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Abstract

A set of validated numerical integration methods based on explicit and
implicit Runge-Kutta schemes is presented to solve, in a guaranteed way,
initial value problems of ordinary differential equations. Runge-Kutta
methods are well-known to have strong stability properties, which make
them appealing to be the basis of validated numerical integration methods.
A new approach to bound the local truncation error of any Runge-Kutta
method is the main contribution of this article, which pushes back the
current state of the art. More precisely, an efficient solution to the chal-
lenge of making validated Runge-Kutta methods is presented, based on
the theory of John Butcher. We also present a new interval contractor
approach to solve implicit Runge-Kutta methods. A complete experimen-
tation based on Vericomp benchmark is described.

Keywords: Ordinary differential equations, Validated simulation, Runge-Kutta.

1 Introduction

Many scientific applications such as in mechanics, in robotics, in chemistry or in elec-
tronics require the solution of differential equations. In the general case, differential
equations can not be integrated formally, and a numerical integration scheme is used
to approximate the state of the system. Nevertheless, in many applications, as for
example [7, 16, 22, 41], an approximation of the solution is not sufficient, and a bound
on the exact solution is mandatory. A new approach to compute such bounds, based
on well-known Runge-Kutta methods, is presented.
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In this article, we are interested in the computation of the solution of the interval
initial value problem (IIVP) for autonomous Ordinary Differential Equations (ODEs)
defined by

ẏ = f(y) with y(0) ∈ [y0] and t ∈ [0, tend] . (1)

The function f : Rn → Rn is the flow, y ∈ Rn is the vector of state variables, and ẏ
is the derivative of y with respect to time t. We shall always assume at least that f
is globally Lipschitz in y, so Equation (1) admits a unique solution [21] for a given
initial condition y0. Even more, for our purpose, we shall assume that f is continuously
differentiable as needed. Note that the initial value is given by an interval, i.e., there
are some bounded uncertainties on the initial value. More precisely, we are interested
in methods computing the set of solutions y(t; [y0]) of IIVP such that

y(t; [y0]) =
{
y(t; y0) : ∀y0 ∈ [y0]

}
.

Remark 1.1 For simplicity only autonomous first order ODE are considered. It is
not restrictive, since any non-autonomous ODE can be rewritten as an autonomous
ODE by increasing the dimension by one, so that

ẏ = f(t,y)⇔ ż =

(
ṫ
ẏ

)
=

(
1

f(t,y)

)
= g(z) .

Moreover, any high order ODE can be rewritten as a system of first order ODEs. For
example, a scalar second order problem can be written as

ÿ = f (y, ẏ)⇔
(
ẏ1

ẏ2

)
=

(
y2

f (y1, y2)

)
with y1 = y and y2 = ẏ .

The guaranteed or validated solution of IIVP using interval arithmetic is mainly
based on two kinds of methods based on: i) Taylor series [15, 25, 32, 34] ii) Runge-
Kutta schemes [6, 8, 18]. The former is the oldest method used in the interval analysis
community because the expression of the bound of a Taylor series is simple to obtain.
Nevertheless, the family of Runge-Kutta methods is very important in the field of
numerical analysis. Indeed, Runge-Kutta methods have several interesting stability
properties which make them suitable for an important class of problems. They are
less used in the interval analysis community because the expression to bound the
approximation error is complex to synthesize.

We present new guaranteed numerical integration schemes based on Runge-Kutta
methods. This work is based on [8], containing the classical Runge-Kutta method
and its extension to any explicit Runge-Kutta methods [6]. The main contribution is
the extension of this previous work to the definition of a set of guaranteed numerical
integration schemes based on implicit Runge-Kutta formulas. Hence, having different
guaranteed numerical integration schemes, explicit and implicit Runge-Kutta methods,
we can handle various kinds of problems more efficiently.

Outline In Section 2, we review the classical algorithm for validated simulation
of an ODE, based on the 2-step Lohner type algorithm. In Section 3, we review
the basics of Runge-Kutta methods and their theory. We present in Section 4 our
main contribution, the computation of bounds on the local truncation error of any
Runge-Kutta method. In Section 5, an algorithm and associated proof for our new
approach to compute implicit Runge-Kutta methods is presented. Section 6 contains
the results of our method on several examples coming from the Vericomp benchmark.
In Section 7, we summarize the main contributions of the paper.
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Notation x denotes a real value while x represents a vector of real values. [x]
represents an interval value. An interval [xi] = [xi, xi] defines the set of reals xi such
that xi ≤ xi ≤ xi. IR denotes the set of all intervals while R denotes the set of
real values. The size or width of [xi] is w([xi]) = xi − xi and m([x]) denotes the
center of [x]. A vector of intervals, or a box, [x] is the Cartesian product of intervals
[x1]× ...× [xi]× ...× [xn].

2 Technical Preliminaries and Related Work

In Section 2.1, we review the main steps of the validated method of numerical inte-
gration as it can be found in [34]. We present related work in Section 2.2.

2.1 Validated numerical integration: a remainder

We review the main algorithm used in the context of validated numerical integration,
and we refer to [34] for a more detailed presentation. The goal of a validated numerical
algorithm to solve Equation (1) is to compute a sequence of time instants 0 = t0 <
t1 < · · · < tn = tend and a sequence of boxes [y0], . . . , [yn] such that ∀j ∈ [0, n],
[yj+1] ⊇ y(tj ; [yj ]). In this article, we focus on single-step methods that only use [yj ]
and approximations of ẏ(t) to compute [yj+1].

The main approach in a validated numerical integration method, as presented in
[34], is that each step of a validated integration scheme consists of two phases

Phase 1 One computes an a priori enclosure [ỹj ] of the solution such that

• y(t; [yj ]) is guaranteed to exist for all t ∈ [tj , tj+1], i.e. along the current
step, and for all yj ∈ [yj ];

• y(t; [yj ]) ⊆ [ỹj ] for all t ∈ [tj , tj+1];

• the step-size hj = tj+1− tj > 0 is as large as possible in terms of accuracy
and existence proof for the IIVP solution.

Phase 2 One computes a tighter enclosure of [yj+1] at time tj+1, such that
y(tj+1, [yj ]) ⊆ [yj+1].

