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Abstract

We apply interval analysis to a practical problem of estimation of
confluent (merged) parameters of a chemical process under the following
uncertainty conditions: the process measurements are noisy (corrupted),
the probability characteristics of measuring bounded errors are absent, the
measurement sample is fatally short, and only approximate a priori inter-
vals of the parameters are available. Our algorithm uses a model function
describing the chemical process and produces a containment set of admis-
sible values of the parameters with an exact description of its boundaries
in comparison with the known parallelotope estimation approach.
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1 Introduction

In the paper, we consider a practical problem of processing data obtained in a chemical
experiment. We investigate the change in some reagent activity vs. the temperature
to estimate a set of admissible values of the process parameters. The process is de-
scribed by a simple second order polynomial. However, there are serious constraints.
Estimation has to be performed under uncertainty conditions: the process activity
measurements are noisy (corrupted) with a bounded error whose probability char-
acteristics are completely absent, the measurement sample is fatally short, and only
approximate a priori intervals of the parameters are available. Further, the three pa-
rameters of the process enter into the description function not separately, but merged
way into one confluent parameter. As a result, estimation of the set of admissible
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values of the parameters by standard statistical methods (for example, [2, 3, 4]) is
difficult or impossible.

We consider an approach based on interval analysis (see [6, 7, 18]). Results are
presented in the form of a set of admissible values of parameters with an exact de-
scription of its boundaries. As it is customary in interval analysis, uncertainties in
measurements are captured by intervals. We seek a set containing parameter values
of a certain chemical reaction capturing dependencies on these uncertainty intervals.

Peculiarities of the problem (a simple describing convex function having an inverse
and the presence of a priori intervals for parameters) allowed us to adjust standard
interval algorithms. As a result, simple and fast algorithms for direct construction of
a containment set were used successfully for many chemical experiments.

In the well-known parallelotope estimation approach (see, for example, [7] and the
powerful SIVIA algorithms presented there), the set boundaries are estimated by a
large collection of small parallelotopes. In our approach, the containment set is rep-
resented by a collection of its two-dimensional cross-sections with an exact analytical
description of their boundaries.

The goal of this work is further development of a new approach for processing
the above-mentioned experimental data. The paper has the following structure. In
Section 2, the process, its peculiarities, and the input data are described. Section 3
is devoted to interval analysis ideas and the problem formulation. In Section 4, we
consider an algorithm for solving the problem and elaborated applied procedures. Sec-
tion 5 presents results of computation of a containment set of the process parameters.
In Section 6, conclusions of the work are given.

2 Experimental Process and Input Data

The description of a reagent activity vs. the temperature has the form (see [13, 14]).

P (T, a, b, c) = T 2 a b/c, a > 0, b > 0, c > 0, (1)

where T is the temperature (the argument), in ◦C; P (·) is the reagent activity, a
dimensionless value; a, b, and c are parameters to be estimated with dimensions mole,
1/mole, and (◦C)2, respectively. Measurements of the experiment are presented as the
collection of N measurements of the reagent activity P ,

{Tn, Pn}, n = 2, N, (2)

where the time values Tn are assumed to be know exactly, but the activity values Pn

are measured with bounded error (noise),

Pn = P ∗
n + en, |en| ≤ emax, n = 2, N, and for T1 = 0, P1 = 0, (3)

where Pn is a noisy measurement; P ∗
n is an unknown true value; en is the error in the

nth measurement; and emax is the bound of the maximal (by modulus) value of the
error. By physical reasoning, the conditional exact initial measurement P1 at T1 = 0
is zero.

Conditions for estimation:

• No probabilistic information on errors is known;

• the sample is fatally short: N ≈ 5− 7 measurements only;
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• in (1), parameters a, b, and c are merged, meaning that it is impossible to
estimate of their admissible intervals without some additional information;

• from theoretical estimations and previous experience, only approximate rough
a priori interval constraints on possible values of the coefficients are available:

aap = [aap,aap], bap = [bap, b
ap

], cap = [cap, cap],

0 < aap < aap, 0 < bap < b
ap
, 0 < cap < cap.

(4)

The LSQM curve and pointwise estimation of parameters a, b, and c, and their
practically meaningless “cloud-built” intervals can be calculated by only formal appli-
cation of standard statistical procedures [2, 3, 4].

