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Abstract

This paper presents an efficient method for finding all solution sets
of piecewise-linear interval equations using integer programming. In this
method, the problem of finding all solution sets is formulated as a mixed
integer programming problem, and it is solved by a high-performance in-
teger programming solver such as CPLEX. It is shown that the proposed
method can be implemented easily without writing complicated programs,
and that all solution sets are obtained by solving mixed integer program-
ming problems several times. Numerical examples are given to confirm
the effectiveness of the proposed method.
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1 Introduction

The concept of set-valued function is useful in problems such as numerical computation
with guaranteed accuracy and in tolerance analysis of electronic circuits. We consider
systems of nonlinear equations whose nonlinear terms are described by set-valued func-
tions as shown in Figure 1(a). Such functions are called piecewise-trapezoidal functions
in [20], piecewise-linear enclosures of nonlinear functions in [17], and piecewise-linear
interval functions in [8]. In this paper, we use the term piecewise-linear interval (PLI)
functions. On each piece (interval of xi), a PLI function is represented by a trapezoid
with two parallel vertical sides, as shown in Figure 1(b) (or by a triangle if bLij = bUij).
For simplicity, nonlinear equations containing PLI functions will be called PLI equa-
tions, and set-valued functions as represented in Figure 1(b) will be called trapezoidal
functions. Since any set-valued functions of one variable can be approximated by a
PLI function with many trapezoids, the concept of PLI functions is useful in many
applications.

A system of PLI equations often has several unconnected sets of solutions, which
will be called solution sets. In [20], an efficient algorithm is proposed for finding all
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Figure 1: Piecewise-linear interval function.

solution sets of systems of PLI equations approximately using linear programming.
Here, the term approximately means that small boxes which enclose the solution sets
are obtained.1 This algorithm works well in many cases. However, the implementa-
tion of this algorithm is generally difficult, at least for non-experts or beginners. To
find all solution sets easily, it is necessary to develop a simple method which can be
implemented easily without writing complex programs.

By the way, in the field of mathematical programming, the study of integer pro-
gramming has made a rapid progress, and excellent commercial and non-commercial
integer programming solvers such as CPLEX [5] and SCIP [15] have been developed.
These solvers provide high-performance optimizers for solving very large, real-world
mixed integer programming problems. The commercial software CPLEX also provides
an academic free version.

Motivated by the remarkable progress of this field, we proposed an efficient method
for finding all solutions of separable systems of piecewise-linear (PL) equations using
integer programming [24]. In this method, the problem of finding all solutions is formu-
lated as a mixed integer programming problem, and it is solved by a high-performance
integer programming solver such as CPLEX. It was shown that the proposed method
can be implemented easily without writing complicated programs, and that all solu-
tions are obtained by solving a single mixed integer programming problem. It was also
shown that the proposed method could find all solutions of systems of PL equations
in several hundred variables in practical computation time.

In this paper, we propose an efficient and easily implementable method for finding
all solution sets of systems of PLI equations by extending the method proposed in [24].
It is shown that all solution sets can be obtained by solving several mixed integer
programming problems.

2 Basic Idea

In this section, we first summarize the basic idea proposed in [24]. As important books
of this field, see, e.g., [1, 9, 12, 13, 14]. See also [2, 4, 7, 10, 11, 16, 17, 18] as related
studies.

1 Henceforth, we will omit the term approximately.
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Consider the problem of finding all solutions to a system of n PL equations with
a separable mapping:

F (x) = 0 (1)

contained in a box D = ([l1, u1], . . . , [ln, un])T ⊆ Rn, where x = (x1, x2, . . . , xn)T ∈ Rn

is a variable vector, and F = (f1, f2, . . . , fn)T : Rn → Rn is a PL function which can
be written as

F (x) = F 1(x1) + F 2(x2) + · · ·+ Fn(xn). (2)

Note that any nonseparable function of many variables can be represented by a set of
separable functions; i.e., additions of functions of one variable [19, 21]. In this paper,
we assume that we have preliminarily applied the algorithm proposed in [19] and have
made the system of equations to be solved separable.

For the simplicity of notation, and without loss of generality, in this paper we
assume that (1) can be represented as

F (x)
4
= PG(x) +Qx+ r = 0, (3)

as assumed in [20, 21, 23, 24, 25], where G(x) = [g1(x1), g2(x2), . . . , gn(xn)]T : Rn →
Rn is a PL function with component functions gi(xi) : R1 → R1 (i = 1, 2, . . . , n),
P ∈ Rn×n and Q ∈ Rn×n are constant matrices, and r = (r1, r2, . . . , rn)T ∈ Rn is a
constant vector. Namely, we divide the system into the nonlinear term PG(x), the
linear term Qx, and the constant term r.

