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Abstract

Differential Algebraic Equations (DAEs) are a general and implicit
form of differential equations. DAEs are often used to represent physical
systems such as dynamics of solids or chemical interactions. These equa-
tions are different from Ordinary Differential Equations (ODEs) in the
sense that some of the dependent variables occur without their deriva-
tives.

Validated simulation of ODEs has recently been the subject of different
developments such as guaranteed Runge-Kutta integration schemes, both
explicit and implicit. Not so different from solving an ODE, solving a
DAE consists of searching for a consistent initial value and computing a
trajectory. Nevertheless, DAEs are in generally much more difficult to
solve than ODEs.

In this paper, we focus on the semi-explicit form of index one, called
Hessenberg index-1 form. We propose a validated way to simulate this
kind of differential equations. Finally, our method is applied to different
examples in order to show its efficiency.
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1 Motivations

Our recent results on validated simulation of Ordinary Differential Equations (ODEs)
with implicit Runge-Kutta schemes [2] leads consider more complex kinds of differential
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equations to solve. Indeed, we are able to simulate ODEs with interval parameters,
which is one of the requirements for our solver of Differential Algebraic Equation
(DAEs). We currently focus on DAEs in Hessenberg index-1 form, that is{

ẏ = f(t,x,y)
0 = g(t,x,y)

(1)

with f : R× Rm × Rn 7→ Rn and g : R× Rm × Rn 7→ Rm.
In (1), y ∈ Rn is the vector of differential variables, x ∈ Rm is the vector of

algebraic variables (without an expression for its derivative), and ẏ stands for the time
derivative of y. This kind of DAE is common and used by a majority of simulation
tools such as Simulink and Modelica-like software. In this paper, we present a validated
method to solve initial value problems given in the form of a DAE.

The article is organized as follows. In Section 2, a short description of our ODE
solver, and by the same way, a state of the art of validated simulation of ODEs will
be given. In Section 3, we review the literature on validated approaches for DAEs.
In Section 4, we present our method in detail. In Section 5, we apply our solver on
three different problems: a basic problem, a problem with a known solution and the
classic pendulum problem. In Section 6, we discuss how to take into account additional
constraints in IVPs for DAEs, before concluding in Section 7.

Notation

ẏ denotes the time derivative of y, i.e., dy
dt

. a denotes a real value, while a represents a
vector of real values. [a] represents an interval, and [a] represents a vector of interval
values. The midpoint of an interval [x] is denoted by m([x]). The function Int([x])
provides the interior of a box [x] = [x,x], such that x /∈ Int([x]) and x /∈ Int([x]). We
denote the differential variables by y and the algebraic variables by x. The functions
f and g are used to represent a differential algebraic equation system, with f the
function given the time derivative of state variable and g the constraint on the algebraic
variables. We also denote by y(t, yj) the exact solution of a differential equation at
time t with a known value yj at time tj , in our case t > tj . Sets will be represented
by calligraphic letters such as X or Y. The mathematical symbol ∃! is used to denote
the unique existential quantification (i.e., “there is one and only one”).

2 Validated Simulation of ODEs

A simulation of an ordinary differential equation consists of a discretization of time
and an iterative and approximate computation of the state of the system, with the
help of an integration scheme. An integration scheme Φ(tj+1, tj ,yj), starting from an
initial value yj at time tj and a step-size h produces an approximation yj+1 at time
tj+1, with tj+1 − tj = h, of the solution y(tj+1; yj). The associated local truncation
error is defined by LTEΦ(tj+1, tj ,yj) = y(tj+1; yj) − Φ(tj+1, tj ,yj). In this section,
we briefly review how a validated simulation of an ODE is computed by bounding the
LTE. We refer to [26] for a more detailed presentation.

2.1 Ordinary differential equations

An initial value problem (IVP) defined through an ODE is defined by

ẏ = f(t,y) with y(0) = y0, y0 ∈ Rn and t ∈ [0, tend] . (2)
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In the classical approach [24, 26] to define a validated method for IVPs, each step of
an integration scheme consists of two steps: a priori enclosure and solution tightening.
Starting from a valid enclosure [yj ] at time tj , the following two steps are applied.

Step 1. Compute an a priori enclosure [ỹj ] of the solution using Banach’s theorem
and the Picard-Lindelöf operator. This enclosure has the three major properties:

• y(t, [yj ]) is guaranteed to exist for all t ∈ [tj , tj+1], i.e., along the current
step, and for all yj ∈ [yj ].

• y(t, [yj ]) ⊆ [ỹj ] for all t ∈ [tj , tj+1].

• the step-size h = tj+1 − tj is as large as possible in terms of accuracy and
existence proof for the IVP solution.

Step 2. Compute a tighter enclosure [yj+1] such that y(tj+1, [yj ]) ⊆ [yj+1]. The
main issue in this phase is how to counteract the well known wrapping effect
[24, 25, 26]. This phenomenon appears when we try to enclose a set with an
interval vector (geometrically a box). The resulting overestimation creates a
false dynamic for the next step, and, with accumulation, can lead to intervals
with an unacceptably large width.

The different enclosures computed during one step are shown on Figure 1.

t

y(t)

[ỹj ]

[yj ]

[yj+1]

tj tj+1
hj

Figure 1: Enclosures appeared during one step

Some useful algorithms to perform these two steps are described in the following.

