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Abstract

This paper considers intervals of real matrices with respect to partial
orders and the problem to infer from some exposed matrices lying on the
boundary of such an interval that all real matrices taken from the interval
possess a certain property. In many cases such a property requires that
the chosen matrices have an identically signed inverse. We also briefly
survey related problems, e.g., the invariance of matrix properties under
entry-wise perturbations.

Keywords: Matrix interval, vertex matrix, entry-wise perturbation
AMS subject classifications: 15B48, 15B35, 15B57

1 Introduction
In this paper we consider intervals [A] = [A,A] of real n × n-matrices with respect
to the usual entry-wise partial order and to the checkerboard partial order which is
obtained from the entry-wise order by reversing the inequalities between the entries of
A and A in a checkerboard pattern. We call a real matrix A a vertex matrix of [A] if
its entries are entries of the matrices A and A. We survey solutions to the problem to
infer from some vertex matrices of [A] that all matrices taken from this matrix interval
possess a certain property. We do not consider related characterizations which require
matrices which may not be vertex matrices, e.g., the midpoint matrix of [A]. It turns
out that in many cases such a property requires that all minors of fixed order, k say, of
the exposed vertex matrices have an identical sign. As a consequence, if k = n−1 they
have an identically signed inverse. Such matrices are intimately related to bases of
functions with optimal shape-preserving properties used in computer aided geometric
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design, see, e.g., [36].

The organization of our paper is as follows: In Section 2 we introduce our notation
and matrix intervals. In Section 3 we present matrix properties which can be inferred
from two vertex matrices of the matrix interval and in Section 4 properties which
require in general more than two vertex matrices. We conclude our paper in Section 5
with a brief survey of some related problems, e.g., the persistence of matrix properties
under entry-wise perturbation.

2 Notation and Matrix Intervals

2.1 Notation
We now introduce the notation used in our paper. For κ, n we denote by Qκ,n the set
of all strictly increasing sequences of κ integers chosen from {1, 2, . . . , n}. Let A be a
real n×n matrix. For α = (α1, α2, . . . , ακ), β = (β1, β2, . . . , βκ) ∈ Qκ,n, we denote by
A[α|β] the κ× κ submatrix of A contained in the rows indexed by α1, α2, . . . , ακ and
columns indexed by β1, β2, . . . , βκ. We suppress the brackets when we enumerate the
indices explicitly. If α and β are formed from consecutive rows and columns we call the
submatrix A[α | β] and detA[α | β] contiguous. When α = β, the principal submatrix
A[α | α] is abbreviated to A[α] and detA[α] is called a principal minor. In the special
case where α = (1, 2, . . . , κ), we refer to the principal submatrix A[α] as the leading
principal submatrix (and to detA[α] as the leading principal minor) of order κ. We
reserve throughout the notation A∗ := JAJ , where J := diag (1,−1, . . . , (−1)n+1),
and A# := SAS, where S = (sij) is the anti-diagonal matrix with sij := δn+1−i,j ,
i, j = 1, . . . , n. The absolute value of vectors and matrices is understood entry-wise.

2.2 Matrix Intervals
Let Rn,n be endowed with a partial order �. We consider (matrix) intervals [A]� =
[A,A]� with respect to �, i.e.,

[A]� = [A,A]� =
{
A ∈ Rn,n | A � A � A

}
, (1)

where A � A with (A)ij = aij , (A)ij = aij , i, j = 1, . . . , n. If the underlying partial
order is clear from the context we suppress the explicit reference to it.

By I(Rn,n) we denote all matrix intervals with respect to �. A vertex matrix of [A]
is a matrix A = (aij)ni,j=1 with aij ∈

{
aij , aij

}
; A and A are called the corner matrices.

Let V be a fixed set of vertex matrices. We say that a set S of matrices has
the interval property (with respect to V ) if [A] ⊂ S whenever V ([A]) ⊂ S. Here it
is implicitly understood that S ⊂ Rn,n for an arbitrary, but fixed n. In the sequel
we abbreviate ”interval property” by ”IP” when referring to a specified property. We
extend properties of real matrices to matrix intervals by saying that a matrix interval
has a certain property if each real matrix contained in it possesses this property.
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3 Matrix Properties Which Can Be Inferred
from Two Vertex Matrices

In this section we consider n × n matrix intervals [A] = [A,A] with respect to the
usual entry-wise partial order and the closely related checkerboard partial order. The
interval property refers in both cases to V ([A]) =

{
A,A

}
.

