
Verified Bounds for the p-Norm Condition

Number∗

Siegfried M. Rump
Institute for Reliable Computing, Hamburg Univer-
sity of Technology, Schwarzenbergstraße 95, Hamburg
21071, Germany, and Visiting Professor at Waseda
University, Faculty of Science and Engineering, 3–4–1
Okubo, Shinjuku-ku, Tokyo 169–8555, Japan

rump@tu-harburg.de

Abstract

Methods to compute verified error bounds for the p-norm condition
number of a matrix are discussed for p ∈ {1, 2,∞} and the Frobenius
norm. We consider the cases of a real or complex, point or interval input
matrix. In the latter case the condition number of all matrices within
the interval matrix are bounded. A special method for extremely ill-
conditioned matrices is derived as well. Numerical results suggest that the
quality of the bounds corresponds to the fact that the condition number
of the condition number is the condition number.
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1 Introduction and Notation

Let a real or complex square matrix A be given, that is A ∈ Kn×n where K ∈ {R,C}.
When using ‖ · ‖p we henceforth assume p ∈ {1, 2,∞, F}, where ‖A‖F denotes the

Frobenius norm
√∑

a2ij . We derive methods to compute verified error bounds for

κp(A) := ‖A‖p‖A−1‖p. Note that finite bounds for the condition number imply A to
be non-singular. We also consider the case of an interval matrix A ∈ IKn×n, where all
condition numbers of A ∈ A are bounded. Moreover, a special method for extremely
ill-conditioned matrices is presented. We assume the reader to be familiar with basic
concepts of interval arithmetic, cf. [5].

A straightforward INTLAB [7] statement to compute an inclusion Cnd ∈ IR of
κp(A) is

Cnd = norm(intval(A),p)*norm(inv(intval(A)),p) (1)

which works both for point and interval, real and complex matrices A. It fails for too
ill-conditioned matrices with Cnd = NaN. In the following we discuss alternative and
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specialized methods to compute an inclusion of the condition number. We frequently
need

A,B ∈ Kn×n and |