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Abstract

The idea of interval arithmetic, proposed by Moore, is to enclose the
exact value of a real number inside an interval. Then, computing with
intervals will allow us to enclose the true value for a variable we want
to compute. This paper emphases the importance of having a lattice
structure for the set of intervals and shows that several interval algorithms
could be adapted to other types of domains as soon as these domains have
a lattice structure with respect to the inclusion and that we could bisect
them. Such domains will be called bisectable abstract domains (or ‘bad’
for short). As an illustration, we introduce the boxpies, which correspond
to the intersection between one box and one pie. We show that boxpies can
be used efficiently to characterize the solution set of constraints involving
complex numbers.
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1 Introduction

This paper proposes to use interval analysis and contractor programming [1] with the
objective of solving equations involving complex numbers. Our approach uses concepts
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of interval analysis developed by Moore [25], but adapts and extends these concepts
to be more efficient.

A problem involving equations with complex numbers always can be rewritten as
real-valued equations through a Cartesian decomposition of the complex variables. As
a consequence, classical interval based methods always can be used to solve this type
of problem, without developing a new type of method. Unfortunately, such a scalar
decomposition makes more complex the expressions of the equations, which amplifies
the negative effect of the dependency problem. As a consequence, the resulting solvers
are slow.

In his book, Moore [25] has shown that the family of all real intervals is closed under
point-wise arithmetic operations (+,−, ·) (i.e., this family forms an arithmetic). This
closedness is used to estimate efficiently the set of possible values for y = f (x1, . . . , xn)
from the known intervals of possible values for xi when the xi’s are complex valued
and it is desirable to find a similar closed family (arithmetic) of complex sets. Unfor-
tunately, we now know from Nickel’s paper [29] that, in contrast to the 1-D interval
case, there is no finite-dimensional arithmetic for complex sets [22]. Several people
have proposed to use different types of sets enclose an uncertain complex number,
such as a disk [13], a pie [21], or a box. Further, they introduced corresponding un-
closed arithmetics. Each type of domain has some advantages and drawbacks; to our
knowledge, no method has been proposed to combine them.

In this paper, we propose to take advantage of the dual representation of complex
numbers (Cartesian or polar form) and use the two different types of domains to
enclose the solutions: Cartesian intervals (or boxes) and polar intervals (or pies) [4].
Another contribution of this paper is to show that to be able to find an inner and
an outer approximation for the solution set of constraints involving complex numbers,
it is fundamental to make these domains closed under bisection. For this, we will
introduce the new notion of bisectable abstract domains (or bad for short).

The paper is organized as follows. Section 2 defines an interval of a set which is
a metric lattice (such as R or Rn), and Section 3 shows how the concept of interval
can generalized to deal with the case where the variables to be enclosed do not belong
to a lattice. As an illustration, Section 4 considers the set of angles for which no
order relation exists. It shows that what is important is not that the variables take
values inside a lattice, but that the domains used to enclose them belong to a lattice
with respect to the set inclusion. Section 5 introduces the notion of pie which is an
illustration of how vectors of variables with no order relation (such as angles) can
be enclosed. Section 6 shows how different types of domains can be merged into a
single type. This is illustrated by introducing the new notion of boxpie, which is the
intersection between one box and one pie. Boxpies are particularly suited to deal with
polynomial constraints involving complex numbers. Section 7 recalls the definition
of a contractor in the general framework. Section 8 provides an illustrative example
related to robot localization, which is formalized with polynomial equations involving
complex variables. In this example, the solution set is approximated by an inner and
an outer subpaving made with boxpies. A conclusion is given in Section 9.

2 Intervals

Most interval methods, introduced by Moore [24] in his Ph.D. thesis, can be applied
as soon as the set of domains for the variables has a lattice structure [11] as shown
in [27]. A lattice (E ,≤) is a partially ordered set, closed under least upper and greatest
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lower bounds [11]. The least upper bound of x and y is called the join and is denoted
by x ∨ y. The greatest lower bound is called the meet and is written as x ∧ y.