2.2 A priori solution enclosure

In order to compute an a priori enclosure, we use our interval version of Picard-Lindelöf
operator. This operator is based on the following theorem.
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Theorem 2.1 (Banach fixed-point theorem) Let (K, d) be a complete metric
space, given by a set K and a distance function d : K ×K 7→ R, and let g : K → K be
a contraction; that is for all x, y in K there exists c ∈ (0, 1) such that

d (g(x), g(y)) ≤ c · d(x, y)

Then g has a unique fixed-point in K.

In the context of IVPs, we consider the space of continuously differentiable func-
tions C1([tj , tj+1],Rn) and the Picard-Lindelöf operator

Pf (y) = t 7→ yj +

∫ t

tn

f(s,y(s))ds . (3)

Note that this operator is associated with the integral form of Equation (2). So the
solution of this operator is also the solution of Equation (2).

The Picard-Lindelöf operator is used to check the contraction of the solution on
an integration step in order to prove the existence and the uniqueness of the solution
of Equation (2) as stated by the Banach’s fixed-point theorem. Furthermore, this
operator is used to compute an enclosure of the solution of IVP over a time interval
[tj , tj+1].

2.2.1 Rectangular method for the a priori enclosure

Using interval analysis, and with a first order integration scheme, we can define a
simple interval Picard-Lindelöf operator such that

Pf ([r]) = [yj ] + [0, h] · f([r]), (4)

with h = tj+1 − tj the step-size. Theorem 2.1 says that if we can find [r] such that
Pf ([r]) ⊆ [r] then the operator is contracting, and Equation (2) has a unique solution.
Furthermore,

∀t ∈ [tj , tj+1], {y(t; yj) : ∀yj ∈ [yj ]} ⊆ [r],

then [r] is the a priori enclosure of the solution of Equation (2).
Note that the operator defined in Equation (4) can also define a contractor (in the

sense of interval analysis [12]) on [r] after the contraction proved for Pf such that

[r]← [r] ∩ [yj ] + [0, h].f([r]) . (5)

Hence, we can reduce the width of the a priori enclosure in order to increase the
accuracy of the integration.

The operator defined in Equation (4) and its associated contractor defined in Equa-
tion (5) can be defined over a more accurate integration scheme (on condition that it
is a guaranteed scheme like the interval rectangle rule). For example, the evaluation
of
∫ t
tj
f(s)ds can be easily improved with a Taylor or a Runge-Kutta scheme (see [2]).

2.2.2 A priori enclosure with Taylor series

An interval version of the Taylor series ODE integration method is

[yj+1] ⊂
N∑
k=0

f [k]([yj ])h
k + f [N+1]([ỹj ])h

N+1, (6)
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with f [0] = [yj ], f
[1] = f([yj ]),. . . , f [k] = 1

k
( ∂f

[k−1]

∂y
f)([yj ]).

By replacing h with the interval [0, h], this scheme becomes an efficient Taylor
Picard-Lindelöf operator, with a parametric order N such that

yj+1([tj,tj+1]; [r]) = yj +

N∑
k=0

f [k]([yj ])[0, h
k] + f [N+1]([r])[0, hN+1] . (7)

In consequence, if [r] ⊇ yj+1 ([tj , tj+1], [r]), then Equation (7) defines a contraction
map and Theorem 2.1 can be applied.

In our tool, we use it at order 3 by default, which seems to be a good compromise
between contractivity and computational efficiency.

Note that the scheme defined in Equation (6) is usually evaluated with a centered
form for a more accurate result

[yj+1] ⊂
N∑
k=0

f [k](ŷj)h
k + f [N+1]([ỹj ])h

N+1 +

(
N∑
k=0

J(f [k], [yj ])h
i)([yj ]− ŷj)

)
, (8)

with ŷj ∈ [yj ]. J(f [k], [yj ]) is the Jacobian of f [k] evaluated at [yj ]. This scheme
can also be combined with a QR-factorization to increase stability and counteract the
wrapping effect [26]. These two techniques, with a strong computational cost, can be
replaced by using the affine arithmetic in the evaluation of f [k].

The Picard-Lindelöf operator, as defined in Equation (7), gives an a priori enclo-
sure [r], using Theorem 2.1. If the Picard-Lindelöf operator is proven to be contracting
on [r], we can then use this operator to contract the box [r] until a fixpoint is reached.

In our tool, the default contractor uses a Taylor expansion as follow

[r] ∩ yj +

N∑
k=0

f [k]([yj ])[0, h
k] + f [N+1]([r])[0, hN+1].

It is important to contract this box as much as possible [r] because the Taylor remain-
der is function of [r], and the step-size is function of the Taylor remainder.

2.3 Tighter enclosure and truncation error

Suppose that Step 1 has been done for the current integration step, and that Step 1
has provided us a validated enclosure [ỹj ] such that

y(t, tj , [yj ]) ⊆ [ỹj ] ∀t ∈ [tj , tj+1] .

In particular, we have y(tj+1, tj , [yj ]) ⊆ [ỹj ]. The goal of Step 2 is thus to compute
the tighter enclosure [yj+1] such that

y(tj+1, tj , [yj ]) ⊆ [yj+1] ⊆ [ỹj ] .

