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Abstract

We consider a square linear interval parametric (LIP) system of size n
whose elements are affine linear functions of the m-dimensional parameter
vector p. Recently, a new type of solution to the LIP system considered
(called parameterized or p-solution) has been introduced, which is of a cor-
responding linear interval (LI) form. An iterative method for determining
the linear p-solution has also been suggested.

The objective of the present paper is to generalize the above approach
in two directions. First, a new type of p-solution in a corresponding
quadratic interval (QI) form is suggested. Second, it is shown that any
known iterative method for determining an outer solution to the LIP sys-
tem given can be modified in a unified manner to produce a corresponding
method yielding a linear or quadratic p-solution. Thus, a class of itera-
tive methods for determining p-solutions can be constructed, depending
on the iterative scheme chosen and the form, linear or quadratic, of the
solution sought. As an illustration, two specific methods for determining
a p-solution, based on a simple iterative process and respective LI and QI
forms, are suggested.

The proposed p-solutions seem to be useful in solving global opti-
mization problems where the constraint is given as a LIP system. As an
example, a parametric linear programming problem is considered.

Keywords: linear parametric systems, linear parameterized solutions, quadratic pa-
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1 Introduction

Let

A(p)x = b(p), p ∈ p (1a)
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denote a square linear interval parametric (LIP) system of size n whose elements aij(p)
and bi(p) are the affine linear functions

aij(p) = aij +

m∑
µ=1

αijµpµ, bi(p) = βi +

m∑
µ=1

βiµpµ. (1b)

The united solution set of (1) is the collection of all solutions of (1a), (1b) over p, i.e.
the set ∑

(A(p), b(p),p) = {x : A(p)x = b(p), p ∈ p}.

As is well known, the following “interval solutions” to (1) are most often considered
(cf., e.g., [20, 4, 16, 7, 8, 17, 24, 15, 9, 23, 18, 25, 11, 21, 22, 19]): (i) interval hull (IH)
solution x∗: the smallest interval vector containing the united solution set of (1); (ii)
outer interval (OI) solution x : any interval vector enclosing x∗, i.e. x∗ ⊆ x ; (iii) inner
estimation of the hull (IEH) solution ζ: an interval vector such that ζ ⊆ x∗.

A new type of solution x (p) to the LIP system (1) (called parameterized or p-
solution) has been recently introduced in [12]. It is defined as follows

x (p) = l(p) (2a)

where

l(p) = Lp+ a , p ∈ p (2b)

is a corresponding linear interval (LI) form (L is a real n× n matrix while a is an n-
dimensional interval vector). An iterative method for determining x (p) was suggested
in [12] which is obtained by modifying each step of a known iterative method for
computing x [8]. The solution x (p) (henceforth referred to as a linear parameterized
(LP) solution), has a number of useful properties such as: it directly yields an outer
interval solution x and an inner approximation ζ of the hull solution x∗. However, as
underlined in [12], the main advantages of x (p) reside in the fact that it can form the
basis of a new paradigm for solving the following class of optimization problems: find
the global minimum

g∗k = min gk(x, p) (3)

subject to the constraint (1) where gk(x, p) is the kth component of the (in the general

case, nonlinear) mapping g : Rn+m → Rn
′
, 1 ≤ n′ ≤ n. Thus, the lower end x∗k of

the kth component x∗k = [x∗k, x
∗
k] of x∗ is determined as the solution of the following

global optimization problem

x∗k = min eTk x (4a)

(ek is the kth column of the identity matrix) subject to the constraint (1). In a similar
way, x∗k is the solution of

x∗k = −min(−eTk x) (4b)

and the constraint (1). Combined with a constraint satisfaction technique, such an
approach permits determination of the hull x∗ as well as the global solution of certain
equality-constrained optimization problems [12].

The objective of the present paper is two-fold. First (Section 2.2), we suggest a
new type of p-solution in the following quadratic interval (QI) form:

x (p) = q(p), (5a)

q(p) = Qθ(p) + Lp+ a , p ∈ p, θj(p) = θj(pj) = p2j , j = 1, ...,m (5b)
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where Q denotes a three-dimensional n×m×m array whose ith component Qi is a
m ×m matrix, L and a having the same meaning (but different entries) as in (2b).
Second (Section 3), we show that any known iterative method for determining x (e.g.
[7], [8], various fixed-point representations such as in [14] or [1], Ch. 12) can be mod-
ified in a unified manner to produce a corresponding method for determining x (p).
Thus, a whole class of iterative methods yielding x (p) can be constructed. In this
context, the method for determining a LI form solution x (p) of [12] is just a represen-
tative of this class. As an illustration, two new specific methods for determining x (p),
based on a simple iterative process and respective LI and QI forms, are suggested in
Subsections 3.1 and 3.2, respectively. It is shown that the latter methods may be
better than the former method of [12].

The p-solutions seem promising for solving the global optimization problems (3).
The simplest case (4), determining x∗, is considered in Subsection 4.1. Two other rep-
resentatives of (3), linear and quadratic programming, are presented in Subsection 4.2.
An example referring to parametric linear programming is solved in Section 5.

2 Parameterized Solutions

2.1 Linear parameterized solution

In this subsection, we recall the definition and basic properties of the linear parameter-
ized (LP) solution of (1) (this information will be useful in the subsequent subsection).
Without loss of generality, it is assumed as in [12] that the parameter vector p is a
symmetric vector of unit radius, i.e., pi = [−1, 1] for i = 1, ...,m.