3.1 Matrix Intervals with Respect to the Usual Entry-wise
Partial Order

In this subsection the partial order is the usual entry-wise partial order ≤, i.e., the
inequality A ≤ B between A,B ∈ Rn,n is understood entry-wise. Likewise the strict
inequality A < B is understood entry-wise. Each matrix interval [A] = [A,A] can also
be represented as an interval matrix, i.e., as a matrix with entries taken from the set
of the compact nonempty real intervals, i.e.,

[A] = ([aij , aij ])
n
i,j=1. (2)

The first known (nontrivial) interval property concerns inverse nonnegative matrices
(also termed inverse positive matrices, see, e.g., [32], and monotone matrices, see, e.g.,
[30]).

Definition 3.1. A matrix A ∈ Rn,n is called inverse nonnegative if A is nonsingular
and 0 ≤ A−1; it is an M-matrix if it is inverse nonnegative and all its off-diagonal
entries are nonpositive.

IP 3.1.1 [30, Corollary 3.5]: The inverse nonnegative matrices have the interval
property.

IP 3.1.1 can also be found in [33, Bemerkung 1.2 (v) (a), p.15]. It seems that
Metelmann found this result independently of Kuttler ([30] appeared in April 1971,
Kurt Metelmann has submitted his dissertation [33] most probably at the end of year
1971 or at the beginning of 1972). In [38, Theorem 4.6] an extension of IP 3.1.1 to
more general sign patterns of the inverse matrix is presented. This interval prop-
erty involves two vertex matrices of type Ayz which will be introduced in Subsection
4.2. These sign patterns include the checkerboard like sign pattern, see Subsection 3.2.

We note the following immediate consequence of IP 3.1.1.

IP 3.1.2 [33, pp.27, 32, and 37]: The following three sets of inverse nonnegative
matrices have the interval property:

a) The matrices whose leading principal submatrices are all inverse nonnegative
(or equivalently, see [33, Satz 1.8], allow an LDU factorization, where L and U
are lower and upper triangular matrices with unit diagonal and D is a diagonal
matrix, all being inverse nonnegative);

b) the matrices whose contiguous principal submatrices are all inverse nonnegative;
c) the matrices whose principal submatrices are all inverse nonnegative.
The matrices considered in IP 3.1.2 c) are just the M -matrices, see [33, Satz 1.16].

So the M -matrices have the interval property; this result can be sharpened in the
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way that it suffices that the matrix A is solely supposed to have only nonpositive off-
diagonal entries (without the assumption of being inverse nonnegative), see, e.g., [9,
p.119]. Historically, IP 3.1.2 c) has also been found when studying systems of linear
interval equations, see, e.g., [9].

3.2 Matrix Intervals with Respect to the Checkerboard
Partial Order

In this subsection we employ the checkerboard partial order which is closely related
to the partial order considered in Subsection 3.1.

Definition 3.2. We define the checkerboard partial order ≤∗ as follows: For A,B ∈
Rn,n

A ≤∗ B :⇔ A∗ ≤ B∗. (3)

Each matrix interval [A] = [A,A]≤ with respect to the partial order ≤ can be
represented as a matrix interval [↓ A, ↑ A]≤∗ with respect to the checkerboard partial
order and vice versa. The two corner matrices ↓ A, ↑ A are given by

(↓ A)ij =
{
aij
aij

}
, (↑ A)ij =

{
aij
aij

}
if i+ j is

{
even
odd

}
.

