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Abstract

It is known that the Capital Asset Pricing Model (CAPM) provides
an expression which relates the expected return of an asset to its system-
atic risk. In a decision making problem involving financial data however,
we have to take in account the uncertainty given by the imprecision and
the incompleteness of the information. Uncertainty in the data may be
treated by considering, rather than a single value, the interval of values
in which the data may fall. The extension of the CAPM to the case in
which the returns of any considered asset are interval-valued variables
(IntervalCAPM) has been introduced by Gioia (2009). The methodol-
ogy makes use of the interval regression method Iregr presented in Gioia
and Lauro (2005), but other different methods are already present in the
literature and are described in the present work. A contribution of this
work is the comparison of those interval regression methods on sets of
real data. The algorithms of the considered methodologies have been im-
plemented in MATLAB and the numerical results are compared to one
another highlighting the good advantages for the method Iregr. Inter-
val regression methods showed to be useful in the application of CAPM
to interval financial data. However, as shown in this work, the interval
regression method Iregr is more suitable in the framework of the Interval-
CAPM, with respect to the other interval regression methods presented
in the present work.

Keywords: Interval algebra, interval-valued variables, interval financial returns, in-
terval regression.
AMS subject classifications: 65-05, 91G70

1 Introduction

Financial data are often affected by uncertainty: imprecision, incompleteness etc.
Therefore in a decision making problem, we should be able to process uncertain in-
formation. For example many times we do not know the exact value of the return of
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an asset in the ith state of the world but we know, at best, the interval of its possible
values.

Intervals may be useful for representing uncertainty in financial data or, by con-
verse, it may be useful to construct intervals from scalar financial data, for analyzing
the uncertainty in the solution of real financial problems.

Moreover, interval data may be considered when it is of interest to analyze a
phenomenon in a given interval of time, daily, monthly, etc., with the aim of evaluating
its “mean behavior” not only but also its “variability”. Variability is one of the most
remarkable factors in economics and finance. In the literature there are some works
on confidence-based interval forecasting methods to predict variability [6], [7] but
poor quality is the major problem of these methods. In order to improve interval
forecasting quality, He and Hu (2007) [10] use interval data, rather than point data, to
get OLS lower and upper bound forecasts to predict variability in the stock markets.
Their results suggest that their use of interval data can significantly improve the
accuracy of OLS variability forecast. Accuracy of variability of interval forecasts may
be measured by accuracy ratio as suggested in [13]. Further, He and Hu (2008) [11]
provide evidence that higher forecasting accuracy can be reached if interval data are
combined by the interval algebra tools. It is known that the Capital Asset Pricing
Model (CAPM) [22] provides an expression which relates the expected return of an
asset to its systematic risk [14]. The CAPM to the case in which the returns of any
considered asset and the market portfolio are interval-valued variables (IntervalCAPM)
has been introduced in [8]. The purpose of the present work is first to describe some
regression methodologies for interval-valued variables already present in the literature,
and second to compare those different methodologies in the framework of the Interval
CAPM. A real financial case is analyzed, the numerical results using the different
methodologies are compared one another. Interval regression has been treated in the
literature. In [3], [4], [16] and [21], the authors derive the results from some classical
regression methods which minimize criteria which are different of the least squares
one. An alternative methodology, is proposed by [17] with an approach which is
typical for handling imprecise data, taking into account the center and the radius
of each considered interval and the relations between these two quantities. Those
methods, do not consider the interval as a whole structure or special kind of data,
but reconstruct interval solution ex post. Here we make extensively use of the interval
algebra tools [19], [1], [20], [15], [2], combined with some optimization techniques to
consider the interval as a whole structure and to compute the interval of solutions,
which is the interval containing all possible values assumed by a considered function,
the slope and intercept functions, when the observed values vary in their own interval
of values.

In Section 2 below, the CAPM for single-valued and interval-valued variables is
described. Section 3 is devoted to the methodological description of the following re-
gression methods for interval-valued variables: CM [3], MinMax [4], CRM [16] and
Iregr [9]. In Section 4 the Iregr in the framework of the CAPM is analysed pointing
out the motivations of using the Interval CAPM methodology. A real financial case is
analyzed. The algorithms of each considered method have been implemented in MAT-
LAB and tested numerically. The interval time series of the asset ABBOTT (Abbot
Laboratories), and of the SP500 (Standard and Poor’s 500 Composite) index have
been considered. The downloaded data refer to real-valued variables; we have artifi-
cially transformed these variables into interval-valued ones by applying a perturbation
using a uniform distribution U(0, 0.01).

The numerical results of the different methodologies have been compared. Further-
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more, in the framework of the IntervalCAPM, the interval regression method Iregr,
with respect to the other interval regression methods ([3], [4], [16]), shows some good
advantages well described in the present work.

2 The Capital Asset Pricing Model (CAPM)

2.1 Classical CAPM

Since it is known the meaning of financial market (trade of financial products) the
problem of an actor (investor) in this market is to buy a portfolio of assets which gives
the highest return given a level of risk.

The common sense suggests that risky investments will generally yield higher re-
turns than investments free of risk. With the development of the Capital Asset Pricing
Model (CAPM) [22] it is possible to quantify risk and the reward for bearing it [14].

Let us suppose to have p securities denoted as Sj (j = 1, · · · , p) and let us suppose
that t0 is the instant in which an investor decides to buy a portfolio of those securities.
The investor will diversify his portfolio according to the expected returns of the assets
at a future instant of time t1. Instant by instant the prices of the assets are determinate
according to the law of supply and demand; this occurs at both considered instants
with the difference that at time t0 the prices are known, while at instant t1 are expected
(according to the behavior of the investors at time t0).
Let us indicate with xj the portion of total investment funds devoted to this security.
Thus

n∑
j=1

xj = 1

x = (x1, x2, ..., xp)T is the portfolio of the considered consumer and X is the set of
possible portfolios.
At time t1 the returns of the p securities are assumed to be n × 1 random variables
denoted by: RRRj (j = 1, · · ·n) (n different states of the world are contemplated), repre-
sented as columns of the following n× p matrix:

RT =


R11 R12 · · · R1p

R21 R22 · · · R2p

...
...