System (1) determines each member of the solution set of (1) as an implicit function
of p, i.e. x(p) = f(p), p ∈ p where f : p ⊂ Rm → Rn. As in [12] we now temporarily
assume that the function f(p) is known (new methods for approximating f(p) will be
given in Section 3). It can then be enclosed for p ∈ p by the linear interval form (2b)
[6] so

f(p) ∈ l(p), p ∈ p. (6)

Let l(p) denote the range of l(p) over p, i.e. l(p) = {l(p) : p ∈ p}. On account of (2)
and (6), the range x (p) of x (p) yields an outer solution x of (1), i.e.

x = l(p). (7)

Obviously, the range fi(p) over p defines the ith component x∗i of the IH solution x∗

to (1). Since l(p) is an outer solution, the component x∗i of x∗ is contained in the
component li(p) of the range l(p), i.e.

x∗i ⊂ li(p). (8)

The above inclusion can be made more specific [12]. To this end, consider the ith
component li(p) of l(p). Let Li denote the ith row of L. Then li(p) = Lip+ a i. Let

λi(p) = Lip, p ∈ p. (9)

and denote
λi = min(Lip), λi = max(Lip), p ∈ p. (10)

Two intervals are now introduced

e
(l)
i = λi + a i, e

(u)
i = λi + a i, e

(l)
i = [e

(l)
i , e

(l)
i ], e

(u)
i = [e

(u)
i , e

(u)
i ]. (11)

The following result has been recently proved.
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Theorem 1 [12]. Let e
(l)
i and e

(u)
i be the intervals defined by (9) to (11); also let x∗i

and x∗i be the endpoints of x∗i . Then

x∗i ∈ e
(l)
i , x

∗
i ∈ e

(u)
i . (12)

Corollary 1 Introduce the interval

ζi =

{
[e

(l)
i , e

(u)
i ], if e

(l)
i ≤ e

(u)
i

empty interval, otherwise
. (13)

Then ζi determines the ith component of the IEH solution of (1).

Remark 1. It should be stressed that formula (13) in Corollary 1 of [12] was written
incorrectly in the form

ζi =

{
[e

(l)
i , e

(u)
i ], if e

(l)
i ≤ e

(u)
i

[0, 0] otherwise.

It is seen that knowledge of the new solution x (p), p ∈ p, i.e. knowledge of L and
a , permits determining an outer interval solution x , an inner estimation of the hull
solution ζ as well intervals containing the endpoints x∗i and x∗i of each component x∗i
of the interval hull solution x∗ related to (1).

2.2 Quadratic parameterized solution

The properties of the LP solution (2), (4a) will now be extended to the case of the QP
solution (5a), (5b). In this case, f(p) is enclosed for p ∈ p by the QI form (5b). Thus

f(p) ∈ q(p), p ∈ p. (14)

If q(p) denotes the range of q(p) over p then

f(p) ∈ q(p), p ∈ p. (15)

Hence, the range q(p) yields an outer solution x of (1), i.e.

x = q(p). (16)

On account of (16), the ith component x∗i of the IH solution x∗ to (1) is contained in
the ith component q i(p) of the range q(p), i.e.

x∗i ⊂ q i(p). (17)

As in the linear case, the above inclusion can be made more specific if we consider
closely the ith component q i(p) of q(p). Let Qi and Li denote the ith row of Q and
L, respectively. Then from (5b)

q i(p) = Qiϕ(p) + Lip+ a i. (18)

Let
λi(p) = Qiθi(p) + Lip =

∑
j

ϕij(pj), ϕij(pj) = Qijp
2
j + Lijpj (18a)

and denote

λi = min(λi(p)), p ∈ p, λi = max(λi(p)), p ∈ p. (19)
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To simplify the presentation, we first consider the case where each ϕij(pj) is monotone
within pj . We introduce the following notations:

ϕ−ij(pj) = ϕij(−1), ϕ+
ij(pj) = ϕij(1), ϕ

(1)
ij = min{ϕ−ij , ϕ

+
ij}, ϕ

(2)
ij = max{ϕ−ij , ϕ

+
ij}.

Since λi(p) is a separable function

λi =
∑
j

ϕ
(1)
ij , λi =

∑
j

ϕ
(2)
ij .

Thus, the following two intervals are now introduced for the case of monotone ϕij(pj)

e
(l)
i = λi + a i, e

(u)
i = λi + a i. (20)

In the general case, the functions ϕij(pj) will not be monotone for some indices j ∈ Ji.
The set Ji now will be divided into two subsets J ′i and J ′′i if Qij > 0 or Qij < 0,
respectively.

Let

ϕ
ij

= min{ϕij(pj), pj ∈ pj}, j ∈ J ′i ,

ϕij = max{ϕij(pj), pj ∈ pj}, j ∈ J ′′i .

From geometrical considerations, it is easily seen that if j ∈ J ′i an additional interval
[ϕ
ij
, ϕ

(1)
ij ] arises which contributes to an increase in e

(l)
i . In a similar way, if j ∈ J ′′i the

additional interval increasing e
(u)
i is [ϕ

(2)
ij , ϕij ]. To obtain the sum of these intervals,

we compute

ϕ
i

=
∑

ϕ(1)

ij
, ϕ

(1)
i =

∑
ϕ(1)

ij
, j ∈ J ′i ,

ϕi =
∑

ϕ(2)

ij
, ϕ

(2)
i =

∑
ϕ

(1)
ij , j ∈ J ′′i .

Finally

e
(l)
i = λi + [ϕ

i
, ϕ

(1)
i ] + a i, e

(u)
i = λi + [ϕ

(2)
i , ϕi] + a i. (21)

By analogy with the linear case, the following results can be proved.