One way to do that consists of computing an approximate solution
yj+1 ≈ y(tj+1, tj , [yj ]) with an integration scheme Φ(tj+1, tj , [yj ]), and then the asso-
ciated local truncation error LTEΦ(t, tj , [yj ]). Indeed, a guaranteed integration scheme
has the property that there exists a time ξ ∈ [tj , tj+1] such that

y(tj+1, tj , [yj ]) ⊆ Φ(tj+1, tj , [yj ]) + LTEΦ(ξ, tj , [yj ]) ⊆ [ỹj ] .

So [yj+1] = Φ(tj+1, tj , [yj ]) + LTEΦ(ξ, tj , [yj ]) is an acceptable tight enclosure.
The guaranteed solution of IVP using interval arithmetic is mainly based on two

kinds of methods to compute Φ:
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1. Interval Taylor series methods [5, 13, 22, 23, 24, 25, 26, 36],

2. Interval Runge-Kutta methods [6, 7, 17].

The former is the oldest method used in this context, and until now, it is the most used
method to solve Equation (2). The latter is more recent, see in particular [6, 7], but
Runge-Kutta methods have many interesting properties, such as strong stability, that
we would like to exploit in the context of validated solution of DAEs. The challenge
lies in the computation of LTEΦ.

2.4 Runge-Kutta methods

To obtain yn+1, a Runge-Kutta method computes s evaluations of f at predetermined
time instants. The number s is the number of stages of a Runge-Kutta method. More
precisely, a Runge-Kutta method is defined by

yj+1 = yj + h

s∑
i=1

biki , (9)

with ki defined by

ki = f

(
tj + cih,yj + h

s∑
q=1

aiqkq

)
. (10)

The coefficients ci, aiq and bi, for i, q = 1, 2, · · · , s, fully characterize a Runge-Kutta
method. They are usually synthesized in a Butcher tableau [11] of the form

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

A Runge-Kutta method can be

• explicit, e.g., the classical Runge-Kutta method of order 4 given in Figure 2(a).
In other words, the computation of an intermediate ki only depends on the
previous steps kq for q < i.

• diagonally implicit, e.g., a diagonally implicit method of order 4 given in Fig-
ure 2(b). In this case, the computation of an intermediate step ki involves the
value ki, in addition to kq for q < i, and so non-linear systems in ki must be
solved.

• fully implicit, e.g., the Runge-Kutta method with a Lobatto quadrature formula
of order 4 given in Figure 2(c). In this last case, the computation of intermediate
steps involves the solution of a non-linear system of equations in all the values
ki for i = 1, 2, · · · , s. In this class of implicit methods, some of them have strong
properties such as A-stability and stiffly accurate capability.
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Figure 2: Different kinds of Runge-Kutta methods

Local truncation error

Recently, we defined a unified approach to express the LTE for explicit and implicit
Runge-Kutta methods [2]. More precisely, following the notations of [20], for a Runge-
Kutta of order p, we have

LTE(t,y(ξ)) := y(tn; yn−1)− yn =

hp+1

(p+ 1)!

∑
r(τ)=p+1

α(τ) [1− γ(τ)ψ(τ)]F (τ)(y(ξ)) ξ ∈ [tn, tn+1] (11)

where

• τ is a rooted tree

• F (τ) is the elementary differential associated with τ

• r(τ) is the order of τ (number of nodes)

• γ(τ) is the density

• α(τ) is the number of equivalent trees

• ψ(τ) a function on trees

Note that y(ξ) is a particular, and a priori unknown, solution of Equation (2) at a
time instant ξ. This solution can be enclosed using Picard-Lindelöf operator presented
in Section 2.2.

Wrapping effect

Runge-Kutta methods also suffer from the wrapping effect, as discussed before. The
problem of reducing this latter has been studied in many different ways [28, 27]. One of
the most known and effective is the QR-factorization [24]. This method improves the
stability of the Taylor series in the Vnode-LP tool [26]. Another way is to modify the
geometry of the enclosing set (parallelepipeds [16, 25], ellipsoids [28], convex polygons
[31] and zonotopes [8, 34]).

In our work, an efficient affine arithmetic allows us to counteract the wrapping
effect [2, 14].
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3 Differential Algebraic Equations

We can distinguish at least two families of DAEs, fully implicit and semi-explicit.

3.1 Fully implicit DAEs

The first class of differential algebraic equations is the fully implicit ones. It is the
most general representation of a differential system as:

f(t,y, ẏ, ...) = 0, t0 ≤ t ≤ tend (12)

3.2 Semi-explicit DAEs or in Hessenberg form

The second, and one of the most used DAE forms in science and engineering, is the
semi-explicit DAEs, also called DAEs in Hessenberg form. In this formalism, the index
is a differentiation index [10]. For example, the index 1 Hessenberg form is described
by: {

ẏ = f(t,x,y)
0 = g(t,x,y)

(13)

where the Jacobian gx is assumed to be non-singular for all t.

The index 2 Hessenberg form is described by:{
ẏ = f(t,x,y)

0 = g(t,y)
(14)

where gyfx is assumed to be non-singular for all t.