Assume that we have chosen a partitioning li = ai0 < ai1 < · · · < aiK = ui of the
interval [li, ui] and have defined a PL function gi(xi) which is linear on the interval
[aij−1, aij ] for i = 1, 2, . . . , n and j = 1, 2, . . . ,K (see Figure 2). For simplicity of
notation, we assume that the number of partitioning K is the same for all xi-directions.
We denote the function value at the points aij by

bij = gi(aij), i = 1, 2, . . . , n; j = 0, 1, . . . ,K. (4)

Introducing the auxiliary variables δij (i = 1, 2, . . . , n; j = 1, 2, . . . ,K), every real xi
in [aij−1, aij ] can be written as

xi = aij−1 + δij , (5)

where 0 ≤ δij ≤ aij − aij−1, and the PL function gi(xi) can be written as

gi(xi) = bij−1 +
bij − bij−1

aij − aij−1
δij (6)
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Figure 2: PL function.
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on [aij−1, aij ]. Extending these over the interval [li, ui], xi and gi(xi) can be expressed
as

xi = ai0 +

K∑
j=1

δij , i = 1, 2, . . . , n (7)

and

gi(xi) = bi0 +

K∑
j=1

bij − bij−1

aij − aij−1
δij , i = 1, 2, . . . , n, (8)

respectively. Let ∆ij
4
= aij−aij−1. In (7) and (8), it is necessary that if 0 < δik < ∆ik

(1 ≤ k ≤ K − 1), then δij = ∆ij for 1 ≤ j ≤ k − 1 and δij = 0 for k + 1 ≤ j ≤ K. To
formulate this in linear inequalities using integer variables, we introduce 0–1 variables
µij (i = 1, 2, . . . , n; j = 1, 2, . . . ,K − 1) and consider the mixed 0–1 model:

∆i1µi1 ≤ δi1 ≤ ∆i1µi0

...

∆ij−1µij−1 ≤ δij−1 ≤ ∆ij−1µij−2

∆ijµij ≤ δij ≤ ∆ijµij−1

∆ij+1µij+1 ≤ δij+1 ≤ ∆ij+1µij

...

∆iKµiK ≤ δiK ≤ ∆iKµiK−1

µi0 = 1, µiK = 0.

(9)

The correctness of (9) follows by induction of K. Moreover, by dividing the jth
equation of (9) by ∆ij , it is easily seen that µij satisfies

1 = µi0 ≥ µi1 ≥ µi2 ≥ · · · ≥ µiK−2 ≥ µiK−1 ≥ µiK = 0, i = 1, 2, . . . , n. (10)

Thus, we can represent the PL function G(x) by (7)–(9).

We further introduce auxiliary variables y = (y1, y2, . . . , yn)T ∈ Rn and put yi =
gi(xi). Then, Eq. (3) and x ∈ D are represented by Eqs. (7) and (9), and

Py +Qx+ r = 0

yi = bi0 +

K∑
j=1

bij − bij−1

aij − aij−1
δij , i = 1, 2, . . . , n.

(11)
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Now we consider the mixed integer programming problem:

max (arbitrary constant)

subject to

Py +Qx+ r = 0

xi = ai0 +

K∑
j=1

δij

yi = bi0 +

K∑
j=1

bij − bij−1

aij − aij−1
δij

∆i1µi1 ≤ δi1 ≤ ∆i1

...
∆ij−1µij−1 ≤ δij−1 ≤ ∆ij−1µij−2

∆ijµij ≤ δij ≤ ∆ijµij−1

∆ij+1µij+1 ≤ δij+1 ≤ ∆ij+1µij

...
0 ≤ δiK ≤ ∆iKµiK−1, i = 1, 2, . . . , n,

(12)

where the objective function is an arbitrary constant and µij (i = 1, 2, . . . , n; j =
1, 2, . . . ,K − 1) are 0–1 variables. Since the constraints of (12) are equivalent to (3)
and x ∈ D, the feasible region of (12) is the set of all solutions of (3) in D. Hence, by
solving (12), we can obtain a solution of (3) contained in D.

In [24], all solutions of (12) are found by applying integer programming solvers
to (12). There are many software packages for solving mixed integer programming
problems. Among them, IBM ILOG CPLEX [5] (often informally referred to simply
as CPLEX) provides one of the most efficient solvers for mixed integer programming
problems at the present time. In this paper, we use CPLEX for solving integer pro-
gramming problems. One advantage of CPLEX is that it has the solution pool feature,
which generates and stores multiple solutions to a mixed integer programming prob-
lem.2 Using this feature, we can find all solutions of (3) by solving (12) only once.