The different enclosures computed during one integration step between time tj and
tj+1 are shown on Figure 1.

Some simple algorithms to perform these two steps are described in the follow-
ing. We refer to [34] for a description of more advanced algorithms. The main issue
in these two phases is to counteract the well known wrapping effect [27]. This phe-
nomenon appears when one tries to enclose a set within a box. The reader is referred
to [34] to have a clear presentation of the methods, such as the QR-decomposition, to
reduce pessimism from the wrapping effect. In Section 5, another approach to reduce
pessimism based on affine arithmetic [14] is presented.

2.1.1 A priori solution enclosure

Phase 1 computes an a priori enclosure of the solution of IIVP over the whole time
interval [tj , tj+1] based on the application of the Banach fixed point theorem (see
Theorem 2.1) with the Picard-Lindelöf operator, see Equation (2).
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Figure 1: Enclosures appearing during one step

Theorem 2.1 (Banach fixed-point theorem) Let (K, d) be a complete metric
space and let g : K → K be a contraction, that is, for all x, y in K there exists
c ∈ ]0, 1[ such that d (g(x), g(y)) 6 c · d(x, y) ; then g has a unique fixed-point in K.

We consider the space of continuously differentiable functions C0([tj , tj+1],Rn) and the
Picard-Lindelöf operator

pf (y) = t 7→ yj +

∫ t

tj

f(y(s))ds , (2)

with yj the condition at time tj used to solve Equation (1). Note that this operator is
associated with the integral form of Equation (1). As a consequence, if this operator is
a contraction then its solution is unique and its solution is the solution of Equation (1).

One can define an interval counter part of the Picard-Lindelöf operator which can
be used to operationally prove the contraction and so the existence and uniqueness of
the solution of Equation (1). With a first order integration scheme [32], that is for
f : Rn → Rn a continuous function and [a] ⊂ IRn, we have∫ a

a

f(s)ds ∈ (a− a)f([a]) = w([a])f([a]) , (3)

we can define a simple enclosure function of Equation (2) such that

[pf ]([r])
def
= [yj ] + [0, h] · f([r]) , (4)

with h = tj+1−tj the step-size. In consequence, if one can find [r] such that [pf ]([r]) ⊆
[r] then [ỹj ] ⊆ [r] by the Banach fixed-point theorem.

Once the contraction of [pf ] has been proven, we can also define an interval con-
tractor on [r], in the sense of [12], to refine the value of [r] such that

[r]← [r] ∩ [pf ]([r]) . (5)
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The operator defined in Equation (4) and its associated contractor defined in Equa-
tion (5) can be improved with more accurate interval enclosure functions for the in-
tegral operator. For example, the evaluation of

∫ t
tj

f(s)ds can be improved with any

validated integration scheme, such as Taylor polynomial, see [34] for more details.

2.1.2 Tighter enclosure

Once Phase 1 is completed, one has the a priori enclosure [ỹj ] such that

y(t; [yj ]) ⊂ [ỹj ] ∀t ∈ [tj , tj+1] .

In particular, we have y(tj+1; [yj ]) ⊂ [ỹj ]. The goal of Phase 2 is thus to compute a
tighter enclosure of [yj+1] at time tj+1 such that

y(tj+1; [yj ]) ⊂ [yj+1] ⊆ [ỹj ] .

Each validated numerical integration method is decomposed into two parts

• the approximation part Φ(t, [yj ]) ≈ y(t; [yj ]). This algorithm usually follows a
numerical integration method such as a Runge-Kutta method.

• the local truncation error part which gives the distance between the exact solu-
tion and the approximate solution produced by the approximation part, that is,
LTEΦ(t,y, [yj ]) such that

LTEΦ(t,y, [yj ])
def
= y(t; [yj ])− Φ(t, [yj ]) . (6)

A validated numerical integration method has the following properties

∃ξ ∈]tj , tj+1[, y(tj+1; [yj ]) = Φ(tj+1, [yj ]) + LTEΦ(ξ,y, [yj ])

⊂ Φ(tj+1, [yj ]) + LTEΦ([tj , tj+1], [ỹj ], [yj ])

⊂ [ỹj ]

.

In consequence, the tight enclosure is given by the application of the approximation
part evaluate at time tj+1 associated to the bounds of the local truncation error using
the a priori enclosure [ỹj ]. In Example 2.1, an illustration of a tight enclosure formula
with an explicit Euler’s method is given.

Example 2.1 Consider an IIVP described by Equation (1) solved by an explicit Eu-
ler’s method. Hence, a tight enclosure at time tj+1 is given by

[yj+1] ⊆ [yj ] + h[f ] ([yj ]) +
h2

2

[
df

dt

]
([ỹj ]) .

The approximation part is given by [yj ] + h[f ] ([yj ]) while the local truncation error

LTEEuler is given by h2

2
[ df
dt

] ([ỹj ]).

2.2 Related Work

Validated numerical integration methods have been intensively developed since the
work of R. Moore [32] using Taylor series. Indeed, Taylor series became very popu-
lar because a simple expression of the local truncation error exists, and because the
development of automatic differentiation techniques has offered efficient algorithms to
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compute high-order derivatives. Several tools based on Taylor series have been devel-
oped; among them are AWA [26], ADIODES [40], Vnode-LP [33], COSY Infinity [28],
VSpode [25], CAPD [10], Flow∗ [13]. We propose another look at validated numerical
integration method by using Runge-Kutta methods. In particular, in the Taylor series
approach implicit schemes [35] are only used in Phase 2 (see Section 2.1) while our
contribution shows that it is possible to use an implicit Runge-Kutta scheme even for
Phase 1. Moreover, except for [25] and [28] which use Taylor models, Taylor series ap-
proaches provide validated results for small uncertainties on the initial values. Taylor
models can increase the size of the interval of initial values, but they remain costly in
term of computation. We also provide an approach based on affine arithmetic [14], in
the same spirit as [23], in order to increase the width of initial values while keeping
low complexity on arithmetic operations.