Since some of dependent variables occur without their derivatives, these differential
systems are different from an ODE with an additive constraint.

3.3 Literature review

Although there exist many tools for solving DAEs in a numerical way (DAETS, Sundi-
als, Mathematica) and some particular implementation embedded in simulation soft-
ware (Simulink, Dymola), only few attempts have been done to obtain a guaranteed
method.

We can notice an extension of Valencia-IVP [30], a tool for ODE validated sim-
ulation. The chosen approach starts with an approximation of the solution obtained
by a numerical method (DASSL, DAETS) and try a posteriori to enclose the solution
in a guaranteed way (with a Krawczyk iteration). The validity of this approach is
not proven, in particular the fact that the existence test of the algebraic variable is
separated from the state variable should not lead to a correct solution.

Another method [3] consists of computing the reachable set of DAEs by an error
linearization and the help of zonotopes. This approach seems close to [30], and it is not
clear on some points, such as existence and uniqueness proofs. Moreover, the results
are not sufficiently explained to judge the quality of the method.

An alternative paper dealing with validated solution of DAEs available in the
literature is based on Taylor models [21]. This method starts by computing a high-
order polynomial approximating the solution of the ODE, and after that attempts to
inflate it until an inclusion test validates. The approach presented is then different
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from our method. Unfortunately, none of these two latter approaches seems to be
continued.

Finally, and more recently, one important work appears in [32, 33]. In these
papers, the authors present the analysis and the computation of bounds by using i) an
existence and uniqueness test for the solutions of DAEs, based on Hansen-Sengupta,
and ii) sufficient conditions for two functions to enclose lower and upper bounds of
the solution. Another method is presented unifying these two steps. Regrettably,
the algorithms are not sufficiently clearly described to allow a thorough analysis and
comparison. The results presented are also difficult to assess. Nevertheless, we are able
to make few remarks. First, the presented approach is not completely validated (as
honestly said in the paper). Second, if it is well known that the Hansen-Sengupta test
is more efficient than the Krawczyk one [18], in [32] it is used in the non-parametric
version, while we advocate to use Krawczyk in the parametric version. Indeed, Hansen-
Sengupta requires solving a linear interval system, which can be a time consuming
function of problem size and done many times at each integration step (until conditions
of Theorem 2.1 are obtained). Moreover, the operator is applied to a non linear
function with state variables as interval parameters, which can be large due to initial
state, and the use of a parametric version is then necessary to obtain a sufficiently
sharp solution (see Section 4.1).

It is important to remark that the problem of existence and uniqueness of the
solution is a common issue considered in the literature, whether in the validated ap-
proaches, presented above, or in the numerical field, for which consistent initialization
is one of the main issues [35].

4 Our Method for Validated Simulation of DAE

In this work, we present a method to solve the initial value problems written in index-1
Hessenberg form:{

ẏ = f(t,x,y)
0 = g(t,x,y)

with y(0) ∈ [y0] and x(0) ∈ [x0] . (15)

In Section 2.1, we reviewed the classical two step method presented originally by
Lohner [24], and used by the community of ODE validated integration. We used the
same approach for our DAE integration method, as [33]. The two steps are:

• Compute an a priori enclosure of all the solutions of the DAE on an integration
step [tj , tj + h] with a novel Picard-like operator;

• Refine this enclosure at tj + h with the Runge-Kutta integration scheme and
contractors.

In the next subsections, we will present these two steps in detail.

4.1 New Picard-like operator

For an ordinary differential equation with interval parameters (similar to differential
inclusion) described by

ẏ = f(t,y,p) with y(0) ∈ [y0] and p ∈ [p] , (16)
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we use the Picard-Lindelöf operator. This operator, based on the Theorem 2.1 and
defined in Equation (3), allows one to compute the a priori enclosure [ỹj ] such that

∀t ∈ [tj , tj+1], {y(t; yj) : ∀yj ∈ [yj ], ∀p ∈ [p]} ⊆ [ỹj ] .

In the case of a DAE expressed by Equation (15), the further issue is to compute the
a priori enclosure [x̃j ] such that

∀t ∈ [tj , tj+1], {x(t; yj) : ∀yj ∈ [yj ]} ⊆ [x̃j ],

under the constraint g(x(t),y(t)) = 0, ∀t ∈ [tj , tj+1].

4.1.1 Analysis of existence and uniqueness

If we assume that ∂g
∂x

is locally non-singular, we are theoretically able to find the
unique x = ψ(y) (with the help of the implicit function theorem), and then we can
write ẏ = f(t, ψ(y),y). Finally, we could apply Picard-Lindelöf to f in order to prove
existence and uniqueness of the solution. Of course, it is not feasible nor realistic
in general, because ψ is unknown. Anyway, this approach leads us to the following
solution.

We propose a theorem based on the Frobenius theorem with a set membership view.
The Frobenius theorem is too long to be given completely here, but it is available in
[15].