3 Algorithm for the Solution Pool of CPLEX

The solution pool feature of CPLEX uses the algorithm proposed in [3] (see [5, p.283]).
Algorithms 1–3 show the outlines of the standard branch-and-bound algorithm and
the proposed algorithm (termed the one-tree algorithm) written in [3]. In this section,
we summarize the one-tree algorithm. We will use the same symbols for variables and
sets as those used in [3]. Some symbols are duplicated, but there is little confusion.

Given a mixed integer programming problem P = minx∈X cTx, where X = {x ∈
Rd : Ax ≤ b, xi ∈ Z, ∀i ∈ I ⊆ {1, 2, . . . , d}}, for which an optimal solution is x∗, let
us consider a problem of generating p different feasible solutions x(1), x(2), . . . , x(p)
for P within q% of the optimum, i.e., such that cTx(i) ≤ cTx∗ + q|cTx∗|/100 for
i = 1, 2, . . . , p.

The standard branch-and-bound algorithm for solving integer programming prob-
lems aims at progressively reducing the search space as quickly and as much as possible

2 The non-commercial software SCIP also has a feature similar to the solution pool.
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Algorithm 1 Outline of standard branch-and-bound algorithm

1: Preprocessing
2: Set of open nodes : Nopen ← {rootnode}
3: Objective value of the incumbent: z∗ ← +∞
4: while Nopen 6= ∅ do
5: Choose a node n from Nopen

6: Solve LP at node n. Solution is x(n) with objective z(n).
7: if z(n) ≥ z∗ then
8: Fathom the node: Nopen ← Nopen \ {n}
9: else

10: if x(n) is integer-valued then
11: x(n) becomes new incumbent: x∗ ← x(n); z∗ ← z(n)
12: Do reduced cost fixing
13: Fathom the node: Nopen ← Nopen \ {n}
14: else
15: Choose branching variable i such that xi(n) is fractional
16: Build children nodes n1 = n

⋂
{xi ≤ bxi(n)c} and

n2 = n
⋂
{xi ≥ bxi(n)c+ 1}

17: Nopen ← Nopen
⋃
{n1, n2} \ {n}

18: end if
19: end if
20: end while

so that it is easier both to find the optimal solution and to prove that it is optimal.
However, when the aim is to generate multiple solutions, the perspective needs to be
different: if the search space is reduced too much, it will not contain enough solutions.
The one-tree algorithm is adapted from the standard branch-and-bound algorithm
(outlined in Algorithm 1) for this purpose. It proceeds in two phases. During the
first phase (outlined in Algorithm 2), the branch-and-bound tree is constructed and
explored to find the optimal solution, and its nodes are kept for the second phase.
During the second phase (outlined in Algorithm 3), the tree built in the first phase is
reused and explored in a different way to yield multiple solutions. The differences with
the standard branch-and-bound algorithm relate to storing integer solutions, fathom-
ing nodes, and branching.

In standard branch-and-bound, an integer solution is stored only if it improves on
the incumbent. When generating solutions in the second phase, we store in the set S all
integer solutions which are within q% of the optimum value. In standard branch-and-
bound, a node is fathomed when the sub-problem it defines cannot yield any improving
integer solution, i.e., when its LP solution is integer-valued or has an objective value
worse than the incumbent. In the first phase of the one-tree algorithm, nodes are
fathomed by the same criterion, but instead of being discarded, they are stored for
further examination during the second phase (see lines 9 and 13 of Algorithm 2).
During the second phase, a node is fathomed if it cannot yield any additional integer
solution within q% of the optimum value, i.e., if its LP solution is integer-valued and
all integer variables have been fixed by the local bounds of the node, or if the objective
value of its LP solution is strictly more than q% worse than the optimum value (see
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Algorithm 2 Outline of one-tree algorithm: phase I

1: Preprocessing with only primal reductions
2: Set of open nodes : Nopen ← {rootnode}
3: Set of stored nodes : Nstored ← ∅
4: Objective value of the incumbent: z∗ ← +∞
5: while Nopen 6= ∅ do
6: Choose a node n from Nopen

7: Solve LP at node n. Solution is x(n) with objective z(n).
8: if z(n) ≥ z∗ then
9: Fathom the node and keep it for phase II: Nopen ← Nopen \ {n};

Nstored ← Nstored
⋃
{n}

10: else
11: if x(n) is integer-valued then
12: x(n) becomes new incumbent: x∗ ← x(n); z∗ ← z(n)
13: Fathom the node and keep it for phase II: Nopen ← Nopen \ {n};