In this subsection we consider the following matrices. Let ε = (ε1, . . . , εn) be a
signature sequence, i.e., ε ∈ {1,−1}n. The matrix A is called strictly sign regular (ab-
breviated SSR henceforth) and sign regular (abbreviated SR) with signature ε if 0 <
εκ detA[α|β] and 0 ≤ εκ detA[α|β], respectively, for all α, β ∈ Qκ,n, κ = 1, 2, . . . , n. If
A is SSR (SR) with signature ε = (1, 1, . . . , 1), then A is called totally positive (abbre-
viated TP ) (respectively, totally nonnegative (abbreviated TN)). If A is SSR (SR)
with signature ε = (−1,−1, . . . ,−1), then A is called totally negative (abbreviated
t.n.) (respectively, totally nonpositive (abbreviated t.n.p.)). If A is in a certain class
of SR matrices and in addition also nonsingular then we affix Ns to the abbreviation
of the name of the class.

Following [23], we call a minor trivial if it vanishes and its zero value is determined
already by the pattern of its zero-nonzero entries. We illustrate this definition by the
following example. Let

A :=

( ∗ ∗ ∗
0 ∗ 0
0 ∗ ∗

)
,

where an asterisk denotes a nonzero entry. Then detA[2, 3|1, 2] and detA[1, 2|1, 3] are
trivial, whereas detA and detA[1, 2|2, 3] are nontrivial minors.

Definition 3.3. [23, Definition 8] Let A ∈ Rn,n and ε = (ε1, . . . , εn) be a signature
sequence. If for all the nontrivial minors

0 < εk detA[α | β] for all α, β ∈ Qk,n, k = 1, . . . , n, (4)

holds, then A is called almost strictly sign regular (abbreviated ASSR) with signature
ε. If ε = (1, . . . , 1), then A is called almost totally positive (ATP ).
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For properties of the NsASSR matrices, in particular, a restriction of the condi-
tion (4) to the nontrivial contiguous minors, see [23]. For a new characterization of
ATP matrices, see [2, 4].

We present now some classes of SR matrices which possess the interval property.
In each case it is implicitly understood that the two corner matrices have the same
signature.

We note a consequence of IP 3.1.1, see also [12, Subsection 3.2], [37, Subsection 3.2].

IP 3.2.1 [15, Theorem 1]: The SSR matrices with a fixed signature ε have the
interval property; in particular, the sets of the TP and the t.n. matrices have the in-
terval property.

In [8, Theorem 4.3] we apply IP 3.2.1 to derive a vertex result on the persistence
of the number of poles (which are exclusively positive) of the entire family of rational
functions, the numerator and denominator of which are both interval polynomials.

In relaxing the strict sign condition, we obtain the following two classes of SR
matrices possessing the interval property.

IP 3.2.2: The following two sets have the interval property:
a) The NsASSR matrices with a fixed signature ε [7, Theorem 5.5] [17, Theorem

1 for ε = (1, . . . , 1)];
b) the tridiagonal NsSR matrices with a fixed signature ε [7, Theorem 5.11] [15,

Theorem 4 for ε = (1, . . . , 1)].
Each SR matrix can be arbitrarily closely approximated by SSR matrices, see,

e.g., [14, Satz 17, p.311]. Furthermore, this approximation can be accomplished in
a two-sided way with respect to ≤ [15, Lemma 2]. Therefore, the nonsingularity
assumption can be dropped.

Theorem 3.1. [15, Theorem 2] Let [↓ A, ↑ A] ∈ I(Rn,n) be such that
either

∀ i, j ∈ {1, . . . , n} aij = aij ⇒ i+ j is even,

or

∀ i, j ∈ {1, . . . , n} aij = aij ⇒ i+ j is odd.

Then the following two statements are equivalent:
(i) [↓ A, ↑ A] is SR (respectively, NsSR) with the same signature.
(ii) ↓ A, ↑ A are SR (respectively, NsSR) with the same signature.

The rather obscure condition on the parity of the sum of indices means that en-
tries with no variation have either an even or an odd index sum. This condition stems
from the construction of a sequence of approximating intervals with respect to the
checkerboard partial order. If this condition is removed the interval property does not
hold. In [15] it was conjectured that the interval property holds in the TN case if the
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assumption of the nonsingularity of the matrices ↓ A and ↑ A is added (then by IP
3.1.1 the matrix interval [↓ A, ↑ A] is nonsingular). Subsequently, the interval property
has been established for some subclasses of the NsTN matrices. The conjecture was
finally settled in [3] by making use of the so-called Cauchon algorithm [20, 31]; for a
compressed form and further properties of this algorithm see [2, 4].