. . .
...

Rn1 Rn2 · · · Rnp

 (2.1)

Let us suppose a discrete probability distribution p = (p1, p2, ..., pn) on the out-
comes of the random variable RRRj , (j = 1, . . . , p). The expected return of the jth

security is:

E(RRRj) =

k∑
i=1

piRij

The covariance matrix Q, associated to the returns matrix RRRT , has on the rth row
and on the sth column, the covariance σ(RRRr,RRRs) between RRRr and RRRs.
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The expected return and the variance of a portfolio x can be written as:

E(x) =

n∑
j=1

E(RRRj) · xj (2.2)

σ2(x) =

n∑
j=1

xj ·
n∑

i=1

xiσ(RRRi,RRRj) (2.3)

Thus the portfolio’s expected return is simply the weighted average of the expected
returns of its component securities, a portfolio variance is a more complicated concept,
it depends on more than just the variances of the component securities.

Markowitz, in [18] stated the investor’s portfolio selection problem in terms of
expected return and variance of return. In particular he argued that investors would
optimally hold a mean-variance efficient portfolio, that is, a portfolio with the highest
expected return for a given level of variance.

Since the variance of a portfolio x is regarded as the risk of investment, the (con-
ditional) best investment is one with the minimum variance (2.3) subject to a given
return E0. This leads to the following quadratic programming problem:

min
xxx
σ2(x) (2.4)

so that

E(x) = E0

n∑
j=1

xj = 1

xi ≥ 0

The Capital Asset Pricing Model (CAPM) [14] deduce from an individual decision
procedure (Markowitz), a decision criterion which is shared by all agents. The addi-
tional hypothesis introduced to derive the model is that the market is in equilibrium,
i.e., that the sum of the quantities of all assets available in the market is equal to the
sum of the quantities of all assets required. The model provides an expression which
relates the expected return of an asset to its risk as will be shown by the theorem
herewith reported.

Let us define the market portfolio as the vector A = (A1, A2, · · · , An) in which
Aj is the aggregate quantity of the jth risky asset available in the economy. In other
words the market portfolio is a portfolio consisting of a weighted sum of every asset
in the market, with weights in the proportions that they exist in the market, with the
necessary assumption that these assets are infinitely divisible.

In analogy with (2.2) the expected return on the market portfolio is defined as:

E(A) =

n∑
j=1

E(RRRj) ·Aj

The following Theorem holds true:

Theorem 1 If the market is in equilibrium, for each asset RRRj then

E(RRRj)− rf = (E(AAA)− rf ) · βj (2.5)
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where rf is the risk-free rate and the factor of proportionality βj has the following
expression:

βj =
σ(AAA, j)

σ2(AAA)

having indicated with σ(AAA, j) the covariance between the return of the market port-
folio and the return of the jth asset, and with σ2(A) the variance of the market port-
folio.

The CAPM equation states that, in equilibrium, the difference between the ex-
pected rate of return on each risky asset and the riskless rate of return is proportional
to the difference between the expected rate of return on the market portfolio and the
riskless rate of return.

The model (2.5) may have different uses:

1. given the expected returns E[RRRj ] and E[AAA] of asset Sj and the market portfolio
respectively, and given the risk free rate rf , calculate the corresponding βj ;

2. given βj of Sj and the risk free rate rf , calculate the expected return E[RRRj ];

3. given the risk-free rate rf , use an estimation method to determine the βj of a
particular risky asset and therefore compute the expected return E[RRRj ].

Let us analyze point 3 in more details. The CAPM is a single-period model [5];
hence (2.5) do not have a time dimension. Although time-series of returns are readily
available and one can use familiar estimation methods to determine the β of a partic-
ular risky asset.

Let ZZZj and ZZZm be the vectors of the excess returns 1 of the asset Sj and the
market portfolio respectively in different periods of time, those excess returns can be
described using the excess-return single-index marked model :

ZZZj = α+ βZZZm + eeej , (2.6)

where eeej is the vector of disturbances. The following hypothesis concerning time-
independence hold:

E(eeej) = 0

E(eeejeee
T
j ) = Σ

E(ZZZm) = µm,

E[(ZZZm − µm)2] = µ2
m

σ(ZZZm, eeej) = Σ

It is known from classical theory that estimators for β and α are the OLS (Ordinary
Least Square) estimators; from the estimation of β, it is possible to compute the
risk premium required by the market and compare it with the one implicit in the
actual asset price. Purchasing an asset with an actual risk premium exceeding the one
predicted by the CAPM, and selling assets with CAPM risk premiums that exceed
the actual one, is the common decision rule for investors in financial markets. This
fact makes the CAPM a useful instrument for the analysis of asset prices in financial
markets.

1ZZZj = RRRj − rf and ZZZm = AAA− rf
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2.2 The Interval CAPM

As mentioned previously, intervals may be useful for representing uncertainty in finan-
cial data. In the case of interval returns an investor should ask the following questions:
if the returns fluctuate from their fixed values, how do the perturbations reflect on
the risk? In which interval that risk ranges? In which interval the estimate of the
actual return of the considered asset falls? The CAPM, to the case in which the re-
turns of any considered asset are interval-valued variables (IntervalCAPM), has been
introduced in [8] and is here below described.

Let us suppose for example that the return of the security Sj (j = 1, · · · , n) not
only varies with time but can be represented by an interval of values when each state
occurs. Thus RRRj (j = 1, · · · , n) are assumed to be interval-valued variables denoted
by: RRRj

I (j = 1, · · · , n), and represented as columns in the following interval matrix:

(RRRT )I =


[
R11, R̄11

] [
R12, R̄12

]
· · ·

[
R1p, R̄1p

][
R21, R̄21

] [
R22, R̄22

]
· · ·

[
R2p, R̄2p

]
...