Theorem 4.1 (Part of the Frobenius theorem) Let X and Y be Banach spaces,
and let A ⊂ X , and B ⊂ Y be open sets. Let F : A × B → L(X ,Y) be a continu-
ously differentiable function of the Cartesian product (which inherits a differentiable
structure from its inclusion into X × Y) into the space L(X ,Y) of continuous linear
transformations of X into Y. A differentiable mapping u : A → B is a solution of the
differential equation

ẏ = F (x, y) (17)

if u̇(x) = F (x, u(x)) for all x ∈ A.
Equation (17) is completely integrable if for each (x0, y0) ∈ A × B, there is a

neighborhood U of x0 such that Equation (17) has a unique solution u(x) defined on
U such that u(x0) = y0.

Theorem 4.2 (Banach space version of Implicit Function Theorem) Let X ,
Y,Z be Banach spaces. Let the mapping f : X × Y → Z be continuously Fréchet
differentiable. If (x0, y0) ∈ X × Y, f(x0, y0) = 0, and y 7→ Df(x0, y0)(0, y) is a Ba-
nach space isomorphism from Y onto Z, then there exist neighborhoods U of x0 and
V of y0 and a Fréchet differentiable function g : U → V such that f(x, g(x)) = 0 and
f(x, y) = 0 if and only if y = g(x), for all (x, y) ∈ U × V.

Proposition 4.1 (Set membership view of Frobenius) Let A and B be two Ba-
nach spaces and let g, f be two continuously differentiable function from the Cartesian
product A× B into the set L(A,B) of continuous linear transformations of A into B,
defined by:

ẏ = f(t, x, y) (18)

and
g(x, y) = 0. (19)

Let X ⊂ A and Y ⊂ B. If ∀y ∈ Y, ∃! x ∈ X satisfying Equation (19) and ∀x ∈
X , ∃! y ∈ Y satisfying Equation (18), simultaneously, then Equation (18) is completely
integrable and the solution exists and is unique in Y.
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Proof: If ∀y ∈ Y,∃! x ∈ X : g(x, y) = 0, then the Implicit Function Theorem proves
that there is a unique function x = ψ(y) for all (x, y) ∈ A × B. Then, the differential
Equation (18) becomes ẏ = f(t, ψ(y), y) where ψ(y) maps Y into X . Finally, the
statement ∀x ∈ X , ∃! y ∈ Y : ẏ = f(t, y, x) implies, with the help of Frobenius
theorem, that there exists a unique mapping solution of Equation (18) in Y.

4.1.2 Adapted to DAEs

A direct translation of Proposition 4.1 to our problem gives:

Proposition 4.2 Let [ỹ] be an enclosure, validated by the Picard-Lindelöf operator,
of the solution of ẏ ∈ f(t, [x̃],y) and let [x̃] be defined such that for each y ∈ [ỹ],∃! x ∈
[x̃] : g(x,y) = 0. Then ∃! ψ on the neighborhood of [x̃], and the solution of the DAE
exists and is unique in [ỹ]. In addition, the algebraic variable is enclosed by [x̃].

Proof: Direct application of Proposition 4.1.

4.1.3 The operator

Finally, with Proposition 4.2, we define a novel operator, which we call
Picard-Krawczyk PK:

If

(
P([ỹ], [x̃])
K([ỹ], [x̃])

)
⊂ Int

(
[ỹ]
[x̃]

)
then ∃! solution of DAE in [ỹ] (20)

with

• P a Picard-Lindelöf operator for the differential inclusion ẏ ∈ f([x̃],y)

• K a parametric preconditioned Krawczyk operator for the constraint g(x,y) =
0, ∀y ∈ [ỹ]

In more detail, these operators are given by:

Picard-Lindelöf operator with Taylor (N = 3):

Pf ([yj ], [xj ], [r], [x̃], h) = [yj ] +

N∑
k=0

f [k]([xj ], [yj ])[0, h
k] + f [N+1]([x̃], [r])[0, hN+1] .

(21)
If Pf ([yj ], [xj ], [r], [x̃], h) ⊂ Int([r]) then f is integrable and [yj+1] ⊂ [r].

Parametric preconditioned Krawczyk operator:

Kg([ỹ], [r]) = m([r])− Cg(m([r]),m([ỹ]))−

(C
∂g

∂x
([r], [ỹ])− I)([r]−m([r]))−

C
∂g

∂y
(m([r]), [ỹ])([ỹ]−m([ỹ])) (22)

where C is a preconditioning matrix. If Kg([ỹ], [r]) ⊂ Int([r]) then for each y ∈ [ỹ]
there exists one and only one x ∈ [r] : g(x,y) = 0.
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Parametric preconditioned Krawczyk operator in hybrid form:
A hybrid form [19] is also available:

[s] = Cg(m([r]),m([ỹ])) + C
∂g

∂y
(m([r]), [ỹ])([ỹ]−m([ỹ]))

[s] = [s] ∩ (Cg(m([r]), [ỹ]))

Kg([ỹ], [r]) = m([r])− [s]− (C
∂g

∂x
([r], [ỹ])− I)([r]−m([r]))

If Kg([ỹ], [r]) ⊂ Int([r]) then for each y ∈ [ỹ] there exists one and only one x ∈ [r] :
g(x,y) = 0.