IP 3.2.3: The following sets of matrices have the interval property:
a) The NsTN matrices [3, Theorem 3.6];
b) the NsTN matrices with a fixed pattern of their zero-nonzero minors [3, Theo-

rem 3.4];
c) special NsTN band matrices arising, e.g., in the discretization of certain bound-

ary value problems [33, 34].
In [8, Theorem 3.6] we apply IP 3.2.3 a) to derive a new sufficient condition for

the Hurwitz stability of an interval family of polynomials.

In some instances, the assumption of nonsingularity in IP 3.2.3 a) can be relaxed.

Theorem 3.2. [3, Corollary 3.7] Let [↓ A, ↑ A] ∈ I(Rn,n) and Z ∈ [↓ A, ↑ A]. If
↓ A and ↑ A are TN and ↓ A[2, . . . , n] or ↓ A[1, . . . , n − 1] is nonsingular, then Z is
TN .

IP 3.2.4 [3, Corollary 3.8]: The tridiagonal TN matrices have the interval prop-
erty.

Now we present related results for the t.n.p. matrices.

IP 3.2.5 [7, Theorem 5.7]: The Ns.t.n.p. matrices A with ann < 0 have the inter-
val property.

In passing over to A# and back, IP 3.2.5 remains in force if we replace the condition
ann < 0 by a11 < 0. By [7, Remark 1] the assumption of the negativity of ann (and
a11) is not necessary. The following theorem shows that the nonsingularity assumption
in IP 3.2.5 can be relaxed.

Theorem 3.3. [7, Corollary 5.8] Let [↓ A, ↑ A] ∈ I(Rn,n), Z ∈ [↓ A, ↑ A], ↓ A and
↑ A be t.n.p. with ann < 0, and

(i) ↓ A[2, . . . , n] nonsingular and a11 < 0,
or
(ii) ↓ A[1, . . . , n− 1] nonsingular.

Then Z is t.n.p.

If A is a NsSR matrix with signature ε = (ε1, . . . , εn), then SA and −A have
signatures ((−1)

i(i−1)
2 εi) and ((−1)iεi), respectively. This fact can be used to identify

further sets of the NsSR matrices exhibiting the interval property.

IP 3.2.6 [2, Theorem 4.10]: The NsSR matrices with each of the following signa-
tures ε = (εi)ni=1 have the interval property:

(i) εi = (−1)i,
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(ii) εi = (−1)
i(i−1)

2 ,

(iii) εi = (−1)
i(i+1)

2 ,

(iv) εi = (−1)i+1,

(v) εi = (−1)
i(i−1)

2 +1,

(vi) εi = (−1)
i(i+1)

2 +1.

Based on the variety of subclasses of the NsSR matrices which possess the interval
property we were led to the following conjecture. For a partial result in favor of this
conjecture see IP 4.3.

Conjecture 3.1. The set of the NsSR matrices with a fixed signature has the interval
property.

We conclude this section with two classes of matrices which are considered in [1]
and called SDB and SSDB matrices. Let (ε1, ε2, . . . , εn−1) be a signature sequence
and let K := diag (k1, k2, . . . , kn) be the diagonal matrix with

k1 := 1, kj := ε1 · ε2 · · · εj−1, j = 2, . . . , n.

Barreras and Peña showed via the matrix K that the SBD and SSDB matrices are
signature similar to the NsTN and TP matrices, respectively [1, Theorem 1]. From
this property they obtained directly by using IP 3.2.1 and IP 3.2.3 a) the following
theorem.

Theorem 3.4. [1, Theorems 3 and 11] Let A,B,Z ∈ Rn,n and (ε1, ε2, . . . , εn−1) be a
signature sequence. If KAK ≤∗ KZK ≤∗ KBK and A and B are (S)SBD matrices
with the signature sequence (ε1, ε2, . . . , εn−1), then Z is a (S)SBD matrix with the
same signature sequence.

4 Matrix Properties Which Require in General
More than Two Vertex Matrices

In this section we consider instances in which the interval property requires in general
more than two vertex matrices. The underlying partial ordering is the usual entry-wise
partial order.