...
. . .

...[
Rn1, R̄n1

] [
Rn2, R̄n2

]
· · ·

[
Rnp, R̄np

]
 (2.7)

where:
[
Rij , R̄ij

]
is the interval in which the return rate of security Sj “falls” when

the ith state occurs.
The aim of the Interval CAPM is to extend the model (2.6) to the case of interval

returns.
More in details: when an interval data matrix of returns (2.7) is given, also the

excess returns of the jth title and of the market portfolio are described by the following
interval-valued variables respectively:

ZZZj
I = (Zjt =

[
Zjt, Z̄jt

]
), t = 1, · · · , n (2.8)

ZZZm
I = (Zmt=

[
Zmt, Z̄mt

]
), t = 1, · · · , n (2.9)

In this special case the regression equation (2.6) must be treated by means of
an interval regression method ; in the following section four different methodologies,
already present in the literature are described: Centre based Method, MinMax Method,
Centre and Range based Method, Optimal interval of solution based method (Iregr).

The Interval CAPM introduced in [8] in particular apply the latter method Iregr
(section 4.4) which make extensively use of the interval algebra tools combined with
some optimization techniques for treating equation (2.6) as an interval interval regres-
sion equation:

ZjZjZj
I = α̂j

I + β̂j
I
ZmZmZm

I +EEEI (2.10)

The methodology computes the interval β̂j
I

and the interval α̂j
I of the interval

regression line (2.10) which are both well interpretable:
every time each return Rij takes a particular value in its own interval of variation[

Rij , R̄ij

]
, a set of points in the (Zj , Zm) plane is univocally determined; the slope and

the intercept of the regression line, which realizes the “best” fit of that set of points,

are elements belonging to the intervals β̂j
I

and α̂j
I respectively. Therefore:

1. the interval β̂j
I

is the set of all beta of security Sj when each return Rij , i =
1, · · · , k ranges in its own interval of values.



Reliable Computing 21, 2015 59

2. Remarking that for real-valued security Sj the CAPM states that the intercept
αj in (3.2) is zero, we can interpret the interval α̂j

I as the set of all “errors”
that we may do using the CAPM for predicting the expected return E(RRRj) of
security Sj for each Rij ∈

[
Rij , R̄ij

]
.

The estimation of an interval Zjt is given by:

Zjt = α̂j
I + β̂j

I
Zmt

where the operations are interval algebra operations.
In the next section it could be of help to discuss in detail the cited interval re-

gression methods in order to highlight the advantages in using the regression method
Iregr.

3 Interval Regression

In this section different methods for fitting a linear regression of interval-valued vari-
ables will be presented. Two different approaches, which have the common task
of forecasting a dependent interval-valued variable versus one or more independent
interval-valued variables, are explained. The first approach, followed by [3], [4], [16],
consists in forecasting the dependent interval-valued variable using some regression
functions with scalar parameters. The authors derive the results from some classical
regression methods which minimize criteria different from the least squares one. The
second approach, our methodology [9], follows the alternative approach of forecasting
the dependent interval-valued variable computing also the interval parameters, i.e.,
defining the interval regression line; the methodology uses optimization techniques
for computing, rather than the interval solution, the interval of solutions, which is
the interval containing all possible values assumed by a considered function when the
observed values vary in their own interval of variation. It exists in [17] an attempt to
compute the interval parameters of the regression line by means of the interval alge-
bra tools. It has been proved, however, that this approach leads to the resolution of a
linear interval system which has a very complicated structure and that has no convex
solutions. Let us consider a dependent and p independent interval-valued variables:

YYY I =
(
Yi = [y

i
, ȳi]
)

, XXXI
j =

(
Xij = [xij , x̄ij ]

)
, i = 1, · · · , n, j = 1, ..., p. Let

E = {e1, · · · , em} be a set of examples described by the p + 1 interval-valued vari-
ables YYY I ,XXXI

1, · · · ,XXXI
p. Each example ei ∈ E is represented by the interval vector

ZZZI
i = (Xi1, · · · , Xip, Yi) where Xij and Yi are the observed values of XXXI

j and YYY I

respectively.

3.1 Centre Based Method

Here below the Billard and Diday (2000) method (CM) will be presented.
The authors consider the following two linear relationship:

y
i

= β0 + β1xi1 + ...+ βpxip + εi (3.1)

ȳi = β0 + β1x̄i1 + ...+ βpx̄ip + ε̄i (3.2)

and minimize the sum of squares deviations:

C1 =

n∑
i=1

(εi + ε̄i)
2 (3.3)
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which represent the sum of the squares of the lower plus the upper bound errors. It
can be proved that, the estimates of β0, β1, ..., βp that minimize (3.3) are the solution
of the following system of p+ 1 normal equations written in matrix form:

β̂̂β̂β = (β̂0, β̂1, ...β̂p)T = (AAA)−1bbb (3.4)

where A is a (p + 1) × (p + 1) matrix and b is a (p + 1) × 1 vector here below
described:

AAA =


n

∑
i x

c
i1 · · ·

∑
i x

c
ip∑

i x
c
i1

∑
i (xci1)2 · · ·

∑
i x

c
ipx

c
i1

...
...

. . .
...∑

i x
c
ip

∑
i x

c
i1x

c
ip · · ·

∑
i (xcip)2


and

bbb = (
∑
i

yci ,
∑
i

ycix
c
i1, · · · ,

∑
i

ycix
c
ip)T

Given a new example e, described by ZZZI = (X1, · · · , Xp, Y ) where Xj = [xj , x̄j ]

(j = 1, · · · , p), the prediction Ŷ = [ŷ, ˆ̄y] of the interval Y = [y, ȳ] will be computed as
follow:

ŷ = (xxx)T β̂ββ and ˆ̄y = (x̄xx)T β̂ββ

where xxxT = (1, x1, · · · , xp) and x̄xxT = (1, x̄1, · · · , x̄p).