Example 1. The set (Rn,≤) is a lattice with respect to the partial order relation
given by x ≤ y⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi. We have x∧y = (x1 ∧ y1, . . . , xn ∧ yn), and
x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn), where xi ∧ yi = min (xi, yi) and xi ∨ yi = max (xi, yi).

Example 2. The set (F,≤) of the functions which map R to R is a lattice with
respect to the partial order relation given by f ≤ g ⇔ ∀t ∈ R, f (t) ≤ g (t) . We have
f ∧ g : t 7→ min {f (t) , g (t)}, and f ∨ g : t 7→ max {f (t) , g (t)} .

Example 3. The set IR of closed intervals, as introduced by Moore [25], is
a complete lattice with respect to the inclusion ⊂. The meet corresponds to the
intersection, and the join corresponds to the interval hull. For instance

[1, 4] ∧ [2,∞] = [2, 4] , and [1, 4] ∨ [8, 9] = [1, 9] . (1)

A lattice E is complete if for all (finite or infinite) subsets A of E , the least upper
bound ∧A and the greatest lower bound ∨A belong to E . When a lattice E is not
complete, it is often possible to add two elements corresponding to ∧A and ∨A to make
it complete. For instance, the set R is not a complete lattice, whereas R = R∪{−∞,∞}
is. As a consequence, we have ∧∅ = ∨E and ∨∅ = ∧E .

Intervals. A closed interval (or interval for short) [x] of a complete lattice E is a
subset of E which satisfies the equation [x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]} . Both ∅ and
E are intervals of E . An interval is a sublattice of E . If we denote by IE the set of all
intervals of a complete lattice (E ,≤), then (IE ,⊂) is also a lattice. For two elements
[x] =

[
x−, x+

]
and [y] =

[
y−, y+

]
of IE , we have:

[x] ∧ [y] =
[
x− ∨ y−, x+ ∧ y+

]
[x] ∨ [y] =

[
x− ∧ y−, x+ ∨ y+

]
.

(2)

The meet [x] ∧ [y] corresponds to the intersection and will denoted by [x] ∩ [y] . The
join [x] ∨ [y] is the interval hull and will be denoted by [x] t [y].

Remark. In his book, Moore [25] considered intervals that are derived from the
lattices (Rn,≤). When n > 1, these intervals are named interval vectors. Moore also
considered tubes, i.e., intervals in the lattice of functions (F,≤) .

Width. The width function w associates to an interval [x] a positive number. The
width should satisfy the properties

(i) [x] ⊂ [y]⇒ w ([x]) ≤ w ([y]) (monotonicity)

(ii) [x] (k)→ a⇒ w ([x] (k))→ 0 (convergence).
(3)

The second property tells us that if a sequence of intervals [x] (k) converges to a point
a (i.e., a degenerated interval a which is a singleton), then the corresponding width
converges to 0. This property requires that the sequence [x] (k) are intervals of a lattice
E , which is also a metric space. Moore defined the width of an interval of R as

w
([
x−, x+

])
= x+ − x−, (4)

which is consistent with this property.

Cartesian product. The Cartesian product of two lattices (E1,≤1) and (E2,≤2)
is the lattice (E ,≤) defined as the set of all (a1, a2) ∈ E1 × E2 with the order relation
(a1, a2) ≤ (b1, b2) ⇔ ((a1 ≤1 b1) and (a2 ≤2 b2)). The intervals of E are made with
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the Cartesian product of the intervals of E1 and E2, i.e., an interval [x] of E can be
written as

[x] = [x1]× [x2] where [x1] ∈ IE1 and [x2] ∈ IE2. (5)

Moreover, the width w in E can be derived from the width w1 and w2 in E1 and E2 as
follows:

w ([x1]× [x2]) = max (w1 ([x1]) , w2 ([x2])) . (6)

Moore’s definition of the width of intervals of Rn is consistent with this definition.