Nstored ← Nstored
⋃
{n}

14: else
15: Choose branching variable i such that xi(n) is fractional
16: Build children nodes n1 = n

⋂
{xi ≤ bxi(n)c} and

n2 = n
⋂
{xi ≥ bxi(n)c+ 1}

17: Nopen ← Nopen
⋃
{n1, n2} \ {n}

18: end if
19: end if
20: end while

Algorithm 3 Outline of one-tree algorithm: phase II

1: Reuse tree from phase I: Nopen ← Nstored
2: Reuse incumbent from phase I: Set of solutions: S ← {x∗}
3: while Nopen 6= ∅ do
4: Choose a node n from Nopen

5: Solve LP at node n. Solution is x(n) with objective z(n).
6: if z(n) > z∗ + q|z∗|/100 then
7: Fathom the node: Nopen ← Nopen \ {n}
8: else
9: if x(n) is integer-valued then

10: x(n) is added to the pool of solutions if it is not a duplicate:
if x(n) /∈ S, then S ← S

⋃
{x(n)}

11: end if
12: Choose branching variable i such that it is not fixed by the local bounds

of node n: lbi(n) < ubi(n)
13: Build children nodes n1 = n

⋂
{xi ≤ bxi(n)c} and

n2 = n
⋂
{xi ≥ bxi(n)c+ 1}

14: Nopen ← Nopen
⋃
{n1, n2} \ {n}

15: end if
16: end while
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n

1 2n n

Figure 3: A part of the search tree where the nodes n1 and n2 correspond to two
adjacent trapezoidal boxes, at least one of which contains the solution set.

lines 6 and 7 of Algorithm 3).

In standard branch-and-bound, only variables which are fractional in the LP solu-
tion at the node are branched on, but in the second phase of the one-tree algorithm,
we also branch on variables which are integral in the LP solution at the node if they
are not fixed by local bounds (see line 12 of Algorithm 3). The one-tree algorithm
stops in both phases when the set of open nodes Nopen becomes empty (or because
other stopping criteria intervene).

In CPLEX, the relative tolerance on the objective value (q on line 6 of Algorithm 3)
is determined by the solution pool relative gap parameter SolnPoolGap [6, p.139].
Solutions which are worse than the objective value of the incumbent by this measure
are not kept in the solution pool. For example, if we set this parameter to 0.01, then
solutions worse than the incumbent by 1% or more will be discarded. Hence, we can
collect solutions within a given percentage of the optimal solution.

In the general usage of CPLEX, SolnPoolGap is set to a small value so that we can
find near-optimal solutions. If we set SolnPoolGap to a very large value, then a feasible
node is not discarded in both phases because the condition on line 6 of Algorithm 3 is
always false. In this paper, we use this property.

4 Finding All Solution Sets of PLI Equations
Using Integer Programming

In this section, we propose an efficient method for finding all solution sets of a system
of PLI equations:

F (x)
4
= PG(x) +Qx+ r = 0 (13)

contained in a box D = ([l1, u1], . . . , [ln, un])T ⊂ Rn, where x = (x1, x2, . . . , xn)T ∈ Rn

is a variable vector, r = (r1, r2, . . . , rn)T ∈ Rn is a constant vector, P ∈ Rn×n and
Q ∈ Rn×n are constant matrices, and G(x) = [g1(x1), g2(x2), . . . , gn(xn)]T is a PLI
function. For simplicity, a box on which F (x) becomes a trapezoidal function will be
called a trapezoidal box. Note that there is a one-to-one correspondence between a
trapezoidal box and a set of 0–1 variables µij (i = 1, 2, . . . , n; j = 1, 2, . . . ,K − 1)
which satisfies (10).

Let the plane where we want to draw the solution sets be the (xp, xq)-plane. In
the proposed method, we consider the mixed integer programming problems:
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max/min xp and max/min xq

subject to

Py +Qx+ r = 0

xi = ai0 +

K∑
j=1

δij

yi ≥ bLi0 +

K∑
j=1

bLij − bLij−1

aij − aij−1
δij

yi ≤ bUi0 +

K∑
j=1

bUij − bUij−1

aij − aij−1
δij

∆i1µi1 ≤ δi1 ≤ ∆i1

...
∆ij−1µij−1 ≤ δij−1 ≤ ∆ij−1µij−2

∆ijµij ≤ δij ≤ ∆ijµij−1

∆ij+1µij+1 ≤ δij+1 ≤ ∆ij+1µij

...
0 ≤ δiK ≤ ∆iKµiK−1, i = 1, 2, . . . , n,

(14)

where the superscripts L and U denote the lower bounds and the upper bounds of the
trapezoidal functions as shown in Figure 1(b). In (14), we maximize and minimize
xp and xq. It is seen easily that the constraints of (14) are equivalent to (13) and
x ∈ D. Then, we solve (14) by CPLEX using the solution pool feature, where we
set the solution pool relative gap parameter SolnPoolGap to default (1.0e+75). We
also set the solution pool intensity parameter SolnPoolIntensity to 4 (highest value),
the populate limit parameter PopulateLim (which denotes the maximum number of
solutions generated for the solution pool) to a sufficiently large value (for example,
2 100 000 000 [5, p.289]), and other parameters to default. Then, we call populate.