3.2 MinMax Based Method

Here below the Billard and Diday (2002) method (MinMax) will be presented. The
idea is to suppose the independence between lower and upper bounds of the considered
intervals, and to take into account two different linear equations:

y
i

= βL
0 + βL

1 xi1 + ...+ βL
p xip + εi (3.5)

ȳi = βU
0 + βU

1 x̄i1 + ...+ βU
p x̄ip + ε̄i. (3.6)

The criterion to be minimized is:

C2 =

n∑
i=1

(εi)
2 +

n∑
i=1

(ε̄i)
2 (3.7)

which represents the sum of the lower bound square errors plus the sum of the upper
bound square errors, considering independent vectors of the parameters to predict the
bounds of the intervals. It can be proved that, the estimates of βL

0 , β
L
1 , ..., β

L
p and

βU
0 , β

U
1 , ..., β

U
p that minimize (3.7) are the solution of the following system of 2(p+ 1)

normal equations written in matrix form:

β̂ββ = (β̂L
0 , β̂

L
1 , ..., β̂

L
p , β̂

U
0 , β̂

U
1 , ..., β̂

U
p )T = (AAA)−1bbb (3.8)

where A is a 2(p+ 1)× 2(p+ 1) matrix and b is a 2(p+ 1)× 1 vector here below
described:



Reliable Computing 21, 2015 61

A =



n
∑

i xi1 · · ·
∑

i xip 0 · · · 0∑
i xi1

∑
i (xi1)2 · · ·

∑
i xipxi1 0 · · · 0

...
...

...
...

...
...

...∑
i xip

∑
i xi1xip · · ·

∑
i (xip)2 0 · · · 0

0 0 · · · 0 n · · ·
∑

i x̄ip
0 0 · · · 0

∑
i x̄i1 · · ·

∑
i x̄ipx̄i1

...
...

...
...

...
...

...
0 0 · · · 0

∑
i x̄i1x̄ip · · ·

∑
i (x̄ip)2


and

bbb = (
∑
i

y
i
,
∑
i

y
i
xi1, · · · ,

∑
i

y
i
xip,

∑
i

ȳi,
∑
i

ȳix̄i1, · · · ,
∑
i

ȳix̄ip)T

Given a new example e, described by ZZZI = (X1, · · · , Xp, Y ) where Xj = [xj , x̄j ]

(j = 1, · · · , p), the prediction Ŷ = [ŷ, ˆ̄y] of the interval Y = [y, ȳ] will be computed as
follow:

ŷ = (xxx)T β̂ββ
L

and ˆ̄y = (x̄xx)T β̂ββ
U

where xxxT = (1, x1, · · · , xp), x̄xxT = (1, x̄1, · · · , x̄p), β̂ββ
L

= (β̂L
0 , β̂

L
1 , ..., β̂

L
p )T and β̂ββ

U
=

(β̂U
0 , β̂

U
1 , ..., β̂

U
p )T .

Remark

It is important to remark that in [3], [4] it is assumed that, for an interval valued
function Y I = f(XI

1 , X
I
2 , ...X

I
n), the lower bound of Y I depends only on the lower

bounds of XI
1 , X

I
2 , ...X

I
n, and the upper bound of Y I depends only on the upper

bounds of XI
1 , X

I
2 , ...X

I
n. These assumptions can be misleading at both the theoretical

and practical levels as shown in [11] where is reported that, using least-squares to
forecast lower and upper bounds separately for the SP 500, in a considerable number
of cases the predicted upper bound results less than the predicted lower bound.

3.3 Centre and Range Based Method

In the CM and MinMax methods we have seen that the estimate of the parameters β
involves only the extreme values of the intervals according to the criterion considered.
In [12] results suggest that both the midpoint and interval computing methods can
generate significantly higher accuracy in variability forecast than the OLS lower and
upper bound method. The (CRM) method, proposed by Neto and de Carvalho (2007),
estimates the β taking into account both the centre and the radius of each considered
interval in order to improve the model prediction performance.

Let us indicate with

xcij = (xij + x̄ij)/2, xrij = (x̄ij−xij)/2 the centre and the radius of the ith element

of the jth interval-valued variable XXXI
j . Let us also indicate with yci = (yi + ȳi)/2

and yri = (ȳi − y
i
)/2 the centre and the radius of the ith component of the dependent

interval-valued YYY I respectively. The authors consider the following linear relationships:
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yci = βc
0 + βc

1x
c
i1 + ...+ βc

px
c
ip + εci (3.9)

yri = βr
0 + βr

1x
r
i1 + ...+ βr

px
r
ip + εri (3.10)

The criterion to be minimized is:

C3 =

n∑
i=1

((εci )
2 + (εri )2) (3.11)

which represents the sum of the mid-points square error plus the ranges square error
of the intervals.

It can be proved that, the estimates of βc
0, β

c
1, ..., β

c
p and βr

0 , β
r
1 , ..., β

r
p that minimize

(3.11) are the solution of the following system of 2(p+ 1) normal equations written in
matrix form:

β̂ββ = (β̂c
0, β̂

c
1, ..., β̂

c
p, β̂

r
0 , β̂

r
1 , ..., β̂

r
p)T = (AAA)−1bbb (3.12)

where A is a 2(p+ 1)× 2(p+ 1) matrix and b is a 2(p+ 1)× 1 vector here below
described:

A =



n
∑

i x
c
i1 · · ·

∑
i x

c
ip 0 · · · 0∑

i x
c
i1

∑
i (xci1)2 · · ·

∑
i x

c
ipx

c
i1 0 · · · 0

...
...

