
High Speed Associative Accumulation of

Floating-point Numbers and Floating-point

Intervals∗

Ulrich Kulisch and Gerd Bohlender
Institut für Angewandte und Numerische Mathematik,
Karlsruher Institut für Technologie
D-76128 Karlsruhe, Germany

Ulrich.Kulisch@kit.edu,Gerd.Bohlender@kit.edu

Abstract

Floating-point arithmetic is the tool that is most commonly used for
scientific computation. It is well known that conventional floating-point
addition is not associative, i.e., for floating-point numbers a, b, c in gen-
eral a + (b + c) 6= (a + b) + c. This, however, is a relict of old and
poor technologies. We show in this paper, that n floating-point numbers
ai, i = 1, 2, . . . n can be added in a way that produces a result that is inde-
pendent of the order in which the summands are added. This method does
not round after each single addition. It accumulates the summands ex-
actly into a modest fixed-point register on the arithmetic unit and rounds
the sum to a floating-point number only once at the very end of the ac-
cumulation. By pipelining, the sum can be computed in the time the
processor needs to read the summands, i.e., the sum is computed at ex-
treme speed. The method presented here has the potential of replacing
conventional methods for the implementation of floating-point addition
and subtraction. It very naturally can be applied to the accumulation
of n floating-point intervals. Here again the result is independent of the
order in which the intervals are added.

1 Introduction

Conventionally, computing speed is measured in flops (floating-point operations
per second). This assumes that the entire computation is reduced to the four
elementary floating-point operations.

Beyond the four operations +,−, ·, and / several old mechanic calculators
provided a number of compound operations such as accumulate or multiply and
accumulate. This allowed a continuous accumulation of numbers and of products
of numbers into different positions of a wide fixed-point register. This fixed-point

∗Submitted: December 30, 2015; Revised: April 17, 2016; Accepted: April 21, 2016.

141

Ulrich.Kulisch@kit.edu, Gerd.Bohlender@kit.edu

142 Ulrich Kulisch, Gerd Bohlender, High Speed Associative Accumulation . . .

addition was the fastest way to use the computer. It was applied as often as
possible. No intermediate results needed to be written down and typed in again
for the next operation. No intermediate roundings or normalizations had to be
performed. No error analysis was necessary. As long as no underflow or overflow
occurred, which was obvious and visible, the result was always correct. It was
independent of the order in which the summands were added. If required, a
rounding was performed only once at the very end of the accumulation. The
method discussed here can be traced back to the old computer by G. W. Leibniz
(1685). It shows an excellent feeling of the old mathematicians for efficiency in
computing.

It is high time that such fast compound arithmetic operations are also of-
fered on electronic computers. Old technologies (around 1970) did not allow
this, and this old state of the art still determines the present computer archi-
tecture. The fact that neither the IEEE floating-point arithmetic standard 754
nor the standard IEEE 1788 for interval arithmetic provides and requires the
accumulation and the dot product of two floating-point vectors as elementary
arithmetic operations displays this tragic situation. Modern technology is very
powerful. A modest fixed-point register for the accumulation of floating-point
numbers and of simple products of floating-point numbers on the arithmetic
unit can be provided very easily. It would be rewarded by extreme speed and
increased accuracy.

Hardware implementations of the exact dot product (EDP) at Karlsruhe in
1993 [2] and at Berkeley in 2013 [3] show that the EDP can be computed in
about 1/5th to 1/6th of the time needed for computing a possibly wrong dot
product in conventional floating-point arithmetic. Influenced by the need for
fast and exact computation of the dot product, modern processors by Intel and
IBM provide register memory of 16 K bits on the arithmetic unit [8]. Hence,
they differ from the traditional von Neumann architecture. This difference may
be small but it is essential for high speed computation of accumulations and of
the EDP. Access to register memory is much faster than access to main memory.
About 1 K bits suffice for a real dot product, 2 K bits for an interval dot product,
and 4 K bits for a complex interval dot product. One half of these bits suffice for
high speed accumulation of floating-point numbers, of floating-point intervals,
and of complex floating-point intervals, respectively. So the 16 K bits still give
room for a number of interrupts.