3 Interval Approach and Problem Formulation

Ideas and methods of interval analysis theory and application arose from the fundamen-
tal, pioneering work of L.V. Kantorovich [8]. Currently, many researchers have written
very effective developments of the theory and computational methods, e.g., [5, 6, 7]
and in Russia [17, 18, 19, 23]. Special interval algorithms have been developed for es-
timating parameters of experimental chemical processes [1, 10, 11, 12, 13, 14, 15, 16].
The essence of this “reliable computing” branch of numerical methods theory and
application consists of the estimation of parameters under bounded errors (noise or
perturbations) in the input information to be processed, and with no further assump-
tions on the probabilistic characteristics of the errors.

We need the following definitions, using standard interval notation [9].

The uncertainty set (interval) of each measurement (USM) is the interval of values
of a measured process consistent with the measurement and the error bound,

Hn = [hn, hn] : hn = Pn − emax, hn = Pn + emax, n = 2, N. (5)

H1 = H(0) is a thin interval (zero width), since the reagent activity is zero by a
physical condition at T = 0.

The admissible value of the parameter vector and corresponding admissible curve
is

(a, b, c) : P (Tn, a, b, c) ∈Hn, for all n = 1, N. (6)

The containment set (in Russian terminology an information set) is a totality of
all admissible values of the parameter vector satisfying the system of interval inequal-
ities (6)

I(a, b, c) =
{

(a, b, c) : P (Tn, a, b, c) ∈Hn, for all n = 1, N
}
. (7)

Because of the very short length of the measurements sample, the absence of prob-
abilistic characteristics of the errors, and measurements uncertainty, it is impossible to
use (with any good reasoning) the standard statistical methods [2, 3, 4] for constructing
the containment set from (7).

Problem formulation: Using interval methods, we built the containment set I(a, b, c)
of admissible values of coefficients a, b, and c consistent with the described data.
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4 Scheme of Solving and Applied Procedures

There are several approaches to solve system (6) of the interval inequalities:

• classic linear programming methods [8] and many others;

• application of parallelotopes method of Fiedler M., et al [5], Hansen [6], Jaulin,
et. al [7], Shary [18];

• “stripes” method of Shary and Sharaya [19], Sharaya [17], Zhilin [23].

The function (1) that describes our chemical process is simple. It is convex, it
has an inverse, and the dimension of the parameter vector is only three. Hence, a
more convenient and faster direct grid-analytical method has been developed for con-
structing the containment set of parameters; see details in Kumkov and co-authors [1,
10, 12, 13, 14, 16]. This method gives an exact representation of boundaries of the
containment set (7) cross-sections in two parameters for each node of the grid for the
third parameter.

To emphasize, we represent the set I(a, b, c) in the form of a collection of its two-
dimensional cross-sections

{
Ia(b, c)

}
for nodes of the grid on the parameter a in its a

priori aap or possible minimal outer a∗ interval of admissible values. The boundaries
of each cross-section Ia(b, c) are described exactly and analytically.

It is useful to compare our approach with one used in the SIVIA-type programs of
Jaulin, et al [7]. Their approach is based on an outer approximation of the boundaries
of the containment set by a collection of parallelotopes. Their method is universal and
applicable to any type of function describing the process under investigation. However,
a multi-dimensional space of parameters with stringent accuracy requirements leads
to very large collection of small parallelotopes and expensive computations.

In contrast, our approach is not universal. It is adjusted for linear dependencies
on estimated parameters, and it applies hybrid grid-set techniques. It describes exact
analytical boundaries of the containment set cross-sections. Moreover, representation
of the containment set as a collection of its cross-sections demands substantially fewer
computations in practical problems with a low dimensional parameter space.

We solve three auxiliary problems:

1. Introducing the auxiliary merged parameter g = ab/c, with c > 0, its contain-
ment interval g = [g, g] is calculated [13, 14].

2. If d = b/c, the interval equation ad = g is solved w.r.t. the auxiliary parameter
d as d = g/aap. As a result, in the plane a× d, we obtain the containment set
I(a, d) with the curve (hyperbolic) lower Frd(a) and upper Frd(a) boundaries
as a functions of the parameter a values from its a priori interval aap.

3. For each value a ∈ aap, we have the interval d(a). We construct the containment
set Ia(b, c) of admissible values for parameters b and c for each admissible value
of the parameter a. As a result, having a grid in the interval aap (in its possible
enhanced minimal outer interval a∗), the containment set I(a, b, c) is built as a
collection {Ia(b, c)} of its two-dimensional cross–sections.