...
...

...
...

...∑
i x

c
ip

∑
i x

c
i1x

c
ip · · ·

∑
i (xcip)2 0 · · · 0

0 0 · · · 0 n · · ·
∑

i x
r
ip

0 0 · · · 0
∑

i x
r
i1 · · ·

∑
i x

r
ipx

r
i1

...
...

...
...

...
...

...
0 0 · · · 0

∑
i x

r
i1x

r
ip · · ·

∑
i (xrip)2


and

bbb = (
∑
i

yci ,
∑
i

ycix
c
i1, · · · ,

∑
i

ycix
c
ip,
∑
i

yri ,
∑
i

yri x
r
i1, · · · ,

∑
i

yri x
r
ip)T

Let us consider again an example e, described by ZZZI = (X1, · · · , Xp, Y ) where
Xj = [xj , x̄j ] (j = 1, · · · , p). Let us indicate with xcj = (xj+x̄j)/2 and xrj = (x̄j−xj)/2
(j = 1, · · · , p) the centre and the radius of Xj . The value of an interval Y = [y, ȳ] of

Y IY IY I will be predicted by Ŷ = [ŷ, ˆ̄y] as follows:

ŷ = ŷc − ŷr and ˆ̄y = ŷc + ŷr

where
ŷc = (xxxc)T β̂ββ

c
, ŷr = (xxxr)T β̂ββ

r
, (xxxc)T = (1, xc1, · · · , xcp), (xxxr)T = (1, xr1, · · · , xrp),

β̂ββ
c

= (β̂c
0, β̂

c
1, ..., β̂

c
p)T and β̂ββ

r
= (β̂r

0 , β̂
r
1 , ..., β̂

r
p)T .

3.4 Optimal Interval of Solution Based Method (Iregr)

We have seen, in the previous sections, that the prediction of an interval Ŷ = [ŷ, ˆ̄y],
if computed by CM, MinMax, or CRM methods, is an interval which is calculated ex
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post ; i.e., it is constructed from the results of some classical regression methods which
minimize criteria different from the least squares one. The aim of the present sec-
tion is to describe the interval regression method (Iregr) [9]; the methodology makes
extensively use of the interval algebra tools combined with some optimization tech-
niques to consider the interval as a whole structure and to compute, rather than the
interval solution, the interval of solutions, which is the interval containing all possible
values assumed by a considered function when the observed values vary in their own
interval of values. Iregr follows the approach of forecasting an interval-valued variable
linearly dependent from one or several independent interval-valued variables, defining
the interval regression equation, i.e., a regression relationship with interval parameters.

Let us first consider the case of simple interval regression, thus let us consider the
following independent and dependent interval-valued variables respectively:

XXXI = (Xi = [xi, x̄i]) , i = 1, · · · , n

YYY I =
(
Yi = [y

i
, ȳi]
)
, i = 1, · · · , n

it is:

YYY I = αI + βIXXXI +EEEI

where EEEI is the error interval component.

The aim is to take into account all possible values of the components xi yi each of
which is in its interval of values [xi, x̄i] , [y

i
, ȳi] for i = 1, · · ·n.

Thus making regression between two interval-valued variables means to compute the
set of regression lines each of which realizes the best fit, in the Minimum Least Square
sense, of a set of points in the plane. This set of points is univocally determined each
time the components x1, x2, · · · , xn, y1, y2, · · · , yn take a particular value in their own
interval of variation.
Mathematically computing the interval regression line between two interval-valued
variables XXXI and YYY I is equivalent to compute the following two sets:

β̂I =

β̂(XXX,YYY ) =

n∑
i=1

(xi − xm)(yi − ym)

n∑
i=1

(xi − xn)2
, /XXX ∈XXXI ,YYY ∈ YYY I

 (3.13)

α̂I =
{
α̂(XXX,YYY ) = ym − β̂xm, /XXX ∈XXXI ,YYY ∈ YYY I

}
(3.14)

where and xm and ym, regarded as functions of x1, x2,· · ·, xn, y1, y2,· · ·, yn, are given by

xm =
1

n

n∑
i=1

xi ; ym =
1

n

n∑
i=1

yi

These sets may be computed numerically by solving some optimization problems;
i.e., searching for the minimum and for the maximum of functions α̂(XXX,YYY ) and β̂(XXX,YYY )
in (3.13) and (3.14).
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These functions are both continuous2 on a connected and compact set and this assures
that sets (3.13) and (3.14) are the following closed intervals

β̂I =

 min
XXX ∈XXXI

YYY ∈ YYY I

β̂(XXX,YYY ), max
XXX ∈XXXI

YYY ∈ YYY I

β̂(XXX,YYY )

 (3.15)

α̂I =

 min
XXX ∈XXXI

YYY ∈ YYY I

α̂(XXX,YYY ), max
XXX ∈XXXI

YYY ∈ YYY I

α̂(XXX,YYY )

 (3.16)

and may be interpreted as follows: chosen an intercept α̂ in the interval α̂I it exists a
slope β̂ in the interval β̂I so that the regression line

YYY = α̂+ β̂XXX (3.17)

is the unique line that realizes the best fit, in the of Minimum Least Square sense, of
a given set of points (x1, y1), (x2, y2), · · · , (xn, yn) in the plane (xi ∈ Xi, yi ∈ Yi, i =
1, · · · , n).

The prediction of an interval Y =
[
y, ȳ
]

of Y IY IY I will be computed as

Y = α̂I + β̂IX

Let us turn again to the case of multiple regression; i.e., let us consider a dependent
and p independent interval-valued variables

YYY I =
(
Yi = [y

i
, ȳi]
)

, XXXI
j =

(
Xij = [xij , x̄ij ]

)
, i = 1, · · · , n, j = 1, · · · , p. It is

YYY I = βI
0 + βI

1XXX
I
1 + βI

2XXX
I
2 + · · ·+ βI

pXXX
I
p +EEEI

where EEEI is the error interval component. Also in this case the aim is to take into
account all possible values of the components xij yi each of which is in its interval of
values [xij , x̄ij ] , [y

i
, ȳi] for i = 1, · · ·n.