4.1 Properties Requiring at Most 2n2−n or 2(n2−n)/2 Vertex
Matrices

a) Inverse M-Matrices:

Definition 4.1. A matrix A is an inverse M -matrix if it is nonsingular and A−1 is
an M-matrix.

For properties and examples of these matrices the reader is referred to [24, 26].
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IP 4.1 [25, Theorem, p.241], see also [26, Theorem 9.7]: The set of the inverse
M-matrices has the interval property with respect to all vertex matrices.

In [25] examples of matrix intervals are presented which show that we cannot ex-
pect that IP 4.1 is true with respect to a smaller set of vertex matrices. However,
the set V ([A]) can slightly be restricted to the subset containing all vertex matrices
A = (aij)i,j=1,...,n with aii = aii, i = 1, . . . , n, since for each inverse M -matrix A and
each nonnegative diagonal matrix D the matrix A + D is an inverse M -matrix, too,
[26, Theorem 1.7].

b) Diagonal stability:

Definition 4.2. A matrix A ∈ Rn,n is called positive semidefinite if 0 ≤ xTAx for
each x ∈ Rn and positive definite if 0 < xTAx for each x ∈ Rn \ {0}.

Definition 4.3. A matrix A is called diagonal stable if a positive definite diagonal
matrix D exists such that AD +DAT is positive definite.

Examples of diagonal stable matrices are the M -matrices and the inverse M -
matrices [24, Theorem 2]. For properties and many applications of these matri-
ces see the monograph [27]. We choose V ([A]) as the set of all vertex matrices
A = (aij)i,j=1,...,n with aii = aii, i = 1, . . . , n, and the property that if aij = aij
(respectively, aij) then aji = aji (respectively, aji), j = i + 1, . . . , n. The cardinality
of this vertex set is at most 2n(n−1)/2 and we have the following interval property.

IP 4.2 [11, Theorem 1 (ii)]: The set of the diagonally stable matrices has the
interval property.

4.2 Properties Requiring at Most 22n−1 Vertex Matrices
Each matrix interval [A] = [A,A] can be represented as {A ∈ Rn,n | | A−Ac | ≤ ∆},
where Ac := 1

2 (A+A) is the midpoint matrix and ∆ := 1
2 (A−A) is the radius matrix,

in particular, A = Ac −∆ and A = Ac + ∆.

With Yn := {y ∈ Rn | | yi |= 1, i = 1, . . . , n} and Ty := diag (y1, y2, . . . , yn) we
define matrices Ayz := Ac − Ty∆Tz for all y, z ∈ Yn. The definition implies that for
all i, j = 1, . . . , n

(Ayz)ij = (Ac)ij − yi(∆)ijzj =
{
aij if yizj = −1,
aij if yizj = 1,

so that all matrices Ayz are vertex matrices. In this subsection we choose V ([A]) as
the matrices Ayz for y, z ∈ Yn. Since Ayz = A−y,−z for all y, z ∈ Yn, the cardinality
of V ([A]) is at most 22n−1.

The following properties of [A] can be inferred from the set V ([A]):

a)Nonsingularity: Forty necessary and sufficient conditions for a matrix interval
to be nonsingular are presented in [41]; some of them involve the set V ([A]).

Theorem 4.1. [41, Theorem 4.1 (xxxii), (xxxiii)] Let [A] ∈ I(Rn,n). The following
three statements are equivalent:
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(i) [A] is nonsingular.
(ii) 0 < detAyz · detAy′z′ for each y, z, y′, z′ ∈ Yn.
(iii) 0 < detAyz · detAy′z for each y, y′, z ∈ Yn such that y and y′ differ in exactly

one entry.

The equivalence of (i) and (ii) in Theorem 4.1 was already proven in [10]. In [29,
Theorem 2.2] it was shown that in statement (ii) the set V ([A]) cannot be replaced by
a nonempty proper subset.

b) Nonsingular sign regular matrices, see Subsection 3.2: Inspection of the
proof of [16, Theorem 4] shows that the proof does not depend on the special choice of
the sign of the minors of fixed order (in [16] all signs are taken as 1, i.e., the TN case is
considered) and we obtain therefore the following interval property, cf. Conjecture 3.1.