5 Computation Results

For investigation, values of the true model parameters (Fig. 1) were given as amd = 2.0
mole, bmd = 1/140 mole−1, cmd = 100 (◦C)2, and corresponding gmd = 1.4285× 10−4

1/(◦C)2. The bound on the measurement error is emax = 0.1 (dimensionless). The
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number of measurements is N = 7; the sample has values (corresponding to numbers
n = 1, 7) of temperature Tn and activity Pn: (0, 0), (15, 0.0076), (25, 0.096), (35,
0.191), (45, 0.217), (60, 0.474), and (75, 0.858) of dimensions ◦C and dimensionless,
respectively. The approximate a priori intervals were given as aap = [1.8, 2.2] mole,
bap = [1/160, 1/120] mole−1, and cap = [80, 130] (◦C)2.

Figure 1 shows the input measurements, their uncertainty sets Hn, the true model
curve, and the LSQM curve. For emax, the LSQM curve is admissible in the interval
sense.

Solution of auxiliary Problem 1. For the initial point-wise uncertainty set H1 and
each uncertainty set Hn, n = 2, 7, the partial containment interval G1,n = [g

1,n
, g1,n]

is calculated (Fig. 2),

n = 2, 7, g
1,n

= hn/T
2
n , g1,n = hn/T

2
n . (8)

The resulting containment interval I(g) of the merged parameter g is obtained by
intersecting the partial intervals G1,n (Fig. 2),

I(g) = ∩n=2,7G1,n. (9)

We calculate the a priori interval gap of the parameter g and compare it with
the interval I(g) for analysis of consistency of the a priori data (4) on parameters a,
b, and c with the given sample of measurements (2) and (3). The data is consistent
if the interval I(g) has non-empty intersection with the a priori interval gap of this
parameter (Fig. 2, case a). Otherwise (Fig. 2 case b), the sample and the a priori
data are inconsistent.

The solution of the auxiliary Problem 1 and the tube of admissible dependen-
cies (shaded) are shown in Fig. 3. They overlap, so we conclude that the sample is
consistent for the given value emax.

The well-known interval analysis procedure [20, 21, 22] of regulation of the bound
emax in (2) and (3) allows one to estimate from below the maximal value e∗max of the
actual error level in the sample to be processed.

The approximate initial value was einitmax = 0.1 (dimensionless), and the estimated
interval was I(g) = [1.34, 1.59]×10−4 1/(◦C)2. In the limit, the estimate has the value
e∗max = 0.0457 (dimensionless), and the limiting point value of the merged parameter
is g∗ = 1.449 × 10−4 1/(◦C)2. In this case, the tube of admissible dependencies
degenerates to only one curve corresponding to the value g∗.

Solution of auxiliary Problem 2. The containment set I(a, d) of parameters a and
d for d = b/c is presented in Fig. 4. Again, we can analyze the consistency of a priori
data with the measured ones. In Figure 4, the a priori interval dap of the auxiliary
parameter d, shown as the thick dash-dotted vertical segment, has been calculated
from the a priori intervals bap and cap. The thick vertical line in dashes marks the
outer interval of I(a, d) in d for the a priori interval aap. A non-empty intersection of
these two intervals implies the consistency of the a priori data (4) for parameters a,
b, and c with the given sample of measurements.

In the case of a wider a priori interval aap, the solution of Problem 2 from our
interval approach enhances (tightens) both the output containment set from I(a, d) to
I∗(a, d) (Fig. 5, shaded) and the initial interval aap = [1.27, 3.38] mole of parameter
a to a tighter a∗ = [1.32, 3.21] mole.

Solution of auxiliary Problem 3. Our calculated containment set Ia(b, c) of
parameters b and c for the fixed value a = 1.89 mole is shown in Fig. 6, built by
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intersecting the a priori rectangle bap×cap (or with possible enhanced intervals) with
the cone between the lower c(b, 1/d(a) and upper c(b, 1/d(a) rays for each a ∈ aap and
b ∈ bap. Here, the set Ia(b, c) (the shaded five-vertex polygon) is shown for the value
a = 1.89 mole, with the corresponding interval d(1.89) from our solution of Problem 2.

Finally, the output containment set I(a, b, c) is built as the collection {Ia(b, c)} of
its two-dimensional cross-sections shown in Fig. 7.

6 Conclusions

We have considered an estimation problem with confluent (merged) parameters with-
out probabilistic characteristics of the measuring errors. Our interval approach allows
us to analyze the consistency of the given sample of measurements itself, to analyze
the consistency of the given sample of measurements and the given a priori data, and
to construct the enclosing set of admissible values of parameters. Our algorithms allow
a simple numeric implementation. In special cases, they can give exact estimations of
the containment set, and they are faster than previous interval approaches based on
parallelotopes.
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