The method computes the set of hyperplanes each of which realizes the best fit, in
the Minimum Least Square sense, of a set of points in the space. A hyperplane is
univocally determined each time the components take a particular value in their own
interval of variation.
Let us indicate with: XIXIXI = (111,XXXI

1,XXX
I
2, · · · ,XXXI

p) the n × (p + 1) interval matrix in
which the first column is the n× 1 vector of ones, and the other p− 1 columns are the
considered p independent interval-valued variables. The method consists in describing
the following interval vector:

β̂Iβ̂Iβ̂I = (β̂I
0 , β̂

I
1 , · · · , β̂I

p) =

= {β̂ββ = (β̂0(XXX,YYY ), β̂1(XXX,YYY ), · · · , β̂p(XXX,YYY )) = (XTX)−1XTY, XXX ∈XXXI ,YYY ∈ YYY I}

which is the set of all vectors β̂ββ = (β̂0, β̂1, · · · , β̂p) coefficients of some hyperplane:

2The quantity
∑n

i=1(xi − x)2 is nil only in the case in which: x1 = x2 = · · · = xn. This is
in contradiction with the classic hypothesis that at least two different observations must be
available in the experiment.
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Y = β̂0 + β̂1XXX1 + · · ·+ β̂pXXXp

realizing the best fit, in the Minimum Least Square sense, of a set of points in the
space generated by xij and yi (i = 1, · · · , n, j = 1, · · · , p), each of which in its own
interval of variation. Mathematically the following optimization problems are solved:

β̂j
I

=

 min
XXX ∈XXXI

YYY ∈ YYY I

β̂j(XXX,YYY ), max
XXX ∈XXXI

YYY ∈ YYY I

β̂j(XXX,YYY )

 (3.18)

for each j = 1, · · · , p.
In order to analyse some special cases of Iregr on simulated data , let us recall the

definition of interval correlation coefficient between two interval-valued variables [9].
It is known that the correlation between two single-valued variables XXX and YYY it may
be written as follow:

corr(XXX,YYY ) =
σ(XXX,YYY )

σ(xxxr)σ(xxxs)
(3.19)

In the case in which the variables are interval-valued variables XXXI ,YYY I the interval
correlation coefficient is the set of all correlation coefficients that may be calculated
when each component of the variables varies in its interval of variation:

CorrCorrCorr(XXXI ,YYY I) =
[
corr(XXX,YYY ) |XXX ∈XXXI ,YYY ∈ YYY I

]
the above set is computed numerically finding the extrema of the nonlinear multi-

variable function (3.19) as follows:

CorrCorrCorr(XXXI ,YYY I) =

 min
XXX ∈XXXI

YYY ∈ YYY I

corr(XXX,YYY ), max
XXX ∈XXXI

YYY ∈ YYY I

corr(XXX,YYY )

 (3.20)

Remark It is important to remark that Iregr is a method which is quite sensitive
to the characteristic of the input data, in particular it works well when: i) there are no
outliers; ii) the radii of the intervals reflect natural fluctuations excluding exceptional
events; iii) the intervals are well separated.

Illustrative examples of (3.15), (3.16) and of (3.20).
Let us analyze some special cases of Iregr on simulated data (the interval slope,

the interval intercept and the interval correlation will be indicated as Beta, Alpha and
Corr respectively).

The simulated data, reported in Figure 1, is a cloud of rectangles rather dispersed
and clearly not correlated. The application of the proposed methodology produces
Alpha=[1.154,18.680], Beta=[-0.192,0.026] and Corr=[-0.243,0.034] which are well in
agreement with the position of the rectangles and that clearly confirm the poor cor-
relation of the analyzed data. On the contrary rectangles which are visually strongly
correlated are reported in Figure 2. The application of the method produces a corre-
lation Corr=[0.980, 1] which confirms this strong correlation and the regression coeffi-
cient Alpha=[-6.000,5.999] and Beta=[0.885,1.1279] which are well in agreement with
the position of the rectangles. In Figures 3,4 and 5, we analyze the interval regression
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Figure 1: High dispersion
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Figure 2: Max correlation
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Figure 3: Cloud of rectangles
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Figure 4: Shift of a rectangle
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Figure 5: Shift of a rectangle
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Figure 6: Different forms



Reliable Computing 21, 2015 67

−20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

 

 

Alpha=[−1.911,5.532]
Beta=[0.233,1.381]
Corr=[0.274,0.955]

Figure 7: Different forms

coefficients and the interval correlation of some clouds of rectangles in which one rect-
angle is changing its position with respect to the second axis. In Figure 3 the regression
coefficients Alpha=[-0.351,3.152], Beta=[0.552,0.994] and the correlation between the
variables Corr=[0.691,0.941], are well in agreement with the position of the rectan-
gles. Furthermore perturbing the data with an anomalous rectangle as in Figure 4
and 5, the interval correlations Corr=[0.440,0.772], Corr=[0.143,0.499] become inter-
vals containing lower values with respect to the interval correlation in Figure 3. This
is perfectly in agreement with the increasing variability of the considered cloud of the
rectangles. Moreover, the slopes Beta=[0.381,0.808], Beta=[0.177,0.625], influenced by
the anomalous rectangle, are intervals containing lower values but a bigger radius with
respect to those reported in Figure 3. In Figures 6 and 7 the regression coefficients
and the interval correlation are computed for two clouds of rectangles having different
forms with respect to those presented in Figure 3. In both situations the computed
intervals, Beta=[0.399,1.371],Beta=[0.233,1.381], present a bigger radius according to
the increased variability of the input data.