4.1.4 Algorithm implementing the Picard-Krawczyk operator

We propose an algorithm implementing this Picard-Krawczyk operator to compute
the enclosures of the algebraic and state variables simultaneously in Algorithm 1. The
inputs are the initial estimation for enclosures [x̃]0, [ỹ]0, a tolerance on LTE Tol and a
guessed step size h. The outputs are either a success flag with the validated enclosures
[x̃]1, [ỹ]1 and the already computed LTE, or a fail flag. We iterate two times the
dimension of the problem (m+ n) to prapagate the inflation.

Algorithm 1 Compute the a priori enclosures

Require: [x̃]0, [ỹ]0, Tol, h, iter = 0
[x̃]1 = K([ỹ]0, [x̃]0) // 4.1.3
[ỹ]1 = P([ỹ]0, [x̃]0) // 4.1.3
while ([x̃]1 6⊂ [x̃]0) and ([ỹ]1 6⊂ [ỹ]0) and (iter < 2(m + n)) do

iter = iter + 1
[ỹ]0 = [ỹ]1 ± 1%
[x̃]0 = [x̃]1 ± 1%
[x̃]1 = K([ỹ]0, [x̃]0) // 4.1.3
[ỹ]1 = P([ỹ]0, [x̃]0) // 4.1.3

end while
if ([x̃]1 ⊂ [x̃]0) and ([ỹ]1 ⊂ [ỹ]0) then // conditions of 4.2 obtained

LTE = LTE([x̃]1, [ỹ]1) // 2.4
if LTE < Tol then // Acceptable LTE

return SUCCESS([x̃]1, [ỹ]1, LTE)
end if

end if
return FAILED // No enclosures found with the inputs

4.2 Contractors

After the guaranteed enclosures on [t, t + h] are obtained, we can contract these en-
closures around t+ h, because obviously x(t+ h) ⊂ [x̃] and y(t+ h) ⊂ [ỹ]. First, it is
more efficient to start by the contraction of the state variable y, which can be strongly
refined by the well chosen integration scheme. The differential inclusion to integrate is
given by: ẏ ∈ f(t, [x̃],y). This latter is often stiff (this assumption will be verified in
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section 5.1) and has interval coefficients. As demonstrated in [2], an implicit Runge-
Kutta scheme is efficient for this kind of interval parametrized differential equation.
In the family of Implicit Runge-Kutta (IRK), Radau IIA is one of the more powerful
methods of order 3 for stiff problems. Its Butcher tableau is given in Figure 3.

This IRK method attains an order three with two stages, it is fully implicit as
shown in its tableau (Figure 3) and A-stable. The corresponding local truncation
error (LTE) can be computed using the Butcher trees as shown in [2].

1/3 5/12 -1/12
1 3/4 1/4

3/4 1/4

Figure 3: Butcher Tableau of Radau IIA order 3 (an Implicit Runge-Kutta method)

Second, with a tightened state variable, we are able to refine the algebraic variable
x under the constraint g(t,x,y) = 0, ∀y ∈ [ỹ]. For this task, we combine the Krawczyk
operator from Section 4.1 and a forward/backward contractor coming from constraint
programming. The Forward/Backward contractor (also called HC4-Revise [4], de-
noted by FwdBwdconstraint in the following algorithms) can contract a box w.r.t. a
single constraint such that no solution of the constraint is lost in the box. Using a
tree representation of the constraint for accelerating the contraction, this contractor
isolates every occurrence xi in the expression and performs a natural evaluation of the
corresponding function to contract [xi]. This combination can be easily done by the
contractor programming view of the tool DynIbex1.

Finally, these two obtained contractors are embedded in a fixpoint presented in
Algorithm 2. The inputs of this algorithm are the enclosures and the LTE computed
with Algorithm 1. The outputs are the guaranteed enclosures of the state and algebraic
solutions at the end of current time step.

Algorithm 2 Contract the a priori enclosures around solution

Require: [x̃], [ỹ], LTE
[xj+1] = [x̃], [yj+1] = [ỹ]
while ([xj+1] or [yj+1] is improved) do // fix point

[yj+1]∩ = (RADAU3f ([xj+1], [yj+1]) + LTE) // 2.4 and 3
[xj+1]∩ = (FwdBwdg([xj+1], [yj+1]) ∩ Kg([xj+1], [yj+1])) // [4] and 4.1.3

end while

4.3 Complete algorithm

The algorithm for a validated simulation of a DAE in index-1 Hessenberg form is given
in a simplified way, without the step-size controller (available in [20]), in Algorithm 3.
The inputs are initial states, a time to reach Tfinal, a given minimal step-size hmin and
a tolerance Tol. The algorithm builds a list of data computed at each integration step,
as described in Section 2.1.

1http://perso.ensta-paristech.fr/~chapoutot/dynibex/

http://perso.ensta-paristech.fr/~chapoutot/dynibex/


Reliable Computing 22, 2016 69

Algorithm 3 Simulation of DAE

Require: [y(0)], [x(0)], Tfinal, hmin, Tol // Problem statement
t = 0
while (t < Tfinal) do // Until desired time

[x̃] = x(t), [ỹ] = y(t)
Computation of [x̃], [ỹ],LTE // Algorithm 1
if SUCCESS then

Computation of [x(t + h)], [y(t + h)] // Algorithm 2
Store [t, t + h], [x̃], [ỹ], [x(t + h)], [y(t + h)] in a list
t = t + h // Next integration step

else if (h > hmin) then
h = h/2 // Reducing of step-size

else
Return FAILED // Integration failed (change initial states, Tol or hmin)

end if
end while

5 Examples

We apply our algorithm to three examples. The first one is quite basic, but allows us to
show the issue appearing in DAE simulation and the results obtained by our tool. This
example is sufficient to point out the problem of stiffness generated by DAE problems.
The second example is interesting because it has a known exact solution and allows
us to verify the exactness of our method and judge the results with respect to the
best existing numerical method. Finally, the third example is the classical pendulum
problem, which permits us to highlight the efficiency of our method.