The work of Andrzej Marciniak et al presented in [18, 19, 29, 30, 31] is the closest
to ours. Indeed, they intensively studied a subclass of implicit Runge-Kutta methods
[19, 30, 31] for which they provide insights on how to make them guaranteed. The
main differences are:

i) They express “by hand” the local truncation error (i.e., the distance between the
exact solution and the numerical one, see Section 3) of a set of particular implicit
Runge-Kutta methods. Indeed they claim in [31] that the local truncation error
expression “. . . is very complicated and cannot be written in general form for an
arbitrary order p”. In this article, we provide an algorithm to compute this local
truncation error for any Runge-Kutta method, and so we push back the current
state of the art, see Section 4.

ii) They only consider fixed step integration methods, that is, the step-size h is fixed
during the simulation. In this article, we present validated Runge-Kutta methods
in the standard framework of validated numerical integration as presented in [34],
so our approach benefits from variable step-size techniques, see Section 5.3.

iii) Implicit methods require the solution of non-linear system of equations. Marciniak
et al. solve this problem using a simple iterative scheme as in [9]. On the contrary,
we use an interval contractor approach [12] to solve the non-linear system of
equations, producing a more robust algorithm, see Section 4.2.

Other approaches to define validated numerical integration have been considered.
In particular, Valencia-IVP [38] is based on a defect estimate approach which does not
necessitate high order derivative but only f and a approximate trajectory computing
by standard numerical algorithms. Moreover, in [17], the defect estimate approach is
also used but combined with a global optimization approach to bound the solution of
Equation (1).

3 Review of Numerical Runge-Kutta Methods
and Their Theory

When the initial value of IIVP is exactly known, that is, y(0) = y0, an initial value
problem (IVP) is considered. In that case, there are several numerical methods to
solve IVPs [21]. Among them, Runge-Kutta methods are very well studied and often
used. A Runge-Kutta method, starting from y0 at time t0 and a finite time horizon h,
produces an approximation y1 at time t0+h of the solution y(t0+h; y0). Furthermore,
to compute y1, a Runge-Kutta method computes s intermediate steps, where s is
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known as the number of stages. More precisely, a Runge-Kutta method, for a non-
autonomous system, i.e., ẏ = f(t,y), is defined by

y1 = y0 + h

s∑
i=1

biki , (7)

with ki defined by

ki = f

(
t0 + cih,y0 + h

s∑
i=1

ai,jkj

)
. (8)

In case of autonomous systems as the case considered in Equation (1), Equation (8)
is rewritten as

ki = f

(
y0 + h

s∑
i=1

ai,jkj

)
. (9)

The coefficients ci, aij and bi fully characterize a Runge-Kutta method, and they
are usually given in a Butcher tableau

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

(10)

The form of the Butcher tableau, in particular, the form of the matrix A consisting of
the coefficients aij , determines the Runge-Kutta method; it can be

• explicit, the matrix A is strictly lower triangular so each value ki is only defined
from the previous values kj for j < i, e.g., the classical Runge-Kutta method
given in Figure 2(a);

• diagonally implicit, the matrix A is lower triangular, e.g., the singly diagonally
implicit method given in Figure 2(b);

• fully implicit, the matrix A is full, e.g., the Runge-Kutta method with a Lobatto
quadrature formula given in Figure 2(c).
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Figure 2: Different kinds of Runge-Kutta methods
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These different kinds of Runge-Kutta methods are associated with different sta-
bility properties. In particular, only implicit Runge-Kutta methods can be A-stable,
that is, they are unconditionally stable1 for any stable linear dynamical system of the
form ẏ = Ay with ρ(A) < 1, where ρ(.) denotes the spectral radius of the matrix A.
Nevertheless, implicit methods are more costly than explicit ones. Indeed, for implicit
methods, at each integration step a nonlinear system of equations has to be solved to
compute the values ki for all i = 1, . . . , s.

A Runge-Kutta has order p if one has

‖ y(t0 + h; y0)− y1 ‖ ≤ O(hp+1) .

We review the construction of Runge-Kutta methods of a given order p in the next
section. The theory of Runge-Kutta methods plays an important role in building a
validated version of these methods.

3.1 Theory of Runge-Kutta methods: a brief overview

The modern theory of Runge-Kutta methods has been defined by John Butcher with
his work presented in [9]. Informally, the order of a Runge-Kutta method is defined as
the highest order of the first non-zero term of a Taylor series built from the difference
between the Taylor series of the exact solution and the Taylor series of the numerical
solution. This is known as the order conditions of Runge-Kutta methods, see [20,
Chap. III]. One of the major contributions of the work of J. Butcher is to express
these two Taylor series on a common basis made of elementary differentials, that are
partial derivatives of f given in Equation (1). We briefly review the order condition
of Runge-Kutta methods, as it plays an important role in our contribution. The
presentation and notations follow [20, Chap. III]. In the sequel, we consider the IVP
problem defined in Equation (1) with an exact initial condition y(0) = y0.

High order derivative of exact solution We are interested in computing the
higher order derivatives of the exact solution y(t) at t = 0. In particular, the q-th

time derivative of y is defined by y(q) = (f(y))(q−1) . Using the chain rule and some
symmetry of partial derivatives, we get the following first four derivatives

ẏ = f(y)

ÿ = f ′(y)ẏ

y(3) = f ′′(y)(ẏ, ẏ) + f ′(y)ÿ

y(4) = f (4)(y)(ẏ, ẏ, ẏ, ẏ) + 3f ′′(y)(ÿ, ẏ) + f ′(y)y(3),

(11)

where f ′ stands for the first order partial derivatives of f w.r.t. y. In the same, way
f ′′ stands for the second order partial derivatives of f w.r.t. y and so on.

By recursively inserting into the right hand side of Equation (11) the definition of
ẏ, ÿ, . . . , and removing the argument y, we get

ẏ = f

ÿ = f ′f

y(3) = f ′′(f , f) + f ′f ′f

y(4) = f (4)(f , f , f , f) + 3f ′′(f ′f , f) + f ′f ′f ′f

(12)

1It means that the stability of the numerical method does not depend on the value of the
step-size h.
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The expressions appearing in these sums, denoted in the sequel F (τ), are named
elementary differentials. Moreover, it is possible to represent these terms by a rooted
tree τ as follows

• each f is a leaf of τ ,

• each f (k), k > 1, is associated with a node in τ with k branches.