Theorem 2 Let e
(l)
i and e

(u)
i be the intervals defined by (20) or (21); also let x∗i and

x∗i be the endpoints of x∗i . Then

x∗i ∈ e
(l)
i , x∗i ∈ e

(u)
i . (22)

Corollary 2 Introduce the interval

ζi =

{
[e

(l)
i , e

(u)
i ], if e

(l)
i ≤ e

(u)
i

empty interval, otherwise
. (23)

Then ζi determines the ith component of the IEH solution of (1).

Whenever q i(p) is a narrower interval than li(p), the QP solution is a better option
than the LP solution.
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3 Methods for Determining a p-Solution

System (1) is written equivalently in the form

A(p)x = b(p), p ∈ p (24a)

A(p) = A0 +

m∑
µ=1

A(µ)pµ, b(p) = b0 +Bp (24b)

where A0, A(µ) are n×n real matrices, while B is a n×m real matrix and b0 is a real
column vector.

A unified iterative scheme for computing x (p) is proposed in this paper. It is
based on the following approach comprising two stages: first, (24) is transformed into
an equivalent iterative fixed-point representation and second, each iteration is enclosed
by a linear interval (LI) or quadratic interval (QI) form. Thus, a whole new class of
iterative methods for solving (1) can be constructed, each individual method being
determined by the selection of specific ways for addressing the first and second stage
of the above unified scheme.

From this general point of view, the method for determining x (p) suggested in [12]
is based on the representation

x (p) = x0 + v(p), p ∈ p (25)

where (assuming A0 nonsingular) x0 is the solution of the midpoint system A0x = b0.
In order to determine v(p), the following fixed-point iteration was used

v (κ+1)(p) = −

(∑
µ

pµB
(µ)

)
v (κ)(p) + C(0)p, κ ≥ 0, ν(0) = 0 (26)

where B(µ) and C(0) are computed using A(µ), B and (A0)−1 [12]; for example

B(µ) = (A0)−1A(µ). (26a)

A LI form of the type (4a) was used to approximate each iteration (26).
According to the new general scheme, a new version of the above method could be

obtained using the same iteration (26) and applying a corresponding QI form to (26)
for each κ.

New methods for determining x (p) will be obtained if alternative to (26) iter-
ative procedures are used. As an illustration, we consider the simplest fixed-point
representation of (24)

x(p) = (I −A(p))x(p) + b(p), p ∈ p. (27)

On account of (27) and (24b), the iterative process is now

x(κ+1)(p) =

(
A(0) −

∑
µ

pµA
(µ)

)
x(κ)(p) + b0 +Bp, κ ≥ 0, x(0) = x0 (28)

where A(0) = I − A0 and x0 is the solution of (24) for p = 0 (p is symmetric). As
(A0)−1 is now not used, the new iteration (28) is found to be a better alternative than
(26) for sparse systems (1) of large enough n. Indeed, as seen from (26a), B(µ) will be
roughly dense matrices even if A(µ) are fairly sparse.
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3.1 Linear iterative method

In this subsection, a linear iterative method for determining the LP solution x (p) (i.e.
for computing the associated L and a) is suggested which is related to the iteration
(28). As in [12], it can be shown that each iteration x(κ)(p) in (28) can be enclosed by
a corresponding linear interval form

l(κ+1)(p) = c(κ+1) + L(κ+1)p+ s(κ+1), p ∈ p, κ ≥ 0, (29)

where c(κ+1) and s(κ+1) are a real and interval symmetric vectors, respectively.
Indeed, for a fixed p, (28) defines x(κ+1)(p) as an explicit function f(κ) : p ∈ Rm →

Rn, i.e.
x(κ+1)(p) = f (κ)(p), κ ≥ 0, p ∈ p. (30)

Let S(κ+1) denote the image of p under f (κ). As can be easily seen, S(1) is the image
of a linear function f (0)(p). Indeed, for κ = 0 from (28)

x(1)(p) = l(1)(p) = c(1) + L(1)p, p ∈ p (31a)

with
c(1) = A(0)c(0) + b0, c(0) = x0, L(1) = B(1) + b (31b)

where the j th column B
(1)
j of B(1) is

B
(1)
j = −A(j)c(0). (31c)

However, for κ ≥ 1 S(κ+1) is not a LI form since f (κ)(p) is now a nonlinear function.
Thus, for κ = 1

x(2)(p) =

(
A(0) −

∑
µ

pµA
(µ)

)
x(1)(p) + b0 +Bp = T (p)x(1)(p) + b0 +Bp, (32a)

T (p) = A(0) −
∑
µ

pµA
(µ). (32b)

On account of (31a) and (32a)

x(2)(p) =

(
A(0) −

∑
µ

pµA
(µ)

)
(c(1) + L(1)p) + b0 +Bp (32c)

so

c′ = A(0)c(1) + b0, M (2) = B(2) +B +A(0)L(1), B
(2)
j = −A(j)c(1). (32d)

The product of
∑
µ pµA

(µ) and L(1)p yields a nonlinear term. As is easily seen, each

component x
(2)
i (p) of x(2)(p) is a quadratic function of the elements of p

x
(2)
i (p) = pTQ

(2)
i p+M

(2)
i p+ c

(2)
i = f

(1)
i (p), p ∈ p (33)

where Qi is a m ×m matrix whose elements are q
(2)
ikµ = −

∑
j αijkl

(1)
jµ . Thus, it has

been shown that S(2) is not a LI form.
The quadratic form f

(1)
i is written as (omitting the superscript (2))

f
(1)
i (p) =

∑
k

(qikkp
2
k +mikpk) +

∑
k<µ

(qikµ + qiµk)pkpµ + ci, p ∈ p. (34)
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We now look for an enclosure of (34). The second term in (34) gives rise to a symmetric
interval

s ′i = s′i[−1, 1], s′i =
∑
k<µ

|qikµ + qiµk|. (35a)