Using a software routine for a correctly rounded dot product as alternative
for a hardware implemented EDP leads to a comparatively slow process. A
correctly rounded dot product is built upon a computation of the dot product in
conventional floating-point arithmetic. This is already 5 to 6 times slower than
an EDP. High accuracy is obtained by clever and sophisticated mathematical
considerations which all together make it slower than the EDP by more than
one magnitude. High speed and accuracy, however, are essential for acceptance
and success of interval arithmetic.

Iterative refinement or defect correction methods are basic ingredients for
success of numerical and of interval analysis. It is the EDP which makes these
techniques fast and successful. For details, see Chapter 9 in [19]. A hardware

Reliable Computing 23, 2016 143

s exponent e fraction f u

Figure 1: The floating-point number format.

supported EDP brings speed and accuracy to floating-point interval arithmetic.
With it interval arithmetic becomes a fast and exception-free computing tool!
High speed floating-point interval arithmetic carries the potential of replacing
floating-point arithmetic in many applications.

The method for high speed accumulation of floating-point numbers and
floating-point intervals presented here is a specialization of techniques for fast
and exact computation of dot products of two floating-point vectors1 – used
in the XSC-languages since 1980 [9, 10, 11, 23, 24] – to the accumulation of
simple floating-point numbers. This paper shows how simple and fast a set of
floating-point numbers and floating-point intervals can be accumulated exactly.
Of course, exact accumulation of floating-point numbers can be obtained as a
particular case of an EDP. However, a special routine for it makes it even simpler
and faster. It may even replace conventional implementations of the elementary
floating-point operations addition and subtraction.

We now develop circuitry for fast and exact accumulation of floating-point
numbers. We do this for a data format which is close to double precision.
Having in mind that the target of our study is floating-point interval arithmetic,
we avoid the huge exponent ranges of the IEEE 754 arithmetic standard. We
choose a format that is more appropriate for floating-point interval arithmetic.

2 Basic Assumptions

Motivated by the book The End of Error by John Gustafson [4], which extends
arithmetic for closed real intervals to just connected sets2 of real numbers, we
develop the method for a particular data format. The study, however, is not
restricted to this format; the basic ideas can be applied to other formats as
well. We assume that the floating-point number is represented by a 64 bit word
as shown in Figure 1. Here one bit is used for the sign s, 9 bits are used for
the exponent, 53 bits for the fraction and one bit for the ubit u. As usual
the leading bit of the fraction of a normalized binary floating-point number is
not stored, so the fraction actually consists of 54 bits. For the exponent, e1
subnormal numbers with a denormalized mantissa are permitted. The ubit u is
used to indicate whether the number is exact (u = 0) or inexact (u = 1). The
ubit is very useful for advanced interval arithmetic. If it is 0, the corresponding
bracket is closed, and it is open if the ubit is 1.

If F = F(b, l, e1, e2) denotes a floating-point system with base b, l digits
in the mantissa, least exponent e1, and greatest exponent e2, we have b = 2,

1For details see Chapter 1 in [17], or Chapter 8 in [19].
2These can be closed, open, half-open, bounded or unbounded.

144 Ulrich Kulisch, Gerd Bohlender, High Speed Associative Accumulation . . .

l = 54, e1 = −255, and e2 = 256. For numerical examples, we occasionally use
base b = 10. We are now going to compute the sum

s :=

n∑
ν=1

aν = a1 + a2 + ...+ an, ai ∈ F (2, l, e1, e2), i = 1, 2, . . . n. (1)

All floating-point numbers of this system can be taken into a fixed-point
register of length L = e2 + l + |e1| = 256 + 54 + 255 = 565 bits without loss of
information, see Figure 2. The size of this register is independent of the number
of summands that are to be added: If one of the summands has an exponent 0,

l |e1|k e2 CR

Figure 2: Complete register with long shift for exact accumulation of floating-point
numbers.

its mantissa can be taken into a register of length l. If another summand has
exponent 1, it can be treated as having an exponent 0 if the register provides
further digits on the left and the mantissa is shifted one place to the left. An
exponent −1 in one of the summands requires a corresponding shift to the right.
The largest exponents in magnitude that may occur in the summands are e2
and |e1|. Hence, any summand can be treated as having an exponent 0 and be
taken into a fixed-point register of length e2+l+|e1| without loss of information.
The contents of this register can be zero, positive or negative. This information
is held in the status register. We stress the fact that subnormals (gradual
underflow) are included in the representation. No particular restrictions on the
digits of the mantissa are made in case of an exponent e1.