Bisections. A bisector [8] is an operator that takes an interval [x] as an input
and which returns two intervals [a] and [b] such that i) [a] and [b] do not overlap; ii)
[x] = [a] ∪ [b]; and iii) max (w ([a]) , w ([b])) is minimal. This is the choice made by
several optimization algorithms [16, 20] such as the Moore-Skelboe algorithm [34] or
by algorithms for solving non-linear equations [6].

3 Bisectable Abstract Domains

All interval methods initiated by Moore as well as contractor-based tools can be gen-
eralized easily in the case where the unknown variables do not belong to a lattice [1].
What is important [9, 15, 31, 33] is that the domains that are handled form a lattice [11]
with respect to the inclusion ⊂. More precisely, consider a Riemannian manifold M
(such a R, Rn or a sphere). Since M is Riemannian, we can define the distance d (a, b)
between two points a and b as the minimal length than can be reached by any path
connecting a to b. For any subset X ⊂ M, we can define the diameter (or width) w (X)
of X as the maximal distance d (a, b) that exists between two points a and b ∈ X.
Denote by P (M) the powerset of M. We define a family of bisectable abstract domains
(bad for short) IM as a subset of P (M) which satisfies the following properties.

• IM is a Moore family1. This means that the intersection (not necessary finite)
is closed in IM, i.e.,

[a] (1) ∈ IM, [a] (2) ∈ IM, . . . ⇒
⋂
i

[a] (i) ∈ IM. (7)

From this property, we can deduce that (IM,⊂) is a lattice. However, this lattice
is not necessary a sublattice of P (M). Indeed, even if the meet operator ∩ is
preserved, the join operator in IM (denoted by t) is different from that in P (M)
(denoted by ∪). More precisely, instead of an equality, we have the inclusion:

[a] ∪ [b]︸ ︷︷ ︸
∈P(M)

⊂ [a] t [b]︸ ︷︷ ︸
∈IM

. (8)

• IM is equipped with a bisector, i.e., a function β : IM → IM× IM, such that
β ([x]) = {[a] , [b]} with the following properties: i) [a] and [b] do not overlap, ii)
[a] and [b] cover [x] and no other bisection consistent with i) and ii) generates
a lower value for max {w ([a]) , w ([b])}.

1The Moore who gave the name to the Moore family is not the Ramon Moore who built
the theory of interval analysis, but Eliakim Hastings Moore (1862–1932), who studied closure
operators.
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Cartesian product. Let (IM1, β1) and (IM2, β2) be two bads associated with the
manifolds M1 and M2. A bad associated with the Cartesian product M = M1 ×M2 is
(IM, β) where

IM = IM1 × IM2

β ([m1]× [m2]) =

{
β1 ([m1])× [m2] if w1 ([m1]) ≥ w2 ([m2])

[m1]× β2 ([m2]) otherwise.

(9)

This defines what we call the Cartesian product between two bads. It is useful to enclose
vectors of variables. As defined by Moore, a box [x] = [x1]× [x2] of R2 is a Cartesian
product of two intervals of R, which is a bad. A bisection of [x] can be defined as in
(9) from the bisection of its interval components [x1] and [x2].

Reduced product [10]. Let (IM1, β1) and (IM2, β2) be two bads associated with
the same manifold M. We define the reduced product (IM, β) = (IM1, β1)⊗ (IM2, β2)
as follows

IM = {[m1] ∩ [m2] such that [m1] ∈ IM1 and [m2] ∈ IM2}

β ([m1] ∩ [m2]) =

{
β1 ([m1]) ∩ [m2] if w ([m1]) ≥ w ([m2])

[m1] ∩ β2 ([m2]) otherwise.

(10)

The intersection is closed in IM. Indeed, if [a1] ∩ [a2] ∈ IM and [b1] ∩ [b2] ∈ IM, we
have

[a1] ∩ [a2] ∩ [b1] ∩ [b2] = [a1] ∩ [b1]︸ ︷︷ ︸
∈IM1

∩ [a2] ∩ [b2]︸ ︷︷ ︸
∈IM2

. (11)

The idea of the reduced product, which is not well known by the interval community, is
classically used in the community of abstract interpretation [10], where different types
of domains are combined during the resolution. This is the case of an octagon [23],
which corresponds to the intersection of a box with a rotated box.