Each component ϕik(pk) = qikkp
2
k + mikpk is approximated outwardly in pk by a LI

form lik(pk) (in a similar manner as in [12]) so ϕik(pk) ∈ lik(pk) = c′′ik + L′′ikpk + s ′′ik.
Thus, new components

c′′i =
∑

c′ik, L
(2)
ik = L′′ik, s ′′i =

∑
s ′ik, (35b)

are produced. On account of (32d) and (35)

l
(2)
i = c

(2)
i + L

(2)
i p+ s

(2)
i , s

(2)
i = [−s(2)i , s

(2)
i ] (36)

where c
(2)
i and s

(2)
i are the sums of the corresponding components c′i, c

′′
i and s ′i, s

′′
i .

Using l
(2)
i (p), i = 1, ..., n we form the LI form

l(2)(p) = c(2) + L(2)p+ s(2) (37)

that encloses x(2)(p) (with components given in (33)) in p, i.e.

x(2)(p) = f (1)(p) ∈ l(2)(p). (38)

Next, we processed to constructing an approximation for x(3)(p). With this in mind,
we first replace the relationship

x(3)(p) = T (p)x(2)(p) + b0 +Bp, T (p) = A(0) −
∑
µ

pµA
(µ) (39a)

with
x(3)(p) = T (p)l(2)(p) + b0 +Bp

= T (p)(c(2) + L(2)p) + b0 +Bp+ T (p)s(2) = g(2)(p) + T (p)s(2). (39b)

Obviously, by analogy with the previous case of f
(1)
i , each component g

(2)
i (p) of g(2)

is a quadratic function

g
(2)
i (p) = pTQ

(3)
i p+ L

(3)
i p+ c

(3)
i (40)

which can be linearized to give a corresponding LI form

l
(3)
i (p) = c

(3)
i + L

(3)
i p+ t ′i. (41a)

However, unlike the case of f
(1)
i , the product T (p)s(2), p ∈ p gives rise to an additional

symmetric interval

t ′′i =

(∑
j

(
|A(0)
ij |+

∑
µ

|A(µ)
ij |

)
s
(2)
j

)
[−1, 1]. (41b)

Hence
l(3)(p) = c(3) + L(3)p+ s(3) (41c)

where the components of s(3) are s
(3)
i = t ′i + t ′′i . It is seen that l(3)(p) in (41c) has

the same form as l(2)(p) in (37). Evidently, this process of successively generating new
quadratic functions and their subsequent interval linearization can continue for κ ≥ 2.
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Consider the range l(κ)(p) of the corresponding LI form l(κ)(p). Clearly, l(κ)(p) is
an interval vector having the properties

S(k) ⊂ l(κ)(p), (42)

l(κ)(p) ⊂ l(κ+1)(p). (43)

The distance between two such interval vectors (43) will be assessed using the formula

d(a , b) = max{max
i
|ai − bi|,max

i
|ai − bi|}. (44)

Now we can formulate the main result of the subsection.

Theorem 3 Assume that the matrix A(0) is non-singular and the sequence {l(κ)(p)},
κ ≤ 1 is convergent in the sense of (44) to a limit l(∞)(p). Then:

(i) the linear interval form

x(p) = l(∞)(p) = c(∞) + L(∞)p+ s(∞), p ∈ p (45)

determines a LP solution to (1),
(ii) the interval vector

x = l(∞)(p) (46)

(46) is an OI solution to (1),
(iii) the matrix A(p) is non-singular for each p ∈ p.

The above method for determining will be referred to as linear interval form (LIF)
method.

3.2 Quadratic iterative method

In this subsection, an iterative method for determining will be suggested which is
based on the QI form (5b) and iteration (28). The new method (referred to as QIF
method) is expected to outperform the LIF method for relatively narrower p intervals.

Initially, the QIF method repeats the first steps κ = 0 and κ = 1 of the LIF method
until the quadratic representation (33) is formed. At that point, the quadratic part
is, however, not linearized and the next step κ = 2 is started with

x
(2)
i (p) = pTQ

(2)
i p+ L

(2)
i p+ c

(2)
i , i = 1, ..., n. (47)

We now use the relationship

x(3)(p) = T (p)x(2)(p) + b0 +Bp = f (2)(p). (48)

As can be easily seen, each component f
(2)
i (p) of f (2)(p) is a cubic expression which

is written in the form

f
(2)
i (p) =

∑
j

Cij(pj)+Rij , Cij(pj) = aij0 +aij1 p
1
j +aij2 p

2
j +aij3 p

3
j , j = 1, ...,m (49)

where Rij regroups the remaining (quadratic, linear and mixed) terms. Now each j th
cubic term Cij(pj) is approximated outwardly by a corresponding quadratic interval
form so we get

q
(3)
i (p) = Q

(3)
i θi(p) + L

(3)
i p+ c

(3)
i + s

(3)
i . (50)
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At the next step for k = 3, the relationship

x(4)(p) = T (p)x(3)(p) + b0 +Bp (51)

is replaced with x(4)(p) = T (p)q (3)(p) + b0 +Bp = f (3)(p).
Now f (3)(p) again contains a cubic function which is anew approximated in a

quadratic manner. Evidently, this process of successively generating new cubic func-
tions and their subsequent quadratic approximation can continue for κ ≥ 3 so on
account of (50)

q
(κ)
i (p) = Q

(κ)
i θi(p) + L

(κ)
i p+ c

(κ)
i + s

(κ)
i , i = 1, ..., n (52)

Consider the range q (κ)(p) of the corresponding QI form q (κ)(p). Clearly, q (κ)(p)
is an interval vector having the properties

S(k) ⊂ q (κ)(p), (53)

q (κ)(p) ⊂ q (κ+1)(p). (54)

The distance between two such interval vectors (54) will be again assessed using (54).
Now we can formulate the main result of the subsection.