If we apply CPLEX to (14) using the above parameter values, then eventually the
LP relaxations of (14) are solved on all trapezoidal boxes containing the solution sets.
Suppose that Figure 3 shows a part of the search tree where n1 and n2 correspond
to two adjacent trapezoidal boxes (i.e., all 0–1 variables are fixed and only one 0–1
variable has a different value at the nodes n1 and n2), at least one of which contains the
solution set, and n is a feasible node corresponding to a union of the two trapezoidal
boxes. As noted in Section 3, a feasible node where at least one integer variable has
not been fixed yet is not fathomed in Algorithm 3 if SolnPoolGap is set to a very large
value such as default (1.0e+75). Since the ancestor nodes of n1 and n2 are feasible,
they are not fathomed. Hence, we reach the node n.

Then, n is branched on and its children nodes n1 and n2 are created on line 13
of Algorithm 3. These nodes are added to the set Nopen on line 14, taken out from
Nopen on line 4, and the LP relaxations are solved at the nodes n1 and n2 on line
5. If the node is feasible, then the solution is added to the pool of solutions on line
10. Thus, eventually the LP relaxations of (14) are solved on all trapezoidal boxes
containing the solution sets, and the solutions are stored in the set S.

On a trapezoidal box, (14) becomes a linear programming problem. Therefore,
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Figure 4: The smallest boxes containing the solution sets.
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Figure 5: Set-valued function [Q
ij
, Qij ]xj .

by solving (14), we can obtain the smallest box containing the solution set for each
trapezoidal box as shown in Figure 4 by dashed lines, together with the values of µij ’s
which specify the trapezoidal box. Thus, we can find all solution sets of the system of
PLI equations (13).

If we want to see the solution sets from various directions, then we change the
objective function of (14) to

max/min x1, max/min x2, . . . , max/min xn.

Namely, we solve the mixed integer programming problems 2n times. Then, we can
draw the solution sets projected onto any (xi, xj)-plane (see Example 4 of Section 5).3

The proposed method can be extended to the case where the components Qij of
the matrix Q are given by intervals [Q

ij
, Qij ], and therefore each component Qijxj of

the linear term Qx is represented by a set-valued function [Q
ij
, Qij ]xj . In this case,

we consider [Q
ij
, Qij ]xj to be a kind of a PLI function which is defined by two PL

functions as represented in Figure 5 by solid lines and dashed lines.

3 This can also be done by solving the mixed integer programming problem only once (by
which all trapezoidal boxes containing the solution sets are obtained) and then by solving
linear programming problems 2n times on all of the trapezoidal boxes (see [20, p.244]).
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Figure 6: Circuit studied in Example 1 and the voltage-current characteristics of the
PL resistors.
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Figure 7: Solution sets (Example 1).

5 Numerical Examples

We implemented the proposed method using CPLEX 12.6.2 on a Hewlett-Packard
Z820 (CPU: Intel Xeon Processor E5-2697 v2 2.70GHz). In this section, we show
some numerical examples. We mainly consider the problems of the tolerance analysis
of electronic circuits, where the characteristics of electronic devices fluctuate because
of aging, environmental effects such as temperature, and manufacturing variations.

5.1 Example 1

We first consider the PL resistive circuit shown in Figure 6(a) [24], which is described
by a system of PL equations:

2g1(x1) + x1 + x2 − 9 = 0

2g2(x2) + x1 + x2 − 9 = 0,

where g1(x1) and g2(x2) are PL functions as shown in Figures 6(b) and 6(c) by dashed
lines, respectively. The initial box we consider is D = ([0, 10], [0, 10])T . This system
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12V

5V

100K

1K

Figure 8: Transistor circuit (Example 2).
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Figure 9: Set-valued function obtained by temperature fluctuation (Example 2).
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Figure 10: Solution set (Example 2).

of PL equations has three solutions within the box. We moved the PL functions up
and down with distance 0.5 to obtain PLI functions as shown in Figures 6(b) and
6(c) by solid lines. We applied the proposed method to the system of PLI equations
thus obtained. Figure 7 shows the result of computation, where the smallest boxes
containing the solution sets are shown by solid lines, and the solutions of the original
system of PL equations are shown by dots. The CPU time was 0.03 s.
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+
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30V
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Figure 11: Two-tunnel diode circuit (Example 3).