4 Angles and Arcs

The notion of bad will now be illustrated in the case of angles, which do not have a
lattice structure. Consider the equivalence relation on R

α ∼ β ⇔ β − α
2π

∈ Z. (12)

The set A of all angles corresponds to the quotient

A =
R
∼ =

R
2πN

. (13)

For simplicity, we will also write A = [−π, π[ . Note that the set A is a Riemannian
manifold. Moreover, if α and β are angles and if ρ ∈ R, we can define the operations
α+β, α−β and ρ ·α. Due to its circular structure, the set of angles A is not a lattice.
Thus, it is not possible to define intervals of angles to apply interval techniques [13].
Define an arc as a pair 〈α〉 = 〈α, α̃〉 such that α ∈ A and α̃ ∈ [0, π], where α is called
the center and α̃ is the radius. The set of all arcs is denoted by IA. The intersection in
IA is not closed, so IA is not a Moore family. To apply an interval approach on angles,
it is necessary to take as a domains of angles: unions of arcs, which corresponds to the
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Figure 1: Intersection and union of two circular pavings

smallest Moore family which contains IA. A union of non-overlapping arcs is called a
circular paving. The set of circular pavings is denoted by UA and (UA,⊂). Figure 1
illustrates the intersection and the union of circular pavings.

Remark. In practice, we should limit the number of intervals inside a union. It is
indeed possible to find examples where the number of intervals to represent a domain
of A increases to infinity during the propagation. This phenomenon exists as soon as
we work with union of intervals. In his thesis, Chabert proposes such an example (see
[7], Example 6.5 page 152) for domains of R. The constraints are{

y = x

9 (x− 5)2 = 16y,
(14)

and the initial domains are [x] = [y] = [1, 9]. This example can easily be adapted to
illustrate an explosion with unions of arcs by setting x = 3α and y = 3β. We get{

β = α

9 (3α− 5)2 = 48β
(15)

with initial domains [α] = [β] =
[
1
3
, 3
]
. If we start a propagation with an interval of

angles, we get the same type of explosion as the one observed by Chabert.

5 Pies

In the previous section, we were able to define a family of domains (the circular paving)
for angles which is a bad. Since the Cartesian product of bads is a bad, we can thus
easily define a bad associated to a finite set of variables. This is what it is done when
Moore has defined boxes of Rn as Cartesian products of intervals. We now illustrate
this by considering an angle variable α and a scalar variable ρ > 0. If α belongs to
the circular paving < α > and ρ belongs to the scalar interval [ρ] then the pair (α, ρ)
belongs to < α > × [ρ] which is called a pie. More formally, a pie is an element of
UA× IR. A pie can also be interpreted as a subset of R2 as illustrated by Figure 2
right, which shows a pie 〈α, α̃〉 ×

[
ρ−, ρ+

]
with a single connected component. A pie

will often be denoted in its polar form as [ρ] ei<α>. Note that, because the set of
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pies is a bad, the intersection between pies is always a pie. Indeed, if [ρ1] ei<θ1> and
[ρ2] ei<θ2> are two pies, we have

[ρ1] ei<θ1> ∩ [ρ2] ei<θ2> = ([ρ1] ∩ [ρ2]) ei(<θ1>∩<θ2>). (16)

Figure 2: Left: an arc; Right: a pie

6 Boxpies

Consider the set C of complex numbers. Two bads could be considered: boxes of C
of the form [x] + i [y] and pies of C of the form [ρ] ei<θ>. Both IC (the boxes) and
UA× IR (the pies) are Moore families in P (C). The union IC with UA× IR is not
a Moore family anymore, but we can define the smallest Moore family BP of P (C)
which contains both IC and UA× IR. This corresponds to the reduced product ⊗ [10]
presented in Section 3. Therefore, we can write BP = IC⊗ UA× IR. The family BP
contains boxes and pies, but it also contains all intersections between one box and one
pie. An element of BP is called a boxpie. Thus, a boxpie can be written as