5.1 Basic example

We start our experimentations with a basic example in one dimension for the state
variable and one dimension for the algebraic variable:{

0 = (y + 1)x+ 2
y′ = y + x+ 1

y(0) = 1.0 and x(0) ∈ [−2.0, 2.0]

We perform a simulation until Tfinal = 4 seconds with a desired tolerance on the
local error Tol=10−16. The initial value consistency is checked with Krawczyk which
leads to x(0) = −1. The computation takes between 16 and 30 seconds depending on
the computer. Our tool provides three files containing:

• The values of state variable enclosure w.r.t. time under the form: [y(t)]; t

• The values of algebraic variable enclosure w.r.t. time under the form: [x(t)]; t

• The log reported in Table 1

With the files containing state and algebraic values w.r.t. time, we are able to
plot three figures, given in Figure 4. In Figure 4(a) and Figure 4(b), it is apparent
that even if the state variable and algebraic variable evolve exponentially but quite
slowly, algebraic variable evolves in a stiff way w.r.t. state variable, Figure 4(c). In
general, DAEs lead to a stiff problem, which is the motivation for using the RADAU
IIA method. This method is known for its efficiency on stiff problems.
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Log.txt file Description

Solution at t = 4.00000 : Final time reached
([76.2255, 76.2299]) Solution for state variable
Diameter: (0.00447355) Diameter of the solution enclosure
Rejected Picard: 2 Number of step rejected by Algorithm 1
Accepted Picard: 19123 Number of step accepted by Algorithm 1
Step min: 0.000196651 Time step minimum (h)
Step max: 0.00025 Time step maximum (h)
Truncature error max: 2.1434 · 10−15 Maximum LTE during simulation

Table 1: Log file and its description

(a) (b) (c)

Figure 4: Plot of state variable w.r.t. time (a), algebraic variable w.r.t. time (b) and
algebraic variable w.r.t. state variable (c) (for Problem 5.1)

5.2 Example with exact solution

The second example is a little more complex. It is described by the differential equa-
tion:

y′ =


−y2y1 − (1 + y2)x0

y2y0 − (1 + y2)x1

1

and the algebraic relation:{
(y0 − x1)/5− cos(y2

2)/2 = 0
(y1 + x0)/5− sin(y2

2)/2 = 0

with y(0) =

 5
1
0

 and x(0) ∈
(

[−1,−1][
−10−14, 10−14

] )
This problem is interesting because it has a known exact solution:

y0 = sin(t) + 5 cos((t2)/2.0)
y1 = cos(t) + 5 sin((t2)/2.0)

x0 = − cos(t)
x1 = sin(t)

We perform a simulation until Tfinal = 2 seconds with a desired tolerance Tol =
10−22. This tolerance is chosen very small (below machine precision) in order to force
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the LTE to be as small as possible. The initial value consistency is checked with
Krawczyk which leads to

x(0) ∈
(

[−1,−1][
−10−18, 10−18

] ) .
The results at final time are given in Table 2. These results allow us to verify the
enclosure of the exact solution by the solution provided by our tool. In fact, we perform
a verification of inclusion on the fly, that is to say, at each step of the simulation.
Moreover, at t = 2 seconds, the diameter of our solution is smaller than 0.00056
when one of the best numerical methods (without guarantee) [1], the Extended Block
Backward Differentiation Formula (EBBDF) of order 4, provides a result at 0.0002
from the exact value, which is comparable to our results (see Table 2).

Our method Exact EBBDF
[−1.17172,−1.17116] −1.171439444 −1.171279

[4.13013, 4.13054] 4.130338864 4.130540
[0.415948, 0.416352] 0.4161470936 0.416035
[0.909204, 0.909388] 0.9092973092 0.909322

Table 2: Solution at t = 2 with our method, exact value computation and EBBDF
results (from [1]) for Problem 5.2

5.3 Classical problem: Pendulum

Finally, the last example is the well known pendulum, expressed in index 1 Hessenberg
form. The problem can be described by Figure 5.

+

p

q

l m

g

Figure 5: Problem view of Example 5.3

A ball of mass m, suspended to a massless rod of length `, under gravity g is
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defined by coordinates (p, q) such that:
p′ = u
q′ = v

mu′ = −pλ
mv′ = −qλ− g

with u and v the velocity of pendulum, and λ the force in the rod, and the algebraic
relation:

m(u2 + v2)− gq − `2λ = 0 with (p, q, u, v)0 = (1, 0, 0, 0) and λ0 ∈ [−0.1, 0.1]

We perform a simulation until Tfinal = 1 second with a desired tolerance Tol = 10−10.
The initial value consistency is checked with Krawczyk, which leads to λ(0) = 0.
The computation takes less than 20 seconds on a dual core computer. With the files
containing state and algebraic values w.r.t. time, we are able to plot three figures,
given in Figure 6.