If the register shown in Figure 2 is built as an accumulator with an adder, all
summands can be added without loss of information. To accommodate possible
overflows, it is convenient to provide a few, say k, more digits of base b on the
left. These are used to count the number of overflows that occur during the
accumulation. With such an accumulator, every sum (1) can be added without
loss of information. As many as bk overflows may occur and be accommodated
without loss of information. In the worst case, presuming every sum causes an
overflow, we can accommodate sums with n ≤ bk summands. Since every sum
of floating-point numbers can be exactly accumulated in this register, we call it
a Complete Register, CR for short.

Assuming here that k is sufficiently large, k = 50 for instance, we get a
register size of k+ e2 + l+ |e1| = k+ 565 bits. This is a little more than 9 words

Reliable Computing 23, 2016 145

of 64 bits. The summands are shifted to the proper position and added. The
final sum has to be in the single exponent range e1 ≤ e ≤ e2, otherwise it is
not representable as a floating-point number, and the problem has to be scaled.
Once more, we stress the fact that the size of this register only depends on the
floating-point format. It is indeed independent of the number n of summands
that are to be accumulated.

The size of the complete register would grow with the exponent range of the
data format in use. If this range should be extremely large, as for instance in
the case of an extended precision floating-point format, only an inner part of
the register would be supported by hardware. The outer parts which are used
very rarely could be simulated in software. The long data format of the IBM
System/370 architecture covered a range of about 10−75 to 1075, which is very
modest. This architecture dominated the market for more than 25 years, and
most problems could conveniently be solved with machines of this architecture
within this range of numbers.

3 Fast Carry Resolution

The addition of a floating-point number into the complete register CR seems
to be slow. It appears to require a long shift, and it may produce a carry
propagation over several hundred bits. We now discuss a very fast solution for
both problems for the data format outlined in Fig. 1. As soon as the principles
are clear, the technique can easily be applied to other data formats as well. The
mantissa here consists of l = 54 bits. We assume additionally that the complete
register CR is subdivided into words of 64 bits. The mantissa of the summand
touches at most two consecutive 64-bit words of the complete register, which
are determined by the exponent of the summand. A shifter then aligns the 54
bit summand into the correct position for the subsequent addition into the two
consecutive words of the CR. This addition may produce a carry (or a borrow in
case of subtraction). The carry is absorbed by the next more significant 64-bit
word of the complete register in which not all digits are 1 (or 0 for subtraction),
as shown in Figure 3(a). For fast identification of this word, two information bits
or flags are appended to each complete register word, as shown in Figure 3(b).
One of these bits, the all bits 1 flag, is set to 1 if all 64 bits of the register word
are 1. This means that a carry will propagate through the entire word. The
other bit, the all bits 0 flag, is set to 0, if all 64 bits of the register word are
0. This means that in case of subtraction, a borrow will propagate through the
entire word.

During the addition of the summand into two consecutive words of the CR,
a search is started for the next more significant word where the all bits 1 flag
is not set. This is the word which will absorb a possible carry. If the addition
generates a carry, this word must be incremented by one, and all intermediate
words must be changed from all bits 1 to all bits 0. The easiest way to do this
is simply to switch the flag bit from all bits 1 to all bits 0 with the additional
semantics that if a flag bit is set, the appropriate constant (all bits 0 or all bits

146 Ulrich Kulisch, Gerd Bohlender, High Speed Associative Accumulation . . .

1) must be generated instead of reading the CR word contents when fetching
a word from the CR, Figure 3(b). Borrows are handled in an analogous way.

k

carry
start
address

carry
resolution
address

k

000000 110001 111111 111111 111111 XXXXXX

XXXXXX

XXXXXX 000000

carry skip area

carry generation

local fixed-point addition

a)

b) 000000 110001 111111 111111 111111 XXXXXX XXXXXX 000000

0 1 1 1 0

0

0

0

000

11

1

1 0

0

0

0

0

0

0

0

+1

extracted carry flag word
carry flag logic
carry dissolution indicator

010110

010110

Figure 3: Fast carry resolution.

This carry handling scheme allows a very fast carry resolution. The exponent
of the summand delivers the address for its addition. By using the flags, the
carry word can be incremented/decremented simultaneously with the addition
of the summand. If the addition of the summand produces a carry, the incre-
mented/decremented carry word is written into the CR. Otherwise, nothing is
changed.