The number of nodes in a rooted tree τ is denoted by |τ |.

Example 3.1 The elementary differentials f ′′(f ′f , f) are associated with the following
rooted tree

f ′′

f f ′

f

�

Definition 3.1 For a rooted tree τ , the elementary differential is a mapping F (τ) :
Rn → Rn defined recursively by F (•)(y) = f(y) if |τ | = 1 and

F (τ)(y) = f (m)(y) (F (τ1)(y), F (τ2)(y), . . . , F (τm)(y))

if τ made of sub-trees τ1, τ2, . . . , τm.

The link between rooted trees and elementary differentials is given in Table 1.

Remark 3.1 The number of rooted trees increases very quickly, for example for |τ | =
11 the number of rooted trees is 1842.

In consequence, Theorem 3.1 can be stated to express high order derivative of the
exact solution in terms of elementary differentials.

Theorem 3.1 The q-th derivative of the exact solution at t = 0 is given by

y(q)(0) =
∑
|τ |=q

α(τ)F (τ)(y0) ,

where the α(τ) are positive integer values with a combinatorial meaning, that is, they
represent the possible symmetries in rooted trees τ . In particular, a tree τ does not
depend on the order of sub-trees τ1, τ2, . . . , τm.

High order derivative of numerical solution Let hki = gi hence a Runge-
Kutta method can be written as

gi = hf(ui) , (13)

and

ui = y0 +
∑
j

aijgj , y1 = y0 +
∑
i

bigi .
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|τ | Trees F (τ) α(τ) γ(τ) ϕ(τ)

1 f 1 1
∑

i bi

2 f ′f 1 2
∑

ij biaij

3 f ′′(f , f) 1 3
∑

ijk biaijaik

3 f ′f ′f 1 6
∑

ijk biaijajk

4 f ′′′(f , f , f) 1 4
∑

ijkl biaijaikail

4 f ′′(f ′f , f) 3 8
∑

ijkl biaijaikajl

4 f ′f ′′(f , f) 1 12
∑

ijkl biaijajkajl

4 f ′f ′f ′f 1 24
∑

ijkl biaijajkakl

Table 1: Rooted trees and their associated elementary differentials with their coeffi-
cients

Note that, ui, gi and y1 are functions of h. We compute the derivative of Equation (13)

at h = 0 using g
(q)
i = q · (f(ui))

(q−1) . In consequence, the first three time derivatives
are

ġi = 1 · f(y0)

g̈i = 2 · f ′(y0)u̇i

g
(3)
i = 3 ·

(
f ′′(y0)(u̇i, u̇i + f ′(y0)üi

) (14)

where the derivatives of gi and ui are evaluated at h = 0. We can remark that this
formula is similar to Equation (12). Inserting recursively the definition of u̇i, üi . . . ,

into Equation (14) and using u
(q)
i =

∑
j aijg

(q)
i , one has

ġi = 1 · f u̇i = 1 ·

(∑
j

aij

)
· f (15)

g̈i = (1 · 2) ·

(∑
j

aij

)
f ′f üi = (1 · 2) ·

∑
jk

aijajk

 · f ′f (16)

and so on. The integer factors 1, (1·2), . . . , are denoted by γ(τ). The factors containing
the aij ’s are denoted by gi(τ) and ui(τ), so one has

g
(q)
i |h=0 =

∑
|τ |=q

γ(τ) · gi(τ) · α(τ)F (τ)(y0) (17)

u
(q)
i |h=0 =

∑
|τ |=q

γ(τ) · ui(τ) · α(τ)F (τ)(y0) (18)

where α(τ) and F (τ) have the same meaning as before. Skipping some additional
writing rules, see [20, Chap. III] for the details, we get Theorem 3.2, which gives the
high order derivative of the numerical solution in terms of elementary differentials.
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Theorem 3.2 The q-th derivative of the numerical solution of a Runge-Kutta method
is given by

y
(q)
1 |h=0 =

∑
|τ |=q

γ(τ) · ϕ(τ) · α(τ)F (τ)(y0) , (19)

with ϕ(τ) =
∑
i bigi(τ).

In Figure 1 some values of the coefficients γ(τ) and ϕ(τ) are given. Note that The-
orem 3.2 can be applied on explicit and implicit Runge-Kutta methods, once the
Butcher tableau of the method is known.

Order condition of Runge-Kutta methods Theorem 3.3, associated with the
order condition of the Runge-Kutta method, can be stated in terms of the coefficients
γ(τ) and ϕ(τ).

Theorem 3.3 A Runge-Kutta method has order p if and only if

ϕ(τ) =
1

γ(τ)
∀|τ | 6 p . (20)

The main difficulty in building a Runge-Kutta method is that solving Equation (20)
requires solving a high dimensional under-determined system of polynomial equations.

4 Validated Runge-Kutta Methods

In this section, We present our main contribution to the validation of Runge-Kutta
methods. In Section 4.1, we present our approach to finding an expression for the local
truncation error of any (explicit and implicit) Runge-Kutta method. In Section 4.2,
our approach to solving an implicit system of equations associated with implicit Runge-
Kutta methods is presented. Finally, in Section 4.3, we show how we can use Runge-
Kutta methods to define a new interval enclosure of the Picard-Lindelöf operator.

4.1 Bounding the local truncation error

In our purpose to make Runge-Kutta methods validated, we apply Theorem 3.3 as-
suming, that the Runge-Kutta method being considered has order p. In that case,
Theorem 3.3 offers a unified approach to express the local truncation error of any
Runge-Kutta method.

From Theorem 3.1, the Taylor series up to order p+ 1, with Lagrange remainder,
of the exact solution around tj with y(tj) = yj is given by

y(tj + h) =

p∑
i=0

hi

i!

∑
|τ |=i

α(τ) · F (τ)(yj) +
hp+1

(p+ 1)!

∑
|τ |=p+1

α(τ) · F (τ)(y(ξ))

with ξ ∈]tj , tj+1[ . (21)

Moreover, from Theorem 3.2, the Taylor series up to order p + 1, with Lagrange
remainder, of the numerical solution around tj with y(tj) = yj and h = tj+1 − tj is
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given by

yj+1 =

p∑
i=0

hi

i!