Theorem 4 Assume that the matrix A(0) is non-singular and the sequence {q(κ)(p)},
κ ≥ 1 is convergent in the sense of (54) to a limit {q(∞)(p)}. Then:

(i) the quadratic interval form

x(p) = q(∞)(p) = c(∞) + L(∞)p+Q(∞)ϕ(p) + s(∞), p ∈ p (55)

determines a QP solution to (1),
(ii) the interval vector

x = q(∞)(p) (56)

is an OI solution to (1),
(iii) the matrix A(p) is non-singular for each p ∈ p.

3.3 An algorithm

A method pertaining to the new class suggested in the present paper can be categorized
according to the following features:

A – iterative scheme employed:
A1 – fixed-point iterations on the p-solution x(p) of the non-preconditioned system

(27) according to (28) or
A2 – fixed-point iterations on the centered solution v(p) = x (p) − x(0) (25) of a

pre-conditioned system resulting in the iterative process (26) [12];
B – type of p-solution used:
B1 – LI form solution or
B2 – QI form solution. Each of the above methods can be implemented using an

appropriate algorithm. An algorithm for the method employing the characteristics A2
and B1 has been presented in [12].

We now sketch an algorithm for the method A1.B2 from Section 3.2.

Algorithm A1.B2
The algorithm starts with a preliminary stage where the components f

(1)
i (p) of f (1)(p)
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are obtained in the form the quadratic expressions (34). First, we find the affine form
(31), i.e. c(1) and L(1) by (31b), (31c). Next, c(2) and L(2) are computed by (32c),

(32d). Using these data, we compute the matrices Q
(2)
i and vectors L

(2)
i and c

(2)
i in

the quadratic form (33) and (34). The basic cycle of the algorithm is now initiated.

Step 1. Using (32b), (48) and (47), we find the coefficients a0, a1, a2 and a3 in the

cubic expressions Cij(pj) for every f
(2)
i (p) in (49).

Step 2. For i = 1, ..., n each cubic term is now enclosed by a corresponding QI
polynomial (using Procedure 1 given below)

q ij(pj) = q0ij + q1ijpj + q2ijp
2
j + sij , p ∈ [−1, 1]. (57)

Step 3. Replacing in (49) each Cij(pj) by (57), we obtain the corresponding QI

form q
(3)
i (p) in (50).

Step 4. Using (52) and (32b), find the corresponding cubic function Cij(pj) in

f
(3)
i (p).

The iteration process is resumed from Step 2 after renaming the index (k) of
the current iteration as (k − 1). The algorithm is terminated whenever the distance
between two successive iterations in (54) computed by (44) becomes smaller than a
threshold ε or the number of iterations reaches a limit value.

The outward approximation of the cubic function by a quadratic interval function
(57) can be done in the following way.

Procedure 1. We write Cij(pj) and q ij(pj) as

x(t) = a0 + a1t+ a2t
2 + a3t

3, t ∈ [−1, 1], (58)

q(t) = q0 + q1t+ q2t+ s, t ∈ [−1, 1], s = [−s, s] (59a)

and approximate (in Chebyshev sense) only the part y(t) = a1t+ a3t
3, t ∈ [−1, 1] of

x(t). Applying Procedure 1 from [5], Section 2.1, we get the LI form y(t) = y1t+ y , t ∈
[−1, 1], y1 = a1 + a3, t1 =

√
q1−a3
3a3

, sy = |q1t1 − y(t1)| (y is a symmetric interval of

radius sy). Finally, the QI approximation polynomial sought is given by (59a) if

q0 = a0, q1 = y1, q2 = a2, s = sy. (59b)

Remark 2. As is seen from the foregoing, obtaining a linear or quadratic p-solution
requires much more computational effort (especially for the quadratic form) than the
original interval method. Therefore, if the final objective consists in computing an
outer solution x of (1), the p-solutions should be computed and used only if x is not
narrow enough and an improved enclosure is needed. On the other hand, whenever
a global optimization problem (3), (1) is to be solved, the use of the p-solutions may
turn out to be a better choice (see Section 5).

4 Applications

To illustrate the potential of the new approach in globally solving optimization prob-
lems of type (3), we first consider the problem of determining the IH solution x∗ of
the LIP system (1). Other applications are given in Subsection 4.2 and Section 5.
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4.1 Solving the IH problem

We consider the problem of determining the component x∗k = [x∗k, x
∗
k] of the IH solu-

tion x∗ of the LIP system (1), confining ourselves to using the QIF method of Subsec-
tion 3.2. The value of x∗k is found as the global solution of the following optimization
problem:

x∗k = min eTk x (60a)

subject to the constraint
A(p)x = b(p), p ∈ p. (60b)

The computational scheme for solving (60) involves two basic phases at each iteration:
(i) find in p an upper bound xuk on x∗k, (ii) using xuk and a related constraint equation,
try to reduce the current domain p to a narrower domain p′ applying some constraint
satisfaction technique. The iterative process continues until the width of the current
domain becomes smaller than a given threshold εp.