Remark

It is important to remark that, in the special case of simple regression, the methods
CM, MinMax and CRM may have some problem with the inversion of matrix A. This
problem is bypassed with Iregr, which computes α̂I and β̂I without inverting any
matrix but using explicit formulas as in (3.14), (3.13).

4 Iregr in the Framework of the Interval CAPM

Using the previous interval regression methods Centre based Method, MinMax Method,
Centre and Range based Method, for the CAPM with interval data, an estimate of the
interval expected return of an asset Sj has been computed, but no information is
given for the slope and the intercept of the regression line; i.e., we don’t know what
happens to the risk and to the intercept of the regression line when the returns vary
in their interval of variation. This is a drawback if we would like to answer to the
previous introduced questions: if the returns fluctuate form their fixed values, how the
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perturbations reflect on the risk? In what interval that risk ranges? With difference

to the other regression methods, Iregr computes the interval slope β̂j
I

and the interval
intercept α̂j

I of the interval regression line (2.10) which are both well interpretable:

β̂j
I

and α̂j
I are the set of estimations of all slopes and intercepts of the considered

security market line, when each return ranges in its own interval of values; an investor

using the IntervalCAPM and computing β̂j
I

and α̂j
I of a given asset has the possibility

to know, not only the scalar risk and the scalar intercept, but also the “uncertainty”
around those quantities. In the following subsection the aim is to apply and to compare
one to another the different regression methods described before in the framework of
the interval CAPM on financial data. Iregr appears to be particulary appropriate; the
numerical results will be compared among them and the advantages in using Iregr,
with respect to the other methods, will be pointed out.

4.1 A Real case

In the following examples the IntervalCAPM, using different regression methods, is
applied to the asset ABBOTT (Abbot Laboratories), which belongs to the SP500
(Standard and Poor’s 500 Composite) index. The downloaded data refer to real-valued
variables; we have artificially transformed these variables into interval-valued ones by
applying a perturbation using a uniform distribution U(0, 0.01), in order to analyze
how a perturbation on the input data reflect on the final solution.

• The input parameters

In this example we consider a 49 × 2 interval matrix, in which monthly time
series of the interval excess returns of the ABBOTT asset and of the SP500
index are reported for the period: January 1991- February 1995.

• The method

1. First of all the classical CAPM is applied on the input scalar matrix of
the excess returns of the considered time series (with respect to a given
risk-free rate Rf ).

2. The input real-valued time series are transformed into interval-valued one
by a perturbation using an uniform distribution U(0, 0.01).

3. The IntervalCAPM, using different regression methods, is applied and the
results are compared one to another.

• The Output Parameters

The estimations of α and β in (2.6) (indicated as Alpha and Beta) of the
classical CAPM on the real-valued variables are showed in Table 1. The results
of the IntervalCAPM, using CM, MinMax, CRM and Iregr interval regression
methods are reported in the same table. A simple interval regression is computed
thus Alpha and Beta are the first two components of (3.4), (3.8), (3.12) with
respect to CM, MinMax and CRM respectively. It is important to remark that
CM, MinMax and CRM do not produce interval results thus the pair of numbers
shown in parenthesis are not necessarily ordered. The results of Iregr are instead
intervals, in particular Alpha and Beta are (3.14) and (3.13) respectively.

In Table 2 we present the comparison among CM, MinMax, CRM and Iregr
methods. The first column of the table, refers to the observed returns of the
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Method Alpha Beta
CAPM 0 0.806

IntervalCAPM
CM -0.0210 0.5156
CR (-0.0223,-0.0197) (0.5350,0.5350)

CRN (-0.0210,0.0058) (0.5156,-0.1276)
Iregr [-0.044,0.005] [0.060,1.007]

Table 1: CAPM/IntervalCAPM

Asset:ABBOTT Method: CM Method: MinMax Method: CRM Method: Iregr
Y(1)=[0.005,0.014] [-0.015,-0.012] [-0.016,-0.011] [-0.019,-0.008] [-0.043,0.021]
Y(2)=[-0.023,-0.017] [-0.040,-0.0362] [-0.042,-0.034] [-0.043,-0.032] [-0.081,0.003]

Y(3)=[0,0.009] [-0.052,-0.046] [-0.055,-0.044] [-0.054,-0.044] [-0.106,0.002]
Y(4)=[-0.043,-0.039] [-0.033,-0.026] [-0.035,-0.024] [-0.034,-0.025] [-0.068,0.004]
Y(5)=[-0.053,-0.041] [-0.079,-0.073] [-0.082,-0.069] [-0.081,-0.071] [-0.157,0]

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Y(49)=[-0.058,-0.046] [-0.031,-0.028] [-0.032,-0.027] [-0.035,-0.024] [-0.064,0.004]

GOF [0.020,0.033] [0.018,0.035] [0.017,0.036] [0,0.079]

Table 2: Forecasting asset ABBOTT

title ABBOTT, the other columns refer to their estimate by the described
interval regression methods. GOF is the Goodness of Fit Index: given two
interval vectors: YYY I = (Yi = [y

i
, ȳi]), and XXXI = (Xi = [xi, x̄i]) (i = 1 · · · , n),

the Goodness of Fit Index between XXXI and YYY I is:

GOF = 1/n

n∑
i=1

|Xi − Yi|

.

In Figure 8 the cloud of rectangles generated by the two considered interval time
series is represented on a cartesian plane.