[x] + i [y] ∩ [ρ] ei<θ>. (17)

The intersection between two boxpies is also a boxpie. Indeed:

[x1] + i [y1] ∩ [ρ1] ei<θ1> ∩ [x2] + i [y2] ∩ [ρ2] ei<θ2>

= [x1] ∩ [x2] + i ([y1] ∩ [y2]) ∩ ([ρ1] ∩ [ρ2]) ei(<θ1>∩<θ2>).
(18)

An arithmetic on boxpies inherits not only the good properties of interval arithmetic for
the addition, but also the good properties of pie arithmetic [30] for the multiplication.

Self-consistency. The expression for a boxpie may not be unique. For instance,
the boxpie

[0, 1] + i [1, 2] ∩ [1, 2] · ei[0,
π
4
] = [1, 1] + i [1, 1] ∩ [

√
2,
√

2]ei[
π
4
,π
4 ] (19)

is a singleton which contains as a single element, the complex number 1 + i =
√

2ei
π
4 .

The representation which is minimal with respect to the inclusion of intervals is said
to be self-consistent.



42 Jaulin, Desrochers, and Massé, Bisectable Abstract Domains

7 Contractors

Many problems of estimation, control or robotics can be represented by constraint
networks [18]. A constraint networks (see, e.g., [36, 37]) is composed of a set of vari-
ables {x1, . . . , xn}, a set of constraints {c1, . . . , cm} and a set of domains {X1, . . . ,Xn}.
The domains Xi should belong to a complete lattice (Li,⊂). In the interval literature
derived from Moore’s work, the domains for the variables of a constraint networks are
intervals. It is not the case when dealing with finite domains. The interval nature is
not needed as soon as the set of domains has a structure of lattice. In the context
of this paper, the sets Li will correspond to the set of boxpies BP. Denote by L the
Cartesian product of all Li’s, i.e., L = L1× · · ·×Ln. An element X of L is the Carte-
sian product of n elements of Li, (i.e., it satisfies X = X1 × · · · × Xn). A contractor
(see e.g., [3]) is an operator

C :
L → L
X 7→ C (X) ,

(20)

which satisfies
X ⊂ Y⇒ C (X) ⊂ C (Y) (monotonicity)
C (X) ⊂ X (contractance).

(21)

The set of contractors forms also a complete lattice. As a consequence, the meet (or
intersection) and join (or union) can also be defined. This leads us to the contractor
algebra [8]. When all variables of the constraint networks belong to R, contractor
techniques have been shown to be very powerful [2, 35].

Remark. The interval Newton operator developed by Moore [25] also aims at
contracting boxes without removing any point from the solution set. Now, this op-
erator is not monotonic. For a counter-example, take f (x) = ex − 1. The associated
Newton operator is

N ([x]) =

(
x0 −

f (x0)

f ′ ([x])

)
∩ [x] =

(
x0 −

ex0 − 1

e[x]

)
∩ [x] , (22)

where x0 is the center of [x]. Take [a] = [0, 1] and [b] = [−1, 1]. We have

N ([a]) = N ([0, 1]) =

(
1

2
− e

1
2 − 1

e[0,1]

)
∩ [0, 1] ' [0, 0.26135] (23)

N ([b]) = N ([−1, 1]) =

(
0− 0

e[−1,1]

)
∩ [−1, 1] = 0. (24)

Thus,
[a] ⊂ [b] does not imply that N ([a]) ⊂ N ([b]) . (25)

Due to this non-monotonicity, the Newton operator does not satisfy the definition of
a contractor.