In [12], the above two phases were both implemented using the iteration (26) and
the corresponding LP solution which results in a linear constraint equation. We now
show that the efficiency of the method based on the associated iteration (28) can be
improved by resorting to the related QP solution. Indeed, as can be easily seen, the
constraint equation is now nonlinear. Indeed, on account of (52b) the constraint is
(dropping the superscript (κ))

ck + Lkp+Qkϕ(p) + sk = xuk − e
(l)
k (61)

(e
(l)
k is the upper end of e

(l)
k ) which is rewritten as

Qkj0p
2
j0 + Lkj0pj0 + rkj0 = 0, pj0 ∈ pj0 (62)

where j0 is a chosen index, rkj0 is an interval combining the interval extensions of the
remaining terms j 6= j0. Equation (62) is put in the form p2j0 + 2bpj0 + c = 0 so

p
(1)
j0

= −b−
√
b2 − c, p

(2)
j0

= −b+
√
b2 − c (63)

if
c < b2. (64)

We now intersect p
(1)
j0

and p
(2)
j0

with pj0 to obtain (hopefully) a reduction of pj0 . This
approach seems to offer better possibilities to contract the current p as compared
to the known linear constraint technique in [12] (according to [2], Subsection 10.3
to Subsection 10.6, nonlinear constraints are more effective than linear ones). An
additional contracting effect appears whenever (64) is violated since c involves a sum
of quadratic expressions αjϕj(pj) for j 6= j0.

Remark 3. The above nonlinear constraint satisfaction technique is also possible,
to a lesser effect, in the framework of the LIF method from Subsection 3.1. Indeed,
at the last iteration for computing x (p), we can save the quadratic form (34) and use
it in exactly the same way as above.

4.2 Other applications

We next consider two problems of type (3) where the mapping gk is linear or quadratic.

Parametric linear programming (PLP)
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The PLP problem is formulated as follows [12]: given the linear parametric objec-
tive function

l(x, p) = cT (p)x (65)

(where ci(p) are, in general, nonlinear functions of p and the constraint

A(p)x = b(p), p ∈ p (66)

determine the range

l∗(A(p), b(p), c(p),p) = {l = cT (p)x : A(p)x = b(p), p ∈ p}. (67)

The PLP (65), (66) is a parametric generalization of the known interval linear pro-
gramming problem (e.g. [3]) where interval matrix A and interval vectors b, c are
involved.

Obviously, the end-points l∗ and l
∗

of the range l∗ can be determined as the global
solutions of the following two optimization problems

l∗ = min{l = cT (p)x : A(p)x = b(p), p ∈ p}, (68)

l
∗

= max{l = cT (p)x : A(p)x = b(p), p ∈ p}. (69)

The p-solution x (p) of (66) can be used for solving (68) in a similar way as this was
done for the case of the problem in Subsection 4.1. Thus, an iterative method can be
developed where l(x, p) is put in the form

l(x, p) =
∑
i

ci(p)x i(p), p ∈ p (70)

and exploited as a constraint at each iteration. Another possibility is to check mono-
tonicity conditions

∂l(x, p)

∂pi
=
∂ci(p)

∂pi
x i(p) + ci(p)

∂x i
∂pi

, p ∈ p. (71)

It should be stressed that unlike [12] where the LP solution (26) was used, now better
efficiency of (70) and (71) could be obtained if the QP versions from Subsection 2.2

related to the iterative scheme (26) or (28) are used to obtain x i(p) or d i(p) = ∂xi(p)
∂pi

.
It is worth mentioning the following special case

l(p) =
∑
i

cixi(p), p ∈ p, (72)

where ci are constraints. Obviously, the range l∗(p) provides an “interval hull” bound
on the projection of the united solution set of (66) along the line defined by the
coefficients ci.

We illustrate the new approach to solving the class of optimization problems (3)
using the example of the simple parametric linear programming (PLP) problem (72),
(66). More specifically, we seek an outer bound l on the range l∗(p).

Two approaches to computing l will be considered. The first one, referred to as
the standard approach, consists in using an outer solution x to (66) which is obtained
by a method not employing p-solutions. In this case the outer bound l is given as

l1 =
∑
i

cix i. (73)
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The second one is the new approach based on the use of the LP or QP solution of
(66). Now another outer bound l2 is computed as the range of

l(p) =
∑
i

cix i(p), p ∈ p, (74a)

that is

l2 = l(p). (74b)

To simplify the presentation, we confine ourselves to the LP solution (45) so

x i(p) = xci +
∑
j

Lijpj + [−si, si], p ∈ p, i = 1, ..., n. (75a)

(xci is the centre of x i(p)). From (74a)

l(p) = l0 +
∑
j

L0
jpj + s0[−1, 1], pj ∈ pj , (75b)

l0 =
∑
i

cix
c
i , L0

j =
∑
i

Lij , s0 =
∑
i

|ci|si. (75c)

But pj ∈ [−1, 1] so

l2 = l0 +

(∑
j

|L0
j |

)
[−1, 1] + s0[−1, 1]. (76)

It is logical to expect that l2 provides, in general, a narrower bound on l∗(p) than
l1. Indeed, (75) and (76) show that the interdependencies between pj in (74a) are
accounted for (in a linear manner) whereas they are completely ignored in (73). To
show quantitatively that (76) is superior to (73), we assume that x i in (73) are found

as the range of x i(p) in (75a). Then x i = xci +
(∑

j |Lij |
)

[−1, 1] + si[−1, 1], hence,

from (73)

l1 = l0 +

(∑
ij

|ci||L0
ij |

)
[−1, 1] + s0[−1, 1]. (77)

Let r1 = rad(l1) and r2 = rad(l2) (rad stands for radius) and consider

dr = r1 − r2. (78a)

As is seen from (76) and (77)

dr =
∑
ij

|cj ||L0
ij | −

∑
ji

|ciL0
ij | ≥ 0. (78b)

Therefore, it is advantageous to use the new approach.