The LP file of the mixed integer programming problem which was solved in this
example is shown in the Appendix.

5.2 Example 2

We next consider the transistor circuit shown in Figure 8, described by[
g1(x1)
g2(x2)

]
+

[
0.1010× 10−2 −0.9901× 10−3

−0.1980× 10−6 0.1980× 10−4

] [
x1
x2

]
−
[

0.1198× 10−1

−0.1369× 10−3

]
=

[
0
0

]
,

where x1 and x2 denote the base-emitter voltage and the base-collector voltage of

the transistor, respectively, gi(xi)
4
= 10−9[exp(qxi/kT ) − 1], q = 1.602 × 10−19, k =

1.381 × 10−23, and T denotes the temperature. The solution of this circuit when
T = 20 ◦C is (0.388232,−6.910224)T .

We changed the temperature as T = 20± 20 ◦C and approximated the set-valued
function thus obtained (see Figure 9) by a PLI function with 100 trapezoids. We
applied the proposed method to the system of PLI equations using the initial box
D = ([−10, 0.5], [−10, 0.5])T . Figure 10 shows the result of computation, where the
smallest boxes containing the solution set are shown by solid lines, and the solution of
the original transistor circuit when T = 20 ◦C is shown by a dot. The CPU time was
0.04 s.

5.3 Example 3

Consider the nonlinear resistive circuit containing two tunnel diodes shown in Fig-
ure 11, described by a system of two nonlinear equations [20]. The characteristics of
the tunnel diodes are given by

g1(x1) = 2.5x31 − 10.5x21 + 11.8x1

g2(x2) = 0.43x32 − 2.69x22 + 4.56x2.

We considered the initial box D = ([−1, 4], [−1, 4])T , and approximated the nonlinear
functions by PL functions on [−1, 4], which are linear on K equally spaced intervals.
Then, we moved them up and down with distance w/2 to obtain PLI functions as
shown in Figure 1(a) of width w. We applied the proposed method to the system of
PLI equations thus obtained. Figures 12(a)–(d) show the smallest boxes containing



86 Yamamura and Ishiguro, Finding All Solutions Using Integer Programming

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5  0  0.5  1  1.5  2  2.5  3

x
2
 [

V
]

x1 [V]

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5  0  0.5  1  1.5  2  2.5  3

x
2
 [

V
]

x1 [V]

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5  0  0.5  1  1.5  2  2.5  3

x
2
 [

V
]

x1 [V]

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5  0  0.5  1  1.5  2  2.5  3

x
2
 [

V
]

x1 [V]

(d)

Figure 12: Solution sets (Example 3).

the solution sets when K = 100 and w = 0.2, 0.4, 0.6, and 0.8, respectively. The
original system of PL equations has nine solutions, which are shown in Figure 12 by
dots. From these figures, it is seen that the number of connected solution sets decreases
as w increases. The total CPU time was 1.2 s.

In [20], the same problem is solved by the algorithm proposed there which uses
linear programming. To verify that the proposed method certainly gives all solution
sets, we compared the result with that in [20]. Then, we could confirm that the same
result was obtained, i.e., the number of narrowed trapezoidal boxes in Figure 12 and
the number of trapezoidal boxes in Figure 4 of [20] are the same.

5.4 Example 4

Consider the nonlinear resistive circuit containing three tunnel diodes shown in Fig-
ure 13, described by a system of three nonlinear equations. The characteristics of the
tunnel diodes are given by

g1(x1) = 0.43x31 − 2.69x21 + 4.56x1

g2(x2) = 2.5x32 − 10.5x22 + 11.8x2

g3(x3) = 1.3x33 − 5.4x23 + 6.9x3.



Reliable Computing 23, 2016 87

5V

1Ω

2x

1x

3x

Figure 13: Three-tunnel diode circuit (Example 4).
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Figure 14: Solution sets (Example 4).