Other, perhaps simpler methods for fast carry resolution are possible. We
sketch here a second solution where adder equipment is provided for the entire
width of the complete register CR. For more details in case of the dot product
computation, see Chapter 1 in [17] or Chapter 8 in [19].

An adder for the entire width of the CR certainly is too slow to perform an
addition in a single cycle. Hence, we subdivide the CR into shorter pieces (of 16,
32, 64 bits). The width of these segments is chosen such that a parallel addition
can be performed in a single cycle. Now each one of these adder segments can
produce a carry. These carries are written into carry registers between adjacent
adders, as shown in Figure 4. If a single addition has to be performed, these
carries have to be propagated straight away. If more than one summand has
to be added, the carries are added to the next more significant adder in the
next addition cycle together with the next summand. Only at the very end of
the accumulation, when no more summands are coming, carries may have to
be eliminated. However, the summands consist of 54 bits only. So during an

Reliable Computing 23, 2016 147

cy

CR

S1

cy
+/- +/- +/-

CRCR

S2S3
segmented
summand

segmented adder

segmented
complete register

cy cy

Figure 4: Segmented addition.

addition of a summand carries are only produced in a small part of the complete
register CR. The carry elimination, on the other hand, takes place during each
step of the accumulation whenever a carry is left. Hence in an average case,
there will only be very few carries left at the end of the accumulation, and a few
additional cycles will suffice to absorb the remaining carries. Thus segmenting
the adder enables it to read and process a summand in each cycle.

In each step of the accumulation, an addition only has to be activated for
a small number (two) of the adder segments and for those adders where a non
zero carry is waiting to be absorbed. This adder selection can reduce the power
consumption for the accumulation step significantly.

4 Accumulation of Floating-point Numbers

We assume in this section that the data are stored in the double precision 64-bit
format as outlined in Section 2. There the mantissa has 54 bits.

A central building block is the complete register CR. It is a fixed-point
register wherein any sum of floating-point numbers can be represented without
error. It allows accumulation of any finite number of floating-point numbers
exactly or with a single rounding at the very end of the accumulation. As
shown in Section 2, it consists of about 9 words of 64 bits.

The 54-bit summand is added to two consecutive words of the CR. These
are determined by the exponent of the summand. After the addition, these two
words are written back into the same two CR words that the portion has been
read from.

A 54- out of 118-bit shifter is used to align the summand onto the relevant
word boundaries. Figure 5 shows a block diagram for the accumulation. The
addition can be executed by a 54-bit adder. It may cause a carry. The carry
is absorbed by incrementing (or decrementing in the case of a borrow) a more
significant word of the CR as determined by the carry handling scheme. The
entire process can be pipelined. The pipeline is sketched in Figure 6. The
exponent of the summand consists of 9 bits. The six low order (less significant)
bits are used to perform the shift. The 3 more significant bits deliver the CR
address to which the summand has to be added, so the originally very long shift

148 Ulrich Kulisch, Gerd Bohlender, High Speed Associative Accumulation . . .

64

64 64
64

64

54

exp

CR

+ / -

54

inc/dec

000001 110011 111111 XXXXXX XXXXXX 001100 000000

1

interface

register file
(or memory access unit)

118

shifter 54 to 118

shifted summand

64

110101

mantissa

9

3

6

carry resolution
address

addition
address

addition of the 54 bit summand

1

111111

0

Figure 5: Block diagram for fast and exact accumulation of floating-point numbers.

is split into a short shift and an addressing operation. The shifter performs a
relatively short shift operation. The addressing selects the two words of the CR
for the addition.

The carry logic determines the word that absorbs the carry. All these address
decodings can be hard wired. The result of each addition is written back into
the same CR words to which the addition has been executed. The two carry
flags appended to each accumulator word are indicated in Figure 5. In practice
the flags are kept in separate registers.

We stress that in the circuit just discussed, virtually no unoverlapped com-
puting time is needed for the arithmetic. In the pipeline, the arithmetic is
performed in the time that is needed to read the data into the accumulation
unit.

We consider a computer which is able to read data into the arithmetic logical

Reliable Computing 23, 2016 149

unit in portions of 64 bits. If the 54-bit summand spans two consecutive 64-bit
words of the complete register, a closer look shows that the 10 least significant
bits of those two words are never changed by addition of the summand. Thus the
adder needs to be 54 bits wide only. Figure 5 shows a sketch for the accumulation
of a summand.