∑
|τ |=i

γ(τ) · ϕ(τ) · α(τ) · F (τ)(yj)

+
hp+1

(p+ 1)!

∑
|τ |=p+1

γ(τ) · ϕ(τ) · α(τ) · F (τ)(y(ξ)) with ξ ∈]tj , tj+1[ . (22)

From Equation (6), with Equation (21) and Equation (22), we get

LTERK(ξ,y)
def
=

hp+1

(p+ 1)!

∑
|τ |=p+1

α(τ) [1− γ(τ)ϕ(τ)]F (τ)(y(ξ))

with ξ ∈]tj , tj+1[ . (23)

Indeed, assuming that the considered Runge-Kutta has order p, we know that for all
|τ | 6 p one has ϕ(τ)

γ(τ)
= 1, so all the first p + 1 terms of the Taylor series defined

as the difference between Equation (21) and Equation (22) are zero. We present in
Section 5.2, how Equation (23) can be computed.

Remark 4.1 In Equation (23), if one can find a Runge-Kutta method such that for all
τ with |τ | = p+1 one has 0 < ϕ(τ)γ(τ) < 1 then the LTERK is eventually smaller than
the LTE of a Taylor series. Finding such Runge-Kutta methods is an open problem.

Proposition 4.1 shows how a local truncation error of a Runge-Kutta method can
be bounded using the a priori enclosure [ỹj ] at time tj produced by Phase 1 (see
Section 2.1).

Proposition 4.1 Assuming an a priori enclosure [ỹj ] on the interval [tj , tj+1] is
given, one has

∀ξ ∈]tj , tj+1[, y(ξ) ∈ [ỹj ] ⇒ LTERK(ξ,y) ∈ LTERK([tj , tj+1], [ỹj ]) .

As a consequence of Proposition 4.1, we are able to validate any explicit or implicit
Runge-Kutta method.

4.2 Solving implicit Runge-Kutta methods

Using an implicit Runge-Kutta method in an integration scheme requires solving a
system of non-linear equations (see Section 3). In classical numerical methods, that
is done with a Newton-like solving procedure, which provides generally a good ap-
proximation of the ki. While some interval Newton-like procedures exist for solving
systems of non-linear interval equations [32], we propose a lighter approach, described
in the following.

First of all, it is interesting to note that each stage of an implicit Runge-Kutta
method allowing us to compute the intermediate ki can be used as an interval con-
tractor [12], see Proposition 4.2.

Proposition 4.2 Each stage of an implicit Runge-Kutta method is a natural contrac-
tor for ki, i = 1, . . . , s.
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Proof: We recall the form of an intermediate stage of an implicit Runge-Kutta
method:

ki = f(yj + h

s∑
n=1

ainkn) . (24)

We also know that for all Runge-Kutta methods [21]

ci =

s∑
n=1

ain ≤ 1, ∀i = 1, . . . , s .

Moreover, by the Picard-Lindelöf operator, we have ki ∈ [ỹj ], i = 1, . . . , s, because
tj + cih ≤ tj + h. Inserting this inside Equation (24) leads to

s∑
n=1

ainkn ⊂
s∑

n=1

ain[ỹj ] = ci[ỹj ] .

Then, we can write

yj + h

s∑
n=1

ainkn ⊂ yj + h[ỹj ] .

By Theorem 2.1 and property of [ỹj ] obtained by Picard-Lindelöf operator, f is con-
tracting on yj + h[ỹj ], and also on yj + h

∑s
n=1 ainkn.

By using the previous proposition, we write the following contractor scheme:

ki = ki ∩ f

(
yn + h

s∑
j=1

ai,jkj

)
.

This contractor is used inside a fixpoint presented in Algorithm 1 to form the solver
for implicit Runge-Kutta methods.

Algorithm 1 Solving in an implicit Runge-Kutta method

Require: [ỹj ], ain of an implicit RK
ki = f([ỹj ]), ∀i = 1, . . . , s
while at least one ki is contracted do

k1 = k1 ∩ f(yj + h
∑s

n=1 a1nkn)
...
ks = ks ∩ f(yj + h

∑s
n=1 asnkn)

end while

4.3 An a priori enclosure method with Runge-Kutta for-
mulas

In this section, we present how Runge-Kutta methods combined with their expression
of the local truncation error can be used to define a new a priori enclosure method,
i.e., a new algorithm for Phase 1 (see Section 2.1). The challenge to search for new
algorithms for Phase 1 is to increase the size of the class of problems to which validated
numerical methods can be applied. In particular, solving stiff differential problems
remains a challenge. For a stiff problem, the integration step-size h is highly related
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to the stability conditions of numerical methods. Until now, only explicit algorithms,
i.e., that only depend on [yj ] to compute [yj+1], are used in Phase 1. A novelty of our
approach is that we can define new validated numerical integration methods based on
implicit Runge-Kutta methods, which are known to have very good stability properties.
Even though more work has to be done to prove the relevance of our approach on stiff
problems, we believe it opens the way to new research on the stability of validated
numerical methods, in the same spirit as [36].

To define a new a priori enclosure, we consider Runge-Kutta methods for which
we clearly introduce the time dependence, i.e.,

ki(t,yj) = f

(
yj + (t− tj)

s∑
n=1

ainkn

)
,

yj+1(t,y) = yj + (t− tj)
s∑
i=1

biki(t,yj) + LTERK(ξ,y) with ξ ∈]tj , t[ .

With an integration step-size h = tj+1 − tj , we can define an inclusion function such
that

yj+1([tj,tj+1], [r])
def
=

[yj ] + [0, h]

s∑
i=1

biki ([tj , tj+1], [yj ]) + LTERK([tj , tj+1], [r]) . (25)

Proving the contraction of such a scheme, that is

[r] ⊇ yj+1 ([tj , tj+1], [r]) , (26)

can prove the existence and the uniqueness of the solution of Equation (1) using Theo-
rem 2.1. From an algorithmic point of view, solving Equation (26), when implemented
with implicit Runge-Kutta methods, requires embedding Algorithm 1 in an iterative
algorithm to compute the post fixed-point [r]. Nevertheless, the operator defined in
Equation (25) will share many intermediate computations, such as LTERK, with the
algorithm for Phase 2, and the computational cost should remain low.