Constraint propagation. In principle, we associate to each constraint cj ∈
{c1, . . . , cm} of a constraint network, a contractor Cj (X) which does not remove any
(x1, . . . , xn), and which is consistent with cj . Then, we build the contractor C = C1 ◦
· · · ◦ Cm. We apply the contractor C until no more contraction can be observed.
From Tarski’s Theorem, we conclude that the process converges toward the largest
subdomain X = X1×· · ·×Xn of the initial domain which cannot be contracted by any
Ci.

Contractors. Most contractors are built on an arithmetic of domains (which
corresponds to the interval arithmetic if these domains are intervals). If A, B and C
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are pies containing the three complex numbers a, b and c, using the arithmetic proposed
in [5], it is possible to define efficient contractors associated with the constraints

a+ b = c and c = a · b. (26)

These contractors can be used for solving polynomial equations in C. Moreover, due
to the non-unicity of the expression of a boxpie, it is important to add a self-consistent
contractor to have better contractions.

Separators. A separator [17] is a pair complementary contractors. Combined
with a paver, separators make it possible to compute an inner and an outer charac-
terization of the solution set. The principle is similar to what has been proposed by
Moore [26] and successors (see, e.g., [14, 19, 28] to characterize an inner and an outer
approximations of a set defined by inequalities. The main difference is that Moore
used inclusion tests, whereas here, we use separators for efficiency. As shown in [17],
from a contractor, it often is possible to get the corresponding separator automatically.

8 Application to Robot Localization

A robot, moving in a plane, is able to see a landmark m with coordinates (10, 12).
More precisely, a sensor in the robot is able to measure the distance d and the azimuth
α of m with a known accuracy. Assume for instance that we collected α ∈ [ π

12
, π
6

] and
d ∈ [4, 6] . Assume that the position for the robot is known to belong to the box
[3, 8]× [6, 13]. Let us represent the position of the robot by a complex number p ∈ C.
We have to solve:

10 + 12i− p = deiα, p ∈ [3, 8]× [6, 13], α ∈
[ π

12
,
π

6

]
, d ∈ [4, 6] . (27)

The first contraction yields the boxpie represented in bold in Figure 3, left. In this
figure, the black triangle which corresponds to the unknown true position for the robot
in (6, 10). A paver is able to give the inner and the outer characterization represented
in Figure 3, right.

Figure 3: Left: boxpie enclosing the true position of the robot, represented by the
black triangle; Right: Inner and outer approximation of the solution set
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As a comparison, Figure 4 provides the pavings obtained using boxes and pies
as domains, but in a separate way. To get these figures, we used specific minimal
separators for the projection of the set

{(x, y, ρ, θ) | x = ρ cos θ and y = ρ sin θ} (28)

with respect to the (x, y) and (ρ, θ) space [12].

Figure 4: Left: paving obtained using boxes only; Right: paving obtained using pies
only

Boxpies belong to the class of redundant computation methods [36] and cannot
be seen as a new branch-and-prune framework. Contrary to what is done when we
add redundant constraints for more efficiency, we combine here the different types
of domains to reduce the wrapping effect. As illustrated by Figures 3 and 4, even
when minimal contractors are available (or equivalently, when we are able to compute
the global consistency), the best approximation we can get by a single domain (i.e.,
without bisections) is always affected by wrapping effect. With boxpies, this wrapping
effect still exists (see Figure 3) ,but its influence is smaller than with boxes only
(Figure 4, left) or pies only (Figure 4, right).

9 Conclusion

This paper shows that the interval arithmetic introduced by Moore can be generalized
to other types of domains as soon as these domains form a lattice with respect to the
inclusion and that we could bisect them. This allowed us to introduce a new category
of domains, named bisectable abstract domain (bad for short). The bisectable property
makes a difference with the domains classically considered in domain theory [32] where
the bisection is not considered. An example of bad is the boxpie which corresponds to
the intersection between one box and one pie. Most of interval-based algorithms can
be extended easily to this type of domains, since we are able to contract boxpies with
respect to some constraints and to bisect them. Boxpies are particularly interesting
when we deal with equations in C since they inherit the accuracy of the Cartesian
representation for the addition and the accuracy of the polar representation for the
multiplication.
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