In the circuit, a 54- to 118-bit shifter is used. Sophisticated logic is used
for the generation of the carry resolution address, since this address must be
generated very quickly. Only one address decoder is needed to find the starting
address for an addition. The more significant part of the summand is added
to the contents of the CR word with the next address. A tree structured carry
logic now determines the CR word which absorbs the carry.

Figure 6 sketches a pipeline for this kind of addition. In the figure we assume
that two machine cycles are needed to decode and read one 64-bit word into the
accumulation unit. In the block diagram for the accumulation in Figure 5, data
busses of 64 bits are frequently used. In a pipeline, the arithmetic is performed

cycle read shift add/subt
address decoding ai
read ai

address decoding ai+1 shift ai
read ai+1 address decoding CR

address decoding ai+2 shift ai+1 add/subt ai
read ai+2 address decoding CR store result and flags

address decoding ai+3 shift ai+2 add/subt ai+1

read ai+3 address decoding CR store result and flags

address decoding ai+4 shift ai+3 add/subt ai+2

read ai+4 address decoding CR store result and flags

Figure 6: Pipeline for the accumulation of floating-point numbers.

in the time which is needed to read the data into the accumulation unit. Here,
we assume that with the necessary address decoding, this requires two cycles
for the 54-bit summand.

An adder width of a power of 2 may simplify shifting as well as address
decoding. The lower bits of the exponent of the summand control the shift
operation while the higher bits are used directly as the starting address for the
accumulation of the summand into the CR.

The two flag registers appended to each complete register word are indicated
in Figure 5. In practice, the flags are kept in separate registers.

If not processed any further, the exact result of the accumulation usually has
to be rounded into a floating-point number. The flag bits that are used for the
fast carry resolution can also be used for the rounding. By looking at the flag
bits, the leading result word in the complete register can easily be identified.
This and the next CR word are needed to compose the mantissa of the result.
This 128 bit quantity must be shifted to form a normalized mantissa of a 64-bit
number.

150 Ulrich Kulisch, Gerd Bohlender, High Speed Associative Accumulation . . .

In floating-point interval arithmetic, two complete registers are used for the
representation of the lower and the upper bound. For the correct rounding
downwards or upwards, it is necessary to check whether any of the discarded
bits is a one. This is done by testing the remaining bits of the complete register
by looking at the all bits 0 flags of the following words. If these are not all zero,
the rounding upwards or downwards is executed by enlarging the 54th bit of the
mantissa by 1 in magnitude.

To develop its full power, the method discussed here requires a small amount
of register memory (k + 565 bits) on the arithmetic unit. Access to this mem-
ory is considerably faster than access to the main memory of the computer.
Modern processors by leading manufacturers provide this much memory on the
arithmetic unit. See [8], for instance.

Finally in the final sum, the ubit still has to be set. It is set to 0 only if the
ubits of all summands have been 0. In all other cases, the ubit of the final sum is
set to 1. A ubit 0 stands for a closed interval bracket, and a ubit 1 stands for an
open interval bracket. We illustrate the influence of the ubit on interval addition
by a simple example: [3, 3] + [1, 2] + [4, 5) + (−1,∞) = [4, 5] + [4, 5) + (−1,∞) =
[8, 10) + (−1,∞) = (7,∞).

The method for fast and exact accumulation of floating-point numbers dis-
cussed in this paper is the basic ingredient for high speed accumulation of n
floating-point intervals Ai = [ai1, ai2] ∈ IF, i = 1, 2, . . . n. Again the result is
obtained with extreme speed and increased accuracy. The following formula
speaks for itself

♦
n∑
ν=1

Aν = ♦

〈
n∑
ν=1

aν1,

n∑
ν=1

aν2

〉
=

〈
5

n∑
ν=1

aν1, 4
n∑
ν=1

aν2

〉
, (2)

where ♦ , 5 , and 4 denote the roundings ♦ : IR → IF, 5 : R → F, and
4 : R → F. The latter two are the monotone downwardly resp. upwardly
directed roundings. Here, of course, two complete registers are needed for the
exact accumulation of the lower bounds aν1 and of the upper bounds aν2, ν =
1, 2, . . . n. Each one of the angle brackets shown here can be open or closed. This
depends on the brackets of the intervals Ai, i = 1, 2, . . . n. Again the bracket
on a particular side of the interval can be closed only if the bracket of every
summand is closed on that side of the interval. In other words: the ubit of the
sum is obtained by the logical or of the ubits of all summands in combination
with the rounding information.