5 Implementation Details

A presentation of the main features of the implementation of the validated numerical
integration based Runge-Kutta methods is given here.

5.1 Affine arithmetic

Example 5.1 illustrates the pessimism in numerical integration methods introduced by
the dependency problem inherent in interval arithmetic. Usually, to fight this problem
sharper enclosure functions, such as as the centered form, are used.

Example 5.1 Consider the ordinary differential equation ẋ(t) = −x solved with Eu-
ler’s method with an initial value ranging in the interval [0, 1] and with a step-size of
h = 0.5. For one step of integration, we have to compute the expression e = x+h×(−x)
with interval arithmetic’ which produces the interval [−0.5, 1] as a result. Rewriting
the expression e such that e′ = x(1 − h), we obtain the interval [0, 0.5] which is the
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exact result. Unfortunately, we cannot in general rewrite expressions with only one
occurrence of each variable. More generally, it can be shown that for most integra-
tion schemes the width of the result can only grow if we interpret sets of values as
intervals [37]. �

In our work, to avoid or limit pessimism due to the dependency problem, we use
an improvement over interval arithmetic named affine arithmetic [14, 39] which can
track linear correlations between program variables. A set of values in this domain is
represented by an affine form x̂ (also called a zonotope), which is a formal expression of
the form x̂ = α0+

∑n
i=1 αiεi where the coefficients αi are real numbers, α0 being called

the center of the affine form, and the εi are formal variables ranging over the interval
[−1, 1]. Obviously, an interval a = [a1, a2] can be seen as the affine form x̂ = α0 +α1ε
with α0 = (a1 + a2)/2 and α1 = (a2 − a1)/2. Moreover, affine forms encode linear
dependencies between variables: if x ∈ [a1, a2] and y is such that y = 2x, then x will
be represented by the affine form x̂ above and y will be represented as ŷ = 2α0 +2α1ε.

The usual operations on real numbers extend to affine arithmetic in the expected
way. For instance, if x̂ = α0 +

∑n
i=1 αiεi and ŷ = β0 +

∑n
i=1 βiεi, then with a, b, c ∈ R,

we have

ax̂+ bŷ + c = (aα0 + bβ0 + c) +

n∑
i=1

(aαi + bβi)εi .

However, unlike addition, most operations create new noise symbols. Multiplication
for example is defined by

x̂× ŷ = α0α1 +

n∑
i=1

(αiβ0 + α0βi)εi + νεn+1 ,

where ν =
(∑n

i=1 |αi|
)
×
(∑n

i=1 |βi|
)

over-approximates the error between the linear
approximation of multiplication and multiplication itself. Example 5.2 illustrates the
benefit of affine arithmetic.

Example 5.2 Consider again e = x + h × (−x) with h = 0.5 and x = [0, 1] which
is associated to the affine form x̂ = 0.5 + 0.5ε1. Evaluating e with affine arithmetic
without rewriting the expression, we obtain [0, 0.5] as a result. �

Example 5.2 also shows the important role of affine arithmetic when it is combined
with numerical integration methods. Most of all, it shows the necessity to keep track
of the linear dependency between state variables in order to reduce the pessimism.

Other operations, like sin, exp, are evaluated using either the Min-Range method
or a Chebychev approximation; see [14, 39] for more details.

The main challenge of using affine arithmetic during an integration process is
limiting the number of noise symbols. No good solution exists, and we have a heuristic
to periodically collect all the noise symbols which have a coefficient smaller than a given
user threshold.

Wrapping effect and affine arithmetic The problem of reducing the wrapping
effect has been studied in many different ways. One of the most known and effective
is the QR-factorization [26]. This method improves the stability of the Taylor series in
the Vnode-LP [34] and CAPD tools. Nevertheless, affine arithmetic allows us to reduce
(and even counteract for linear and contracting ODEs) the wrapping effect, as shown
in Figure 3, while keeping a fast computation. Indeed, the geometric interpretation
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of an affine form x̂ = α0 +
∑n
i=1 αiεi is a zonotope, that is, a convex polytope with

central symmetry. As a consequence, zonotopes are invariant by rotation, so they are
well suited for representing sets on which rotation operations may be applied, as in
numerical integration methods.

Example 5.3 Consider the following IIVP(
ẏ1

ẏ2

)
=

(
−y2

y1

)
(27)

with initial values y1(0) ∈ [−1, 1], y2(0) ∈ [10, 11]. The exact solution of Equation (27)
is

y(t) = A(t)y0 with A(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

We compute periodically at t = π
4
n with n = 1, . . . , 4 the solution of Equation (27)

with different enclosure methods: standard interval, interval with QR-decomposition
and affine arithmetic. The evolution of the enclosures is given in Figure 3. �

Figure 3: Wrapping effect comparison (black: initial, green: interval, blue: interval
from QR, red: zonotope from affine)

Implicit Runge-Kutta methods and affine arithmetic Algorithm 1, pre-
sented in Section 4.2, is light and, according to our tests, as efficient as a Newton-like
method. Nevertheless, one major problem occurs. The intersection operator is not
available with affine arithmetic because the intersection of two zonotopes is not a
zonotope. We then perform Algorithm 1 with interval arithmetic, and after reaching
the fixpoint, we evaluate Equation (24) with affine arithmetic. Hence, we can keep
tracking linear correlation between state variables and we use the natural contractivity
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of Equation (24) to keep a sharp enclosure of the solution of the non-linear systems
of equations. This method is sufficient to counteract the wrapping effect and the
dependency problem appearing during the simulation process.

5.2 Computing the local truncation error

In Section 4.1, a new expression for the local truncation error for any Runge-Kutta
methods has been presented but it remains to show how this formula can be computed.
We recall the expression of the local truncation error for any Runge-Kutta method:

LTERK(ξ,y)
def
=

hp+1

(p+ 1)!