IP 4.3: The set of the NsSR matrices with a fixed signature has the interval prop-
erty.

c) Inverse stability:

Definition 4.4. A matrix A is called inverse stable if it is nonsingular and 0 <| A−1 |.

By the continuity of the determinant a matrix interval is inverse stable if it is
nonsingular and each entry of the inverse stays either positive or negative through the
entire matrix interval.

IP 4.4 [39, Theorem 2.1]: The set of the inverse stable matrices with identical sign
pattern of their inverses has the interval property.

4.3 Properties Requiring at Most 2n−1 or 2n Vertex Ma-
trices

In this subsection we consider in parts a) and b) the vertex matrices Ayz introduced
in Subsection 4.2 with y = z. In part c) we employ their dual vertex matrices A−z,z.
In both cases, the cardinality of V ([A]) is reduced to at most 2n−1. In part d) we use
the matrices A±z,z; thus the cardinality of V ([A]) is at most 2n.

a) P -matrices:

Definition 4.5. A matrix is called P (P0)-matrix if all its principal minors are positive
(nonnegative).

Instances of the P -matrices considered so far in this paper are theM -matrices, the
NsTN matrices, the inverse M -matrices [24, Corollary 1], and the diagonally stable
matrices. Inspection of the proof to [11, Theorem 1 (i)] shows that the matrices used
therein are just the matrices Azz and we have the following interval property.

IP 4.4 [11, Theorem 1 (i) and Remark (b)]: The set of the P (P0)-matrices has
the interval property.

[11, Theorem 2] shows that for the P -matrices the set V ([A]) cannot be replaced
by a nonempty proper subset. For the interval property of matrices with alternating
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sign of their principal minors see [11, Remark (b)].

b) Positive (semi)definiteness1):

IP 4.5 [40, Theorem 2]: The set of the positive (semi)definite matrices has the
interval property.

In [29, Theorem 2.2] it was shown that in the positive definite case the set V ([A])
cannot be replaced by a nonempty proper subset.

We consider now symmetric positive (semi)definite matrices and consequently only
those matrices in the given matrix interval [A] which are symmetric; this set is denoted
by [A]sym. We also require that [A] is symmetric by which we mean in mild abuse of
our definition at the very end of Subsection 2.2 that the two corner matrices of [A]
are symmetric. Note that then each matrix Azz is symmetric, too. Since a symmetric
positive (semi)definite matrix is a P (P0)-matrix, we may also use IP 4.4 to obtain
immediately the following theorem.

Theorem 4.2. [11, p.40] Let [A] be a symmetric matrix interval. Then [A]sym con-
tains only positive (semi)definite matrices if and only if all the vertex matrices from
V ([A]) are positive (semi)definite.

In passing we mention a conjecture related to [39, Theorem 1.2] and Theorem 4.2
on the square of the first pivot in the Cholesky decomposition (which is identical to
the reciprocal value of the entry in the bottom right position of A−1).

Conjecture 4.1. [18, Conjecture 1] Let [A] ∈ I(Rn,n) be symmetric and [A]sym con-
tain only positive definite matrices. Then the function detA/detA[1, . . . , n− 1] at-
tains its minimum value on [A]sym at a matrix Azz with z ∈ Yn.

c) Hurwitz stability:

Definition 4.6. A matrix is called Hurwitz stable if all its eigenvalues have negative
real parts.

It is well-known that the Hurwitz stability of a matrix interval cannot in general
be inferred from the Hurwitz stability of all of its vertex matrices, see [19, p.395] and
[40, p.181]. However, if a matrix A is symmetric then A is Hurwitz stable if and only
if −A is positive definite. Using this fact, the following theorem can be shown.

Theorem 4.3. [40, Theorem 6] Let [A] be a symmetric matrix interval. Then [A] is
Hurwitz stable if and only if each vertex matrix A−z,z, z ∈ Yn, is Hurwitz stable.

In [29, Theorem 2.2] it was shown that a further reduction of the set Yn is impos-
sible: without checking all 2n−1 matrices A−z,z we cannot guarantee that all A ∈ [A]
are Hurwitz stable. In [42] matrices are considered which are connected with mathe-
matical models of ecosystems describing the effects a species may have on itself and
its surrounding species. It is demonstrated on some examples that a few vertex matri-
ces of this type may suffice to conclude that the entire matrix interval is Hurwitz stable.

d) Schur stability:
1) See Definition 4.2.
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Definition 4.7. A matrix is called Schur stable if the modulus of all its eigenvalues
is less than 1.

It is well-known that the Schur stability of the vertex matrices of a matrix interval
does not imply the Schur stability of the entire matrix interval, see, e.g., [35]. In the
symmetric case, however, we have the following result. In contrast to Theorem 4.3 the
conclusion concerns only [A]sym.

Theorem 4.4. [21, Corollary 2] Let [A] be a symmetric matrix interval. Then [A]sym
contains only Schur stable matrices if and only if each vertex matrix A±z,z, z ∈ Yn, is
Schur stable.

For a survey of ’interval properties’ of polynomial families related to stability and
further applications see [19].

5 Related Problems
In this last section we consider a related problem, viz. to find for the single entries of a
matrix A exhibiting a certain property an (respectively, the maximum) allowable per-
turbation such that this property (or related properties) is retained for all perturbed
matrices.

In [5, 6] the first two authors of the present paper solve this problem for two
subclasses of the TN matrices. Specifically, they give in [5] for a tridiagonal (not
necessarily nonsingular) TN matrix the largest amount by which each of its single
entries (inside the tridiagonal band and on the second sub- and superdiagonal) can be
perturbed such that the resulting matrix remains TN . In [6] for each single entry of a
TP matrix the largest amount for the persistence of total positivity is provided. For
both classes of matrices the maximum allowable perturbation is presented in terms of
ratios of minors of the unperturbed matrix.

Next we consider the problem of allowable perturbation of the single entries of
a tridiagonal M -matrix. A perturbation which retains the M -matrix sign pattern
leads to an M -matrix if the (generalized) strict diagonal dominance is maintained.
Any perturbation inside the tridiagonal band which destroys the M -matrix sign pat-
tern results in a matrix which is not inverse nonnegative [28, Theorem 5]. In, e.g.,
[28, 22] the problem of a positive entry-wise perturbation outside the tridiagonal band
is considered. Such matrices are no longer M -matrices but may indeed be inverse
nonnegative. In [22] the maximum allowable perturbation for each entry outside the
tridiagonal band is presented, provided in terms of ratios of entries on the first sub-
and superdiagonal and principal minors of the given matrix. It is noted that if the
column index of the perturbed entry above (below) the tridiagonal band is increased
(decreased) than the actual maximum allowable perturbation decreases. Generally
speaking, the farther the perturbed entry is away from the main diagonal, the smaller
the maximum allowable perturbation. Specification to the case of a tridiagonal M -
matrix with Toeplitz structure, i.e., the entries along each diagonal are identical, is
given, too. Furthermore, the persistence of inverse nonnegativity under simultaneous
perturbation of more than one entry is considered therein.

Finally, we mention that in [32] a class of inverse nonnegative matrices is con-
sidered which cannot be entry-wise increased without losing the property of being
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inverse nonnegative. On the other hand, it is shown therein that each entry of an
inverse nonnegative matrix can be decreased by a sufficiently small positive amount
without destroying inverse nonnegativity.

Presistence of diagonal stability under entry-wise perturbation is considered in [13,
Section V]

Acknowledgements
We thank Jiří Rohn for his comments on our paper. Mohammad Adm gratefully
acknowledges support from the German Academic Exchange Service (DAAD) and
Jihad Titi from the Manfred Ulmer scholarship.

References
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Switzerland, IEEE, pages 2351–2356, 2013.


	Introduction
	Notation and Matrix Intervals
	Notation
	Matrix Intervals

	Matrix Properties Which Can Be Inferredfrom Two Vertex Matrices
	Matrix Intervals with Respect to the Usual Entry-wise Partial Order
	Matrix Intervals with Respect to the Checkerboard Partial Order

	Matrix Properties Which Require in General More than Two Vertex Matrices
	Properties Requiring at Most 2n2 -n or 2(n2 -n)/2 Vertex Matrices
	Properties Requiring at Most 22n-1 Vertex Matrices
	Properties Requiring at Most 2n-1 or 2n Vertex Matrices

	Related Problems