(a) (b) (c)

Figure 6: Plot of state variable p w.r.t. q (a), algebraic variable w.r.t. time (b) and
algebraic variable w.r.t. state variable p (c) (for Problem 5.3)

5.4 Discussion

We see through these three examples that our method is correct (Example 5.2), efficient
in comparison to the existing non guaranteed methods (Example 5.2), able to solve a
classical problem (Example 5.3), while providing statistics on the computation progress
(Example 5.1). Nevertheless, we can also conclude that the diameter of solution grows
quickly and that time spent for the computation is sometimes significant. In the
following section, we present an add-on in order to improve our results.

6 Additive Contractors

Our tool is based on contractor programming [12]. This means that we are able
to add any contractors to Algorithm 2 to take into account constraints other than
g(t, x, y) = 0. In the case of physical systems, constraints can appear from the context
such as energy conservation, mechanical constraints, etc. This approach is similar
to [9]. In the latter, the authors use the energy conservation as constraint in order to
improve the precision of a numerical simulation. More interestingly, some constraints
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come directly from the Pantelides algorithm [29] which is used to reduce the index of
DAEs.

For example, in the case of Pendulum (Example 5.3), the Pantelides algorithm is
used to obtain m(u2 + v2) − gq − `2λ = 0 by differentiation of the circle equation
p2 + q2 − `2 = 0: 

p2 + q2 − `2 = 0
pu+ qv = 0

m(u2 + v2)− gq2 − `2p = 0

These three additive constraints can be used to generate a forward/backward contrac-
tor (with a propagation principle between constraints) for both state and algebraic
variables. This contractor improves the result of our algorithm by changing Algo-
rithm 2 to Algorithm 4.

Algorithm 4 Contract the a priori enclosures around solution

Require: [x̃], [ỹ], LTE
[xj+1] = [x̃], [yj+1] = [ỹ]
while ([xj+1] or [yj+1] is improved) do

[yj+1]∩ = (RADAU3f ([xj+1], [yj+1]) + LTE)
[xj+1]∩ = (FwdBwdg([xj+1], [yj+1]) ∩ Kg([xj+1], [yj+1]))
([xj+1]; [yj+1])∩ = FwdBwdctc(([xj+1]; [yj+1]))

end while

Our tool is applied with Algorithm 2 and Algorithm 4 to the Pendulum problem
for a simulation until Tfinal = 1.6 seconds and for a desired tolerance Tol = 10−18.
The results are shown in Figure 7 and Figure 8. It is obvious that the addition of
contractors has improved the simulation by reducing the size (and thus the pessimism)
of the enclosures, approximately 50%, and even the time computation.

Figure 7: Plot of state variable p w.r.t. q (a), algebraic variable w.r.t. time (b) and
algebraic variable w.r.t. state variable p (c) (for Problem 5.3) - with Algorithm 2:
computation time 28 minutes

7 Conclusions and Future Work

To conclude, we present in this paper our method for the validated simulation of
differential algebraic equations. The main issue being the existence and uniqueness
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Figure 8: Plot of state variable p w.r.t. q (a), algebraic variable w.r.t. time (b) and
algebraic variable w.r.t. state variable p (c) (for Problem 5.3) - with Algorithm 4:
computation time 27 minutes

of solution, we develop a novel operator which simultaneously computes a priori en-
closures of algebraic and state variables. For that, our operator mixes a classical
Picard-Lindelöf (based on Taylor series) and a parametric Krawczyk operator. Then
these enclosures are refined with a contractor programming approach by combining
an integration scheme (Runge-Kutta RadauIIA) and an algebraic contractor (made
with Krawczyk and forward/backward). Our complete algorithm is applied to three
examples to show a proof of concept and the efficiency of the method. Moreover, a
third contribution is also proposed in order to improve the result obtained. Indeed,
it is often possible to obtain additive constraints on a physical system, and these
constraints can be easily used as contractors for both state and algebraic variables.
Finally, and to conclude the contributions, our approach is able to naturally verify
the initial consistency of DAEs in index-1 Hessenberg form, which is one of the main
issues in DAE community.

Several potential improvements to our method can be considered. The first one
and the most important is the integration method used. Currently, we only tried the
Radau IIA order 3 method. A serious improvement may be obtained with an higher
order Runge-Kutta method such as Radau IIA order 5 (but its coefficients are not
exact) or Gauss-Legendre order 6 (which has good properties but the computation
of its local truncation error is time consuming). In addition, many improvements
can be done on the global algorithm, such as a better step-size control and a better
estimation for algebraic variables in the first trial of Picard-Krawczyk in order to avoid
as much as possible the epsilon inflation. Finally, the first version of our tool DynIbex2

used in this paper can be strongly improved to obtain a satisfying computation time.
In order to illustrate the effect of tolerance on computation time and diameter of
solution, Figure 9 shows computation time w.r.t. simulation time on Example 5.2 with
4 different tolerancies and a voluntary interruption of computation when diameter of
solution is larger than 1. It is then obvious that the choice of a tolerance is strategic,
depending on the goal.
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