4.1.1 Analysis of the results

The methods CM, MinMax, CRM have the computational cost of the product (AAA)−1bbb
where A and b have been described in Sections 3.1, 3.2, 3.3. Iregr minimize/maximize
each component of (AAA)−1bbb over a compact and connected set thus it has a computa-
tional cost which is quite greater than that of CM, MinMax, CRM, anyway it shows

some good advantages with respect to them: 1-Iregr computes the interval β̂j
I

(Beta)
and the interval α̂j

I (Alpha) of the interval regression line (2.10) which are both well

interpretable: β̂j
I

and α̂j
I are the set of estimations of all slopes and intercepts of

(2.6), when each return ranges in its own interval of values. CM, MinMax, CRM
produce just scalar slope and scalar intercept. In the considered numerical example,
Beta = [0.060, 1.006] is in accordance with the cloud of rectangles represented in Fig-
ure 8, considering that the interval correlation is [0.003, 0.509]. The interval Beta is
also well interpretable considering that it does not contain the zero; an investor knows
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Figure 8: SP500/ABBOTT

that, even if the returns fluctuate around their fixed values, the Beta is always posi-
tive and it ranges from 0.060 to 1.006. Furthermore, remarking that for a real-valued
security the CAPM states that the intercept Alpha in (2.6) is zero, the interval Al-
pha , which is an interval around zero, is interpretable as the set of all “errors” that
we may do using the CAPM for predicting the expected return of the considered risky
security. It is remarkable that Alpha = [−0.044, 0.0005] ranges very closely to zero,
namely does not contain elements with absolute value significantly different from zero.
For the considered numerical example the IntervalCAPM approach may be a good
way of prediction. The reliability of the method and consequently the estimate of the
intervals Alpha and Beta, is significative when the radii of the intervals reflect natural
fluctuations excluding exceptional events. Furthermore, it has been observed that the
IntervalCAPM with Iregr works well when the rectangles are well separated ; if they
are not, i.e., the rectangles are included one into another, the interval Beta is an in-
terval containing the zero, and so not well interpretable, considering that “everything
may happen” for the slope of the regression lines of a “circular cloud” of rectangles.
It could be of interest to investigate this aspect by means of simulations, in order to
study the robustness of the interval method, introducing indexes regarding the ratio
centre/radius. 2- the actual return of asset ABBOTT, if computed by CM, MinMax,
and CRM methods, is an interval which is calculated ex post ; i.e., it is constructed
from the results of some classical regression methods which minimize criteria different
from the least squares one. Furthermore, while CM, MinMax and CRM compute the
interval solution,i.e. the interval estimation of an interval return, Iregr computes the
interval of solutions i.e. the interval of the estimations of each point in the chosen
interval return. The solutions are always well interpretable. 3- As seen in Section 3.4,
Iregr is a method which computes all possible regression lines varying each return in
its own interval of variation. Thus, the estimated intervals reported in Table 2 (5th

column) have a bigger radius with respect to those computed by CM, MinMax and
CRM. The predictions computed by Iregr, taking into account also extreme situations,
may be considered more reliable with respect to those computed by the other meth-
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ods. In is important to point out that the quality of our predictions is strictly related
to characteristic of the input data; in fact Iregr is quite sensitive to outliers.4- in the
case of simple regression, it is always possible to compute the actual return of asset
ABBOTT by means of Iregr. On the contrary the other methods may not apply if
the matrix involved in the computation of the β̂ββ is singular.

5 Conclusions

In the present work different regression methodologies for interval data have been de-
scribed. A first contribution of this work is the comparison of the various regression
methods, reported in the literature, on sets of real data. The algorithms of the consid-
ered methodologies have been implemented in MATLAB and the numerical results are
compared to one another highlighting the following good advantages for the method
Iregr:

1) in [3], [4], [16] and [21], the authors derive the results from some classical
regression methods which minimize criteria different from the least squares one. Those
methods, do not consider the interval as a whole structure or special kind of data, but
reconstruct interval solution ex post. Iregr, instead, makes extensively use of the
interval algebra tools combined with some optimization techniques to consider the
interval as a whole structure and to compute the interval of solutions, which is the
interval containing all possible values assumed by a considered function, when the
observed values vary in their own interval of values.

2) With difference to the other regression methods that compute scalar regression
coefficients, Iregr computes the interval slope and the interval intercept of the interval
regression line which are the set of estimations of all slopes and intercepts generated
when each data varies in its own interval of variation.

3) Iregr computes the interval of possible solutions of the considered problem when
each quantity is in its own interval of variation.

Interval regression methods showed to be useful in practical cases, as for exam-
ple, in the application of CAPM to interval financial data: the interval time series
of the asset ABBOTT (ABBOTT Laboratories), and of the SP500 (Standard and
Poor’s 500 Composite) index have been considered. The numerical results of the dif-
ferent methodologies are compared one another. The following new findings on the
application of Iregr in the framework of the CAPM have been highlighted:

i) Iregr computes the interval beta β̂j
I

and the interval alpha α̂j
I of the security

market line which are both well interpretable: β̂j
I

and α̂j
I are the set of estimations of

all slopes and intercepts of (2.6), when each return ranges in its own interval of values.

An investor using the IntervalCAPM and computing β̂j
I

and α̂j
I of a given asset has

the possibility to know, not only the scalar risk and the scalar intercept, but also the
“uncertainty” around those quantities. CM, MinMax, CRM produce just scalar slope
and scalar intercept.

ii) Considering the interval predictions, while CM, MinMax and CRM compute
the interval solution, i.e. the interval estimation of an interval return, Iregr computes
the interval of solutions i.e. the interval of the estimations of each point in the chosen
interval return. The solutions are always well interpretable.

iii) In the case of simple interval regression, it is always possible to compute the
estimate of the actual return of asset ABBOTT by means of Iregr. On the contrary
the other methods may not apply if the matrix involved in the computation of the β̂ββ
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is singular.

Iregr is a method which is quite sensitive to the characteristic of the input data,
in particular it works well when: there are no outliers; the radii of the intervals reflect
natural fluctuations excluding exceptional events; the intervals are well separated.
Thus, as a future prespective of research, it could be interesting to: i) use some
trimmed method in order to handle outliers; ii) study the robustness of the method,
introducing indexes regarding the ratio centre/radius.
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