∑
|τ |=p+1

α(τ) [1− γ(τ)ϕ(τ)]F (τ)(y(ξ))

with ξ ∈]tj , tj+1[ . (28)

We remark that many elements in Equations (28) can be computed offline. Indeed, for
a given Runge-Kutta method of order p, we can automatically generate the set of all
rooted trees τ such that |τ | = p+ 1, following algorithms presented in [5]. Moreover,
once the set of rooted trees is given, all the coefficients α(τ), γ(τ), ϕ(τ) (the Butcher
tableau of the method is also needed for this coefficient) can be also computed off-line;
see [24] for a formal definition of these values based on the structure of a rooted tree τ .
In consequence, only F (τ) is problem dependent and requires an online computation.

The elementary differential F (τ) is associated with Fréchet derivatives. Following
the notations of [24], letting z, f(z) ∈ Rm, the M -th Fréchet derivative of f is defined
by

f (M)(z)(K1,K2, . . . ,KM ) =
m∑
i=1

m∑
j1=1

m∑
j2=1

· · ·
m∑

jM=1

i fj1j2...jM
j1K1

j2 K2 . . . jM KMei (29)

where

i fj1j2...jM =
∂M

∂j1z∂j2z . . . ∂jM z

Kk = [1K1,
2K2, . . . ,

MKM ] ∈ Rm, for k = 1, . . . ,M .

The notation `x stands for the `-th component of the vector x, and ei stands for the
vector full of zeros except for i-th component, which is set to one. In the context of the
local truncation error, the vectors Kk for k = 1, . . . ,M are the elementary derivatives
associated with the rooted tree τ = [τ1, . . . , τx] such that |τ | = M .

The advantage of the Fréchet derivative given in Equation (29) is that high order
derivatives of f do not necessitate complex tensor operations because they are com-
puted component by component for the state vector z. From an algorithmic point of
view, computing a Fréchet derivative only requires the computation of partial deriva-
tives of f up to order p+1 if the Runge-Kutta has order p. Nevertheless, the drawback
is that the M -th Fréchet derivative involves an algorithm with M + 1 nested loops
such that the complexity of the algorithm is exponential in the dimension n of the
function f , i.e., O(nM+1). In consequence, only small dimensional problems can be
efficiently solved.
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5.3 An algorithm for validated Runge-Kutta methods

In this section, we present the validated numerical integration based on the Runge-
Kutta method as it is implemented in our tool DynIbex [1]. Algorithm 2 gathers all
the steps needed for the simulation of IIVP with Runge-Kutta schemes, explicit or
implicit. This algorithm uses some functions described below:

• RKe: a non guaranteed explicit Runge-Kutta method (RK4 for example)

• RKx: a guaranteed explicit, by an affine evaluation, or implicit, with Algo-
rithm 1, Runge-Kutta method (RK4 or LC3 for examples)

• LTE: the local truncation error associated to RKx (see Section 4.1)

• PL: the Picard-Lindelöf operator based on an integration scheme (rectangular,
Taylor or Runge-Kutta, see Section 2.1.1)

The main simulation loop is given between Line 2 and Line 34. The first part
of the simulation loop, between Line 6 and Line 19, is the proof of existence and
uniqueness of the solution of the IIVP using the interval Picard-Lindelöf operator.
First an estimation of the a priori enclosure is computed from the initial condition
and the result of a numerical integration (Line 6) using the RKe function. Between
Line 8 and Line 14, the algorithm computes the post fixed-point of the interval Picard-
Lindelöf operator. Between Line 15 and Line 19, the contractor version of the interval
Picard-Lindelöf operator is used to refine the bounds of the a priori enclosure.

Once the a priori enclosure is computed, the bounds on the local truncation error
are computed at Line 20. After this operation is done, between Line 21 and Line 27
the accuracy of the bounds on the LTE is checked (Line 22). If the accuracy is met, a
new step-size h is computed (Line 23). For that, we use the automatic step-size control
proposed in [21, Chap. II.4]. Otherwise, the step-size is divided by two and we restart
the whole integration step. Note that if the interval Picard-Lindelöf operator is unable
to compute a post fixed-point (we bound the number of iterations in function of the
dimension of the function f , see Line 10) then we also divide the step-size by two and
we restart the loop. In case of success, we compute the next enclosure of the solution
of IIVP (Line 32), we advance the simulation time and we pursue the simulation.

6 Experimental Results

We used VERICOMP [3] to test our approach. All the detailed results can be found
in [2]. In this paper, we also show the result of our validated Runge-Kutta methods
on two examples in order to demonstrate the efficiency of affine arithmetic with a
harmonic oscillator, and the ability of Runge-Kutta methods for a stiff problem mod-
eling a chemical reaction system. We also summarize the results obtained with the
VERICOMP benchmark.

Our tool DynIbex [1] is a plug-in of the Ibex library2 which is a C++ library for
constraint processing over real numbers. We implemented various validated Runge-
Kutta methods3, among them the Heun method, Midpoint method, Radau-IIA (order
3), classic Runge-Kutta of order 4, Lobatto-IIIA (order 4), and Lobatto-IIIC (order
4). In these tests, the Picard-Lindelöf operator is a Taylor one operator of order 3. It

2http://www.ibex-lib.org
3see https://en.wikipedia.org/wiki/List_of_RungeKutta_methods for a detailed list of

Runge-Kutta methods.

https://en.wikipedia.org/wiki/List_of_Runge–Kutta_methods
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Algorithm 2 Simulation algorithm

Require: RK, f ,y0, tend, h, atol, rtol
1: tn = t0, yn = y0, factor = 1
2: while (tn < tend) do
3: h = h× factor
4: h = min(h, tend − tn)
5: Loop:

6: Initialize ỹ0 = yn ∪RKe(yn, h)
7: Inflate ỹ0 by 10%
8: Compute ỹ1 = PL(ỹ0)
9: iter = 1

10: while (ỹ1 6⊂ ỹ0) and (iter < size(f) + 1) do
11: ỹ0 = ỹ1

12: Compute ỹ1 with PL(ỹ0)
13: iter = iter + 1
14: end while
15: if (ỹ1 ⊂ ỹ0) then
16: while (‖ ỹ1 − ỹ0 ‖< 10−18) do
17: ỹ0 = ỹ1