The method discussed in this paper is not new. It has been used for ex-
act evaluation of the dot product of two vectors the components of which are
floating-point numbers in the XSC-languages (PASCAL-XSC, ACRITH-XSC,
C-XSC) [9, 10, 11, 23, 24] since 1980. Hardware solutions are discussed at de-
tail in the first chapter of the book [17] and in chapter eight of the book [19].
Its reduction to the accumulation of floating-point numbers discussed here even
has the potential of replacing conventional methods for the implementation of
floating-point addition and subtraction. Formula (2) for the accumulation of
floating-point intervals shows that the computation of the lower and the upper

Reliable Computing 23, 2016 151

bound are independent of each other, so by doubling the hardware, both bounds
can be computed simultaneously. This would reduce the speed for accumulating
n floating-point intervals to the speed of accumulating n floating-point numbers.

Summary: The paper shows that fixed-point accumulation of floating-point
numbers and floating-point intervals is superior to accumulation in floating-
point arithmetic with respect to speed and accuracy. The summands are
added into a fixed-point register on the arithmetic unit which covers the full
floating-point range. No intermediate roundings or normalizations are per-
formed. No intermediate results need to be stored and read in again for the
next operation. The result is independent of the order in which the summands
are added. By pipelining, the accumulation can be done in the time the pro-
cessor needs to read the data, that is, no other method can be faster. For the
given data, fixed-point accumulation of the floating-point summands is exact.
If desired, only one rounding is performed at the very end of the accumulation.,
and it delivers a correctly rounded result.

The method described in this paper is not new at all. It can be traced back
to the very early computer by G. W. Leibniz.

In case of an unstable (not so well conditioned) problem, it may happen that
the best possible floating-point arithmetic does not compute a correct solution.
In such a case, higher precision (multiple precision) arithmetic has to be used. A
multiple precision number is represented as an array of floating-point numbers.
The value of this number is the sum of its components. It can be represented
in the complete register as a long fixed-point variable. In Section 9 of [19],
the operations +,−, ·, /, and the square root for multiple precision numbers
and intervals are defined. On the basis of these operations, algorithms for the
elementary functions also can be and are provided in the XSC-languages [9, 10,
11, 24]. The concept of function and operator overloading in these languages
makes applications of multiple precision real and interval arithmetic very simple.

Acknowledgements

The authors owe thanks to John Gustafson and Goetz Alefeld for useful com-
ments on the paper. They are also grateful to two anonymous referees. Their
comments led to major improvements of the paper.

References

[1] E. Adams, U. Kulisch, (eds.), Scientific Computing with Automatic Result
Verification, Academic Press, 1993.

[2] Ch. Baumhof, A new VLSI vector arithmetic coprocessor for the PC,
in: Institute of Electrical and Electronics Engineers (IEEE), S. Knowles
and W. H. McAllister (eds.), Proceedings of 12th Symposium on Computer

152 Ulrich Kulisch, Gerd Bohlender, High Speed Associative Accumulation . . .

Arithmetic ARITH, Bath, England, July 19–21, 1995, pp. 210–215, IEEE
Computer Society Press, Piscataway, NJ, 1995.

[3] D. Biancolin and J. Koenig, Hardware Accelerator for Exact Dot Product,
ASPIRE Laboratory, University of California, Berkeley, 2015.

[4] J. L. Gustafson, The End of Error. CRC Press, A Chapman and Hall Book,
2015.

[5] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, Numerical Toolbox for
Verified Computing I: Basic Numerical Problems, Springer, 1993.

[6] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, C++ Toolbox for Verified
Computing: Basic Numerical Problems. Springer, 1995.

[7] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, Numerical Toolbox for
Verified Computing I: Basic Numerical Problems, MIR, Moskau, 2005 (in
Russian).

[8] INTEL, Intel Architecture Instruction Set Extensions Programming Re-
ference, 319433-017, December 2013, https://software.intel.com/

sites/default/files/managed/b4/3a/319433-024.pdf.

[9] R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich, PASCAL-XSC –
Sprachbeschreibung mit Beispielen, Springer, 1991. See also http://www2.

math.uni-wuppertal.de/~xsc/ or http://www.xsc.de/.

[10] R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich, PASCAL-XSC –
Language Reference with Examples, Springer, 1992. See also http://www2.

math.uni-wuppertal.de/~xsc/ or http://www.xsc.de/.
Russian translation MIR, Moscow, 1995, third edition 2006. See also http:

//www2.math.uni-wuppertal.de/~xsc/ or http://www.xsc.de/.

[11] R. Klatte, U. Kulisch, C. Lawo, M. Rauch and A. Wiethoff, C-XSC – A
C++ Class Library for Extended Scientific Computing, Springer, 1993. See
also http://www2.math.uni-wuppertal.de/~xsc/ or http://www.xsc.

de/.

[12] U. Kulisch, Grundlagen des Numerischen Rechnens – Mathematische Be-
gründung der Rechnerarithmetik, Informatik 19, Bibliographisches Institut,
Mannheim Wien Zürich, 1976.

[13] U. Kulisch and W. L. Miranker, Computer Arithmetic in Theory and Prac-
tice, Academic Press, 1981.

[14] U. Kulisch and W. L. Miranker (eds.), A New Approach to Scientific Com-
putation, Academic Press, 1982.

[15] U. Kulisch, T. Teufel and B. Hoefflinger, Genauer und trotzdem schneller:
Ein neuer Coprozessor für hochgenaue Matrix- und Vektoroperationen.
Titelgeschichte, Elektronik 26 (1994), 52–56.

https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
http://www2.math.uni-wuppertal.de/~xsc/
http://www2.math.uni-wuppertal.de/~xsc/
http://www.xsc.de/
http://www2.math.uni-wuppertal.de/~xsc/
http://www2.math.uni-wuppertal.de/~xsc/
http://www.xsc.de/
http://www2.math.uni-wuppertal.de/~xsc/
http://www2.math.uni-wuppertal.de/~xsc/
http://www.xsc.de/
http://www2.math.uni-wuppertal.de/~xsc/
http://www.xsc.de/
http://www.xsc.de/

Reliable Computing 23, 2016 153

[16] U. Kulisch, R. Lohner, A. Facius, Perspectives on Enclosure Methods,
Springer, 2001.

[17] U. Kulisch, Advanced Arithmetic for the Digital Computer – Design of
Arithmetic Units, Springer, 2002.

[18] U. Kulisch, An Axiomatic Approach to Computer Arithmetic with an Ap-
pendix on Interval Hardware, LNCS, 7204, pp. 484 – 495, Springer, 2012.

[19] U. Kulisch, Computer Arithmetic and Validity – Theory, Implementation,
and Applications, de Gruyter, Berlin, 2008, ISBN 978-3-11-020318-9, sec-
ond edition 2013, ISBN 978-3-11-030173-1.

[20] U. Kulisch, Mathematics and Speed for Interval Arithmetic – A Comple-
ment to IEEE P1788. Prepared for and sent to IEEE P1788 in January
2014. To be published.

[21] U. Kulisch, Up-to-date Interval Arithmetic – From closed intervals to con-
nected sets of real numbers, LNCS, Springer 2016.

[22] IBM, IBM System/370 RPQ. High Accuracy Arithmetic, SA 22-7093-0,
IBM Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-
71032 Böblingen), 1984.

[23] IBM, IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), IBM
Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032
Böblingen), 1983, third edition, 1986.

1. General Information Manual, GC 33-6163-02.

2. Program Description and User’s Guide, SC 33-6164-02.

3. Reference Summary, GX 33-9009-02.

[24] IBM, ACRITH–XSC: IBM High Accuracy Arithmetic – Extended Scientific
Computation. Version 1, Release 1, IBM Deutschland GmbH (Department
3282, Schönaicher Strasse 220, D-71032 Böblingen), 1990.

1. General Information, GC33-6461-01.

2. Reference, SC33-6462-00.

3. Sample Programs, SC33-6463-00.

4. How To Use, SC33-6464-00.

5. Syntax Diagrams, SC33-6466-00.

[25] J. D. Pryce (Ed.), P1788, IEEE Standard for Interval Arithmetic,
http://standards.ieee.org/findstds/standard/1788-2015.html.

http://standards.ieee.org/findstds/standard/1788-2015.html

	Introduction
	Basic Assumptions
	Fast Carry Resolution
	Accumulation of Floating-point Numbers