Parametric quadratic programming (PQP)

In this case, the objective function is quadratic

f(x, p) =
1

2
xTQ(p)x+ cT (p)x, (79)



40 L. Kolev, A Class of Iterative Methods for p-Solutions

the constraint is the LIP system (66) and the problem is to determine the range f ∗ of
f(x, p) over p. Obviously, the end-points f∗ and f

∗
of f ∗ can be found as the global

solutions of

f∗ = min{f(x, p) : A(p)x = b(p), p ∈ p}, (80a)

f
∗

= max{f(x, p) : A(p)x = b(p), p ∈ p}. (80b)

The p-solutions of (66) can be used for solving (80) in a similar way as in the PLP
problem. Now (79) is written as

f (x, p) =
1

2
xT (p)Q(p)x (p) + cT (p)x (p), p ∈ p

and is exploited as a constraint propagation equation or modified monotonicity con-
dition.

It is worth mentioning the following two special cases of (79):

f(x, p) =

n∑
k=1

pkx
2
k(p), m = n, (81a)

and

f(x, p) =

n∑
k=1

x2k(p). (81b)

Problem (81a) arises in determining the dissipated active power in electric circuits
[10]. The latter problem (given in [12]) consists in determining the range of the length
squared of the vector x(p) whose components are xk(p).

5 An Example

To illustrate the new approach based on using p-solutions, we consider the problem
of determining an outer interval solution of: (i) a given LIP system and (ii) a simple
parametric linear programming (PLP) problem associated with the given LIP system.

5.1 Outer solution of a LIP system

The LIP system is [19], [12]

A(p)x = b(p), (82a)

A(p) =

 p1 p2 + 1 −p3
−p2 + 1 −3 p1
2− p3 4p2 + 1 1

 , b(p) =

 2p1
p3 − 1
−1

 (82b)

which can be written in the form (24b)

A(p) = A(0) +

3∑
µ=1

A(µ)pµ, b(p) = b(0) +Bp. (82c)

The outer solution x sought will be determined on the basis of the LP solution x (p)
obtained by the A2.B1 method from [12] (i.e. using the LI version of the iteration
(26)). The results of this method (referred to as method M2) will be compared with
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those of a known method [24] (referred to as method M1) for parametric intervals p
of variable width. Thus, we shall need parameter vectors (boxes) of the form

p(ρ) = p0 + ρ[−r0, r0], (83a)

where ρ is variable while

p0 = (0.5 0.5 0.5), r0 = (0.5 0.5 0.5). (83b)

To apply method M2, system (82) is first rewritten in an equivalent form to get the
interval parameters involved to be symmetric:

, A(0)) := A(0) +A(1)p01 +A(2)p02 +A(3)p03 =

0.5 1.5 −0.5
1.5 −3 0.5
1.5 3 1

 (83c)

b(0) := b(0) +Bp(0) = b(0) + b(1)p01 + b(2)p02 + b(3)p03 = (1 −0.5 −1)T (83d)

where b(µ) is the µth column of B. Thus, (83a) becomes

p(ρ) = ρr0[−1, 1] (84)

so
p′ = p(ρ) = [−r′, r′], r′ = γ[1, 1, 1], γ = 0.5ρ. (84a)

Now each A(µ) and b(µ) is multiplied by γ, i.e.

A(µ) := γA(µ), b(µ) := γb(µ), µ = 1, ...m (84b)

to obtain an equivalent form LIP system (82c), (83c), (83d) and (84b) where pµ =
[−1, 1].

We first choose ρ = 0.3. Using method M2, we determine the corresponding LP
solution

x (p) = xc + Lp+ [−s, s], p ∈ p, (85a)

xc =

 0.2964
0.0430
−1.5802

 , L =

 0.2363 −0.0231 −0.0741
−0.0133 0.0032 −0.0407
−0.3146 −0.0007 0.2778

 , s =

0.1143
0.0403
0.1767

 . (85b)

The outer solution of the (transformed) system (82) obtained by the LP solution (85)
will be denoted x (2) and is given as

x (2) = x (p). (86a)

From (85)

x (2) = ([−0.1514, 0.7442], [−0.0545, 0.1406], [−2.3501, −0.8104])T . (86b)

Next, we compute the outer interval solution x(1) of (82) using method M1:

x (1) = ([−0.2906, 0.8620], [−0.0894, 0.1846], [−2.5012, −0.6417])T (87)

It is seen that
x (2) ⊂ x (1) (88)

(the inclusion is meant component-wise).
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Table 1: Outer solution of the LIP system (82) to (84): comparison of the
enclosure tightness η12 and the computational efficiency τ21 of method M1 and
method M2 in function of ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.6
η12 = r1/r2 1.057 1.125 1.208 1.311 1.443 1.617
τ21 = t2/t1 1.319 1.864 2.200 2.896 3.080 3.759

To assess quantitatively the improvement of the new approach over the standard
one, we compare the largest components x

(2)
3 and x

(1)
3 of the respective outer interval

solutions using the following merit figure

η12 =
r1
r2

(89)

where r1 and r2 are the radii of the corresponding components intervals. It is seen
from (86b) and (87) that for ρ = 0.3 the quotient r1/r2 = 1.208.