The initial box is D = ([−1, 4], [−1, 4], [−1, 4])T . The original circuit has three solu-
tions within the box. We considered the PLI functions obtained in the same manner
as in Example 3. In this example, we also changed the value of the linear terms
±d/2 to obtain a set-valued function as shown in Figure 5. We applied the proposed
method to the system of PLI equations thus obtained using K = 100, w = 0.6, and
d = 0.1. Figure 14(a) shows the solution sets in the (x1, x2, x3)-space. This figure can
be obtained by maximizing and minimizing x1, x2, and x3; i.e., it can be obtained by
solving the mixed integer programming problems six times. If we enlarge this figure,
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Figure 15: Ten-tunnel diode circuit (Example 5).
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Figure 16: Solution sets (Example 5).

then we can see many three-dimensional boxes which enclose the solution sets. The
number of boxes which enclose the solution sets is 2 579, and the CPU time was 2
s. Figures 14(b)–(d) show the solution sets projected onto the (x1, x2), (x1, x3), and
(x2, x3)-planes, respectively. It is seen that the shape of the solution sets varies largely
according to the direction we are looking.

5.5 Example 5

Consider the nonlinear resistive circuit containing ten tunnel diodes shown in Fig-
ure 15 [20, 21, 23, 24, 25], described by a system of ten nonlinear equations:

g(xi) + x1 + x2 + · · ·+ x10 − i = 0, i = 1, 2, . . . , 10,

where
g(xi) = 2.5x3i − 10.5x2i + 11.8xi.

We consider the initial box ([−1, 4], . . . , [−1, 4])T . The original circuit has nine solu-
tions within the box. We considered the PLI functions obtained in the same manner as
in Example 3, and applied the proposed method to the system of PLI equations using
K = 100 and w = 0.4. In this example, the mixed integer programming problems to
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Table 1: Result of computation (Example 6).

n Number of boxes CPU time (s)

10 5 0.4

20 6 0.9

30 12 2

40 19 3

50 29 4

60 40 7

70 54 9

80 69 13

90 88 17

100 107 26
...

...
...

200 477 349

300 1 019 2 111

400 1 567 14 918

500 2 229 86 496

be solved consist of 2 010 variables including 990 0–1 variables and 2 020 constraints.
Figure 16(a) shows the solution sets projected onto the (x7, x9)-plane. The num-
ber of boxes which enclose the solution sets is 16 272, and the CPU time was 60 s.
Figure 16(b) shows the enlarged view of the solution sets in the lower right part of Fig-
ure 16(a). It is seen that intricately-shaped solution sets are obtained by the proposed
method.

5.6 Example 6

Finally, consider a system of n nonlinear equations [20, 21, 23, 24, 25]

xi −
1

2n

(
n∑

j=1

x3j + i

)
= 0, i = 1, 2, . . . , n.

We considered the initial box ([−2.5, 2.5], . . . , [−2.5, 2.5])T . This system has three
solutions within the box. We considered the PLI functions obtained in the same
manner as in Example 3, and applied the proposed method to the system of PLI
equations using K = 10 and w = 0.002. Table 1 shows the number of boxes which
enclose the solution sets and the CPU time when we maximized and minimized two
variables (i.e., when we solved the mixed integer programming problems four times)
for each n. It is seen that a system of 100 PLI equations could be solved in 26 s,
and a system of 500 PLI equations could be solved in about 24 h. In this example,
the mixed integer programming problems when n = 500 consist of 10 500 variables
including 4500 0–1 variables and 11 000 constraints.
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Figure 17: Relation between the solutions of (16) and solution curves.

6 Extension to Finding All Solution Curves

The proposed method can easily be extended to finding all solution curves. Con-
sider the problem of finding all one-dimensional solution curves to a system of n PL
equations in n+ 1 variables:

F (x)
4
= PG(x) +Qx+ r = 0 (15)

contained in a boxD = ([l1, u1], . . . , [ln+1, un+1])T ⊂ Rn+1, where x = (x1, x2, . . . , xn+1)T

∈ Rn+1 is a variable vector, G(x) = [g1(x1), g2(x2), . . . , gn+1(xn+1)]T : Rn+1 → Rn+1

is a PL function with component functions gi(xi) : R1 → R1 (i = 1, 2, . . . , n + 1)
given by Figure 2, P ∈ Rn×(n+1) and Q ∈ Rn×(n+1) are constant matrices, and
r = (r1, r2, . . . , rn)T ∈ Rn is a constant vector. In this section, we do not consider
set-valued functions. For simplicity, a box on which F (x) becomes a linear function
will be called a linear box.