18: ỹ1 = ỹ1 ∩ PL(ỹ0)
19: end while
20: Compute lte = LTE(ỹ1)

21: test =
‖ lte ‖

(atol+ ‖ ỹ1 ‖ ×rtol)
22: if (test ≤ 1) or (h < hmin) then

23: factor = min

(
1.8,max

(
0.4, 0.9×

(
1

test

) 1
p

))
24: else

25: h = max

(
hmin,

h

2

)
26: Goto Loop

27: end if
28: else

29: h = max

(
hmin,

h

2

)
30: Goto Loop

31: end if
32: Compute yn+1 = RKx(yn, h) + lte
33: tn = tn + h
34: end while

is a good compromise, and allows us to compare only the integration scheme and not
the a priori enclosure.
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6.1 Two simple problems

6.1.1 Harmonic oscillator

We start with the simulation of the differential system given by(
ẏ1

ẏ2

)
=

(
−y2

y1

)
.

with the interval initial states: y0 ∈ ([0, 0.1]; [0.95, 1.05]). The result in terms of [yj ]
is plotted in Figure 4. The stability of the box sizes proves that the wrapping effect is
well neutralized.

Figure 4: Simulation of the circle system till t = 100s, with explicit method RK4
(Figure 2(a))

6.2 Oil reservoir problem

The second problem, coming from [11], is described by the differential system

(
ẏ1

ẏ2

)
=

 y2

y2
2 −

3.0

ρ+ y2
1


with a stiffness parameter ρ given between 0.1 and 0.0001, and point initial states
y0 = (10, 0). The result in term of [ỹj ] is plotted in Figure 5, with the maximal
stiffness.
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Figure 5: Simulation of the oil-reservoir system (stiffness=0.0001) till t = 50s, with
implicit method LC3 (Figure 2(c))

6.3 Vericomp benchmark

This section reports the results of the solution of various problems coming from the
VERICOMP4 benchmark [3]. For each problem, different validated methods of Runge-
Kutta of order 4 are applied: the classical fourth order Runge-Kutta method (explicit),
the Lobatto-3a formula (implicit) and the Lobatto-3c formula (implicit). Moreover, a
homemade version of Taylor series, limited to order 4 and using affine arithmetic, is
also applied on each problem.

For each problem, we report the following metrics:

• c5t: user time taken to simulate the problem for 1 second.

• c5w: the final diameter of the solution (infinity norm is used).

• c6t: the time to breakdown of the method, with a maximal limit of 10 seconds.

• c6w: the diameter of the solution at the breakdown time.

The complete table gathering these results is available in [2]. In this paper, we
sort the competitors with two filters. First, we count the number of problems for
which each method (for each order and each precision) is first, second or last in terms
of solution diameter. This account is done for the simulation at 1 second and at 10
seconds. The results are summarized in Table 2. Of course, we are aware that the
results are biased by the number of methods we have. Nevertheless, this table allows
us to consider that Valencia and Riot are not valid competitors.

4http://vericomp.inf.uni-due.de
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Table 2: Number of times a method produced the sharpest enclosure or the second
sharpest enclosure.

Method
c5w
(1st)

c5w
(2nd)

c5w
(last)

c6w
(1st)

c6w
(2nd)

c6w
(last)

RK 103 35 8 58 39 8

Vnode-LP 70 28 9 44 27 8

Riot 36 11 0 24 12 2
Valencia 3 3 49 3 2 49

After this first reduction of competitors, only the best results for our three order-4
Runge-Kutta methods, and for Vnode are kept for comparison. We present in the
spider graph on Figure 6, respectively on Figure 7, the normalized diameters (divided
by the median and multiplied by 10) for each problem for a simulation at 1 second,
respectively at 10 seconds. The median used to normalize the results is computed with
all the methods: Taylor4, RK4, LA3, LC3 Riot, Valencia and Vnode (for all precisions
and all orders).

Remark 6.1 For Figure 7, we truncate the results at diam = 50 for the clarity. It
leads to the truncation of Vnode (fifteen times), LC3 (one time) and RK4 (one time).

Figure 6: Results in term of normalized diameter gathered in spider graph for a
simulation of 1 second, for the methods: RK4, LC3, LA3 and Vnode

We can easily see on spider Graph 6 that the Runge-Kutta methods are more
stable, by describing a circle, while the Vnode results are more in a star-like shape.
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Figure 7: Results in term of normalized diameter gathered in spider graph for a
simulation of 10 seconds, for the methods: RK4, LC3, LA3 and Vnode

Moreover, the implicit methods (LA3 and LC3) provide better results than the explicit
RK4 in a majority of problems. This fact is even more clear on Graph 7. On this
latter graph, we can also see that Vnode fails many times while at least one of our
Runge-Kutta methods performs a good simulation for all the considered problems.
Finally, if Vnode is the best on many problems, by our stability and our better results
for some problems, we can conclude that our tool is a good competitor to Vnode. Last
but not least, it is important to remember that we have currently only methods of
order 4, while Vnode can use a Taylor expansion of order 25.

7 Conclusion

We presented in this paper a novel approach to create validated numerical integra-
tion methods based on explicit and implicit Runge-Kutta schemes. These methods
are useful to solve initial value problems of ordinary differential equations, even with
interval initial values. In particular, we presented an elegant way to bound the lo-
cal truncation error of any Runge-Kutta method. Moreover, our contractor based
approach allows us to solve implicit RK without Newton-like methods. Finally, our
affine arithmetic provides us a framework which naturally counteracts the wrapping
effect. Runge-Kutta methods are already well-known for these stability properties that
we can verify through a large benchmark of problems. The current state of the art in
terms of tools for validated ODE integration is Vnode-LP. If we are not competitive
on time computation, the properties provided by our approach can easily balance this
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weakness for some problems.

Nevertheless, if the local truncation error proposed in this paper is elegant, it is
also too time consuming. An improvement in development is to base this computation
on Butcher’s series [4] which provides equivalent efficiency to automatic differentiation.
This improvement will allow us to exploit higher order methods and be more accurate
and fast.
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