The dependence of η12 on ρ for ρ = 0.1 up to ρ = 0.6 is given in the second row
of Table 1. In the third row, data on the relative computational efficiency of the two
methods involved are provided, measured by

τ21 =
t2
t1

(90)

where t1 and t2 are the computer times needed by the respective method to compute
x . As expected, method M2 has better enclosure efficiency (r2 < r1) than method M1
at the cost, however, of larger computational expenses.

We also compare the applicability radii ra(M2) and ra(M1) of the respective meth-
ods M2 and M1. In accordance with [11], we approximately determine each ra by
letting ρ increase with an increment ∆ρ until inapplicability of the method is reached.
Choosing ∆ρ = 0.001, we have obtained ra(M2) = 0.738 (M2 becomes inapplicable
for ρ = ra(M2) + ∆ρ = 0.739). In a similar way, we have ra(M2) = 0.744. It is seen
that the two methods have comparable applicability radii.

5.2 Outer solution of a PLP problem

We consider the PLP problem (65), (82) for the special case where

cT = (1, 1, 1), (91)

seeking an outer bound l on the range l∗(p). As in Subsection 5.1, we apply methods
M1 and M2 to obtain the respective bounds l1 and l2. On account of (73), (74), (82)
and (91), the results for ρ = 0.3 are

l1 = [−2.8811, 0.4049], (92a)

l2 = [−1.8473, −0.6343]. (92b)

It is seen that

l2 ⊂ l1. (93)
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We show that the above inclusion remains valid for variable ρ using an analogous figure
merit (89) where now r1 and r2 are the radii of the respective intervals l1 and l2. The
related data are given in the second row of Table 2. It is also shown that the better
enclosure efficiency of method M2 is achieved at the cost of higher computational effort
(third row of the table).

Table 2: Outer solution of the PLP problem (72), (82) and (91): comparison of
the enclosure tightness η12 and the computational efficiency τ21 of methods M1
and M2 in function of ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.6
η12 = r1/r2 3.222 2.943 2.709 2.510 2.339 2.189
τ21 = t2/t1 1.401 1.978 2.350 2.903 3.160 3.819

A better but more costly outer bound l∗1 on the range l∗(p) can be obtained if l1
defined by (73) is replaced with

l∗1 =
∑
i

cix
∗
i (94)

where x∗i are the components of the interval hull solution x∗ to (66). It turns out
that, up to a certain width of p, l2 is narrower even than l∗1. To show this, we fix
ρ = 0.3 and find an approximate interval hull solution xa of (82) (in fact, an inner
hull estimation) using the Monte-Carlo method for N = 106 trials

xa = ([0.0218, 0.6929], [−0.0174, 0.1043], [−2.2533, −1.0510])T . (95a)

From (91) and (94)

la1 = [−2.2487, −0.2508]. (95b)

Now (89) is replaced by

ηa =
rad(la2)

rad(la1)
(95c)

so

ηa = 1.64. (95d)

It is seen that the new approach leads to a better result even in the case where the
narrowest possible interval l∗1 has been used to compute η. It is important to underline
that the narrower outer solution l2 of the PLP problem considered is achieved in spite
of the fact that x (2) is broader than x∗.

The datum related to ρ = 0.3 is reported in the fourth column of Table 3.

Next, we show the dependence of ηa on ρ. As seen from the data in Table 3, the
improvement in the enclosure tightness is significant for lower values of ρ and decreases
as ρ grows. Starting from roughly ρ = 0.45, the use of the corresponding hull solutions
x∗ is preferable since rad(l∗1) < rad(l2).

It should be noted that the enclosing efficiency of the new approach as compared
to the standard approach will be enhanced for the general form LPL problem (65)
where the coefficients ci(p) in the cost function depend on p.
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Table 3: Outer solution of the PLP problem (72), (82) and (91): comparison of
the enclosure tightness ηa of the outer solution l2 and the solution la1 in function
of ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.6
ηa 2.78 2.17 1.64 1.21 0.82 –

6 Conclusion

A class of iterative methods for determining a p-solution x (p) of the LIP systems (1)
has been suggested in Sections 2 and 3. The methods pertaining to this class differ
in the chosen iterative scheme (26) or (28), on the one hand, and the employed form,
linear parametric (2) or quadratic parametric (5), on the other. As an illustration,
two new specific methods for determining x (p), based on the simple iterative process
(28) and linear or quadratic forms, have been suggested in Subsection 3.1 and 3.2,
respectively. The latter methods circumvent the need for inverting the real midpoint
matrix A0 and, therefore, may be better than the previous method of [12] for large-size
sparse LIP systems (1).

Two applications of the new approach are mentioned in Subsections 4.1 and 4.2. A
numerical example (Section 5) referring to the simple linear parametric programming
problem (72), (82) illustrates the potential of the new approach to solving parametric
global optimization problems of the type (3), (1).

Presently, the methods for computing p-solutions require much more computa-
tional effort (especially for the quadratic form (5)) than their interval parametric but
non-parameterized counterparts. Therefore, future research should focus on the de-
velopment of new computationally more efficient methods yielding x (p). One such
possibility is to take into consideration some special features of system (1). Thus, an
iterative method for LP or QP solutions might be constructed in the case where the
matrix A(p) of the LIP system at hand has the specific structure of [15], modifying
the original method of [15]. Also, a direct method for computing a LP solution can be
suggested, which is based on the known direct method of [24] proposed for computing
a standard outer interval solution x of (1).

The basic unifying property of the iterative methods suggested in the present paper
is the fact that the successive iterations of the p-solution are expanding. An interesting
alternative is to construct iterative schemes where the iterations are contractive. The
p-solution form version [13] of the direct method [24] can be used as an initial iteration.
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