In this case, we consider the mixed integer programming problems:

max/min xp

subject to

Py +Qx+ r = 0

xi = ai0 +

K∑
j=1

δij

yi = bi0 +

K∑
j=1

bij − bij−1

aij − aij−1
δij

∆i1µi1 ≤ δi1 ≤ ∆i1

...
∆ij−1µij−1 ≤ δij−1 ≤ ∆ij−1µij−2

∆ijµij ≤ δij ≤ ∆ijµij−1

∆ij+1µij+1 ≤ δij+1 ≤ ∆ij+1µij

...
0 ≤ δiK ≤ ∆iKµiK−1, i = 1, 2, . . . , n+ 1,

(16)
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Figure 18: One-port tunnel diode circuit.
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Figure 19: Extreme points of the solution curves for the circuit in Figure 18.
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Figure 20: Solution curves for the circuit in Figure 18.
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Figure 21: One-port transistor circuit.
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Figure 22: Solution curves for the circuit in Figure 21.

where we maximize and minimize an arbitrary variable xp. Then, we solve (16)
by CPLEX using the solution pool feature, where we set SolnPoolGap to default,
SolnPoolIntensity to 4, PopulateLim to a sufficiently large value, and other param-
eters to default, and call populate. Then, eventually the LP relaxations of (16)
are solved on all linear boxes containing the solution curves. On a linear box, (16)
becomes a linear programming problem. Hence, by solving (16), we can obtain both
extreme points of a segment which is a part of the solution curves as shown in Fig-
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ure 17, together with the values of µij ’s which specify the linear box. By connecting
the extreme points, we can find all solution curves.

We show two numerical examples. We first consider the one-port circuit shown in
Figure 18, where the PL characteristics of the tunnel diodes are given as in Example 4
of Section 5. This circuit is described by a system of four PL equations in five variables
(x1, x2, x3, v, i). We applied the proposed method to this system using K = 50, and
we obtained the extreme points as shown in Figure 19, where marks + (red) denote
the extreme points obtained by maximization, and marks × (blue) denote the extreme
points obtained by minimization. By connecting the extreme points, we obtained the
solution curves (called driving-point characteristic curves) as shown in Figure 20. The
number of segments of the solution curves is 241, and the CPU time was 0.1 s.

We next consider the one-port transistor circuit shown in Figure 21, which is
discussed in [22]. This circuit is described by a system of nine PL equations in ten
variables. We applied the proposed method to this system using K = 30, and we
obtained the solution curves as shown in Figure 22. The number of segments of the
solution curves is 545, and the CPU time was 0.9 s.

In [22], the second problem is solved by the algorithm proposed there using linear
programming. To verify that the proposed method certainly provides all solution
curves, we compared the result with that in [22] and confirmed that the same result
was obtained, i.e., the solution curves in Figure 22 and the solution curves in Figure 10
of [22] are the same.

7 Conclusion

In this paper, an efficient method has been proposed for finding all solution sets of
systems of PLI equations using integer programming. It has been shown that the
proposed method can be implemented easily without writing complicated programs,
and that all solution sets are found by solving mixed integer programming problems
several times. The proposed method will be useful in the analysis of perturbed systems
which have many unconnected solution sets. It will also be useful in the numerical
computation with guaranteed accuracy.

In the proposed method, our use of CPLEX is different from the general usage
mainly in two points. First, we do not consider optimization but find all feasible
solutions which are the solutions of the original continuous systems to be solved.
Secondly, in the general usage of CPLEX, the solution pool relative gap parameter
SolnPoolGap is set to a small value so that we can find near-optimal solutions, but
in the proposed method, SolnPoolGap is set to a sufficiently large value so that we
can find all solution sets. Such a use is enabled by the rapid progress of integer
programming in the last decade. Since integer programming will continue to progress
also in the future, it will be significant to study further how integer programming
solvers can be used in the fields of interval analysis and reliable computing.
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Appendix: LP File Used in Example 1

Maximize

obj: x1

Subject To

c1: 2 y1 + x1 + x2 = 9

c2: 2 y2 + x1 + x2 = 9

c3: x1 - d11 - d12 - d13 = 0

c4: x2 - d21 - d22 = 0

c5: y1 - 2 d11 + d12 - 0.5 d13 >= -0.5

c6: y1 - 2 d11 + d12 - 0.5 d13 <= 0.5

c7: y2 - 2 d21 - 0.5 d22 >= -0.5

c8: y2 - 2 d21 - 0.5 d22 <= 0.5

c9: d11 - 2 u11 >= 0

c10: d12 - 3 u12 >= 0

c11: d12 - 3 u11 <= 0

c12: d13 - 5 u12 <= 0

c13: d21 - 3 u21 >= 0

c14: d22 - 7 u21 <= 0

Bounds

0 <= x1 <= 10

0 <= x2 <= 10

-0.5 <= y1 <= 4.5

-0.5 <= y2 <= 10

0 <= d11 <= 2

0 <= d12 <= 3

0 <= d13 <= 5

0 <= d21 <= 3

0 <= d22 <= 7

0 <= u11 <= 1

0 <= u12 <= 1

0 <= u21 <= 1

Binaries

u11 u12 u21

End
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