2.4 Bouncing Ball on Parabola (bb-parabolan)

We consider a parametric model of a ball in n-dimensional space bouncing on a
parabolic floor. We express the state variables in two vectors, the position x =
(x1, . . . , xn) and the velocity v = (v1, . . . , vn),

x′(t) = v(t),

v′(t) = (0, . . . , 0,−1)T ,

x(0) = (1, . . . , 1, 2)T ,

v(0) = (0, . . . , 0)T ,

h(x, v) =
x21 + · · ·+ x2n−1

n− 1
− xn,

g(x, v) = −v · ∇h,
δ(x, v) = (x, v − 2 proj∇hv)T ,

where ∇h is the gradient of h and proj∇hv is the projection of the velocity vector v
on the normal of h, i.e., proj∇hv = v·∇h

||∇h||2∇h. As in the previous example, the jump

function δ models a perfectly elastic bounce.
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Figure 2: Trajectories of the billiard example.

5.2.5 Billiard (billiardw)

We consider a stadium-shaped billiard table with a ball bouncing from its boundary.

(x′(t), v′(t)) = (v(t), 0),

(x(0), v(0)) = (0, (w, 1)T ),

h(x, v) = x41 + 2x22 − 1,

g(x, v) = −v · ∇h,
δ(x, v) = (x, v − 2 proj∇hv)T .

The model uses separated state variables x and v as in Example 5.2.4. The initial
velocity is parameterized with w. We simulated with w = 0.1 and w = 0.3. The
trajectories of the two instances are illustrated in Figure 2. If w = 0.1, the particle
stays in the central region, and the behavior becomes close to uniform, while for w =
0.3, the particle reaches wider region and exhibits a qualitatively different behavior.

5.2.6 Navigation Benchmark (navigation)

We tested the navigation benchmark [10] that models a 2D moving object on a m×n
grid. Each grid point (i, j) is assigned an integer Ii,j ∈ {0, . . . , 7} that represents a
desired velocity vector. We used a 5 × 5 instance described in [10]. The flow in the
grid (i, j) and the initial value are specified as (the variables are separated into x and
v as in the previous examples)

x′(t) = v(t),

v′(t) = A(v(t)−
(

sin(Ii,j
π
4

)
cos(Ii,j

π
4

)

)
) with A =

(
−1.2 0.1
0.1 −1.2

)
,

(x(0), v(0)) ∈ (3.5 + [−10−9, 10−9])× (3.5 + [−10−9, 10−9])× {0.5} × {0}.

Initially, the trajectory stays on the grid (4, 2). The trajectory is illustrated in Figure 3.
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Figure 3: Trajectory of the navigation benchmark. The value of Ii,j is indicated
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Figure 4: Trajectory of the Lotka-Volterra system.

5.2.7 Lotka-Volterra System (lv)

We consider a hybridized model that combines two Lotka-Volterra systems, each de-
scribed by a nonlinear ODE:

x′(t) =

(
0.2x1(t)− 0.04x1(t)x2(t)
−0.1x1(t) + 0.02x1(t)x2(t)

)
in location 1,

x′(t) =

(
0.1x1(t)− 0.04x1(t)x2(t)
−0.2x1(t) + 0.02x1(t)x2(t)

)
in location 2,

x(0) = (7, 3)T ,

h(x) = x2 − 0.5x1,

g(x) = x2(0.1− 0.04x1) + 0.1x1 in location 1,

g(x) = − (x2(0.2− 0.04x1) + 0.5x1) in location 2,

δ(x) = x.

The system transits between locations 1 and 2 at each jump, initially starting in
location 1. The trajectory becomes periodic as illustrated in Figure 4.
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Figure 5: Trajectories of the bouncing balls on the solid bodies.

5.2.8 Bouncing Ball on Solid Body Surface (bb-spherez and bb-solidz)

We consider a ball in a three-dimensional space that is attracted by (the center of) a
solid body (e.g., a sphere of radius 3) and bounces on the surface:

x′(t) = v(t),

v′(t) = − x(t)

||x(t)||32
,

(x(0), v(0))T = (0, 0, z, 0.1, 0, 0)T ,

h(x, v) = x1(t)2 + x2(t)2 + x3(t)2 − 32,

g(x, v) = −v · ∇h,
δ(x, v) = (x, v − 2 proj∇hv)T ,

where z specifies the initial height of the ball. In Figure 5(a), the trajectories are
mapped in the plane parallel to the equator.

We also consider a bouncing ball on a solid body by modifying the initial value
and the surface equation as:

(x(0), v(0))T = (0, 0, z, 0.1, 0.01, 0)T ,

h(x, v) = x1(t)2 + x2(t)2 + x3(t)2 + (x1(0)x2(0)x3(0))2 − 32.

The trajectories become more irregular than bb-spherez, as illustrated in Figure 5(b).

5.3 Experimental Results

We have simulated the examples described in Section 5.2 with our implementation
to evaluate how the proposed method reduces the wrapping effect and simulates the
models for numbers of steps. For comparison, we have also run the simulation with
a box-based naive method that does not take into account the wrapping effect at
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Table 1: Experimental results.

# jumps time
problem dim. κ =∞ κ = 100 κ = 1 box (s)
rotation0 2 19146 19146 19146 32088 < 0.1
rotation0.1 2 18348 18348 18348 66 < 0.1
disk 2 6219 6219 1385 17 < 0.1
bb-simple 2 499 1339 1433 24 < 0.1
bb-parabola2 4 320 625 346 21 < 0.1
bb-parabola4 8 97 810 344 20 < 0.1
bb-parabola8 16 85 943 307 21 0.18
bb-parabola16 32 61 1079 136 21 1.5
billiard0.1 4 872 1111 1071 73 < 0.1
billiard0.3 4 16 19 19 19 < 0.1
navigation 4 12 14724 24731 51 < 0.1
lv 2 91 1755 1875 59 < 0.1
bb-sphere3.4 6 171 460 496 14 0.35
bb-sphere3.1 6 301 818 903 16 0.16
bb-solid3.4 6 7 15 15 14 0.33
bb-solid3.1 6 12 31 32 14 0.23

a guard crossing point. The experimental results are shown in Table 1. Columns
represent the name of the model, the dimension (number of variables), the numbers
of jumps our method could simulate when κ = ∞, 100, 1, the number of jumps the
box-based method could simulate, and CPU time for one step of the trajectories.

Discussions Our parallelotope method is far more efficient than the box method
for all examples except for rotation0. The optimal value of κ depends on the problem;
κ = 1 is the most efficient value for bb-simple, navigation, lv, and bb-spherez; κ = 100
works best for bb-parabolan and billiardw whose guards have varied curvature factors.

Remarkably, rotation0 is handled efficiently by the box-based method. This is
explained by the detailed analysis shown in Figure 6. Here, the initial state (black
box on the x-axis) is first simulated until it reaches the guard (black parallelotope just
below the line x1 = x2), and the state after the jump is enclosed in the red box. This
first jump suffers from a strong wrapping effect. However, in the following jumps,
which happen for every rotation of approximately π, a well-oriented box enclosure
is mapped to another box enclosure, and no wrapping effect is observed, e.g., in the
state enclosures just before and after the second jump. This situation is very atypical;
changing the value of ε to ε = 0.1 strongly affects the box simulation, whereas the
parallelotope simulation remains efficient.

Although its model is simple, the number of simulated jumps is limited for bb-
simple. Because the region of the states at t after a jump becomes nonlinear, the
parallelotope method is slightly affected by the wrapping effect, which expands the
state enclosures.

In the experiments with bb-parabolan, the computational timings have increased
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Figure 6: Box simulation of rotation0.

with increase in the dimensions of an instance. These timings are driven by the cost
of solving the ODEs on which the proposed method depends.

The lengths of simulations of billiardw depend on the initial velocity w, which
affects the range of the curvature factors that the trajectory meets during the sim-
ulation, as shown in Figure 2. We conjecture that this problem is chaotic for the
initial condition w = 0.3; therefore, the length of a possible simulation differs for each
instance.

The simulation lengths depend on the initial height z in bb-spherez and bb-solidz.
The nonlinear ODE in the model requires a number of integration steps, and its state
enclosures quickly grow. A lower initial height leads to a smaller duration between
jumps and variation in the orientations of the guard; therefore a greater number of
jumps are computed. The bb-solidz instances are simulated only for a limited number
of jumps because of the complicated surface equation; the system seems chaotic, which
explains the quick failure of the enclosing method.

Comparison with Flow* For comparison, we have simulated these examples
using the Flow* tool [6, 7] (version 1.2.0). Flow* attempts reachability analysis of
continuous and hybrid systems, i.e., it computes an enclosure of the reachable region
of the state variables of a model. Flow* uses various enclosure methods to reduce the
wrapping effect, including intervals, Taylor models, support functions, and zonotopes.
In contrast to our method, Flow* continues the simulation even if a state enclosure
expands until a given time horizon or a number of jumps is reached; therefore, we
dumped the computed enclosures and compared their accuracy with the results com-
puted with our implementation.

For disk and bb-simple, Flow* is affected by the wrapping effect as we can confirm
in the dumped trajectory enclosures (Figure 7). Flow* only accepts models with
polynomial reset functions; therefore, it could not handle bb-parabolan, billiardw, lv,
bb-spherez, and bb-solidz.

On the rotationε and navigation problems, Flow* performs well; even after one
hundred jumps, we could not see a visible expansion in its trajectory enclosures.
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Figure 7: Trajectory enclosures computed with Flow* for examples disk and
bb-simple.

6 Conclusion

We have described a parallelotope method for hybrid systems with the same advantages
as continuous flows. The parallelotope method considerably improves the cluster effect
for small initial conditions and non-expanding systems. Our method maintains the
correct timeline of trajectories and computes the derivatives during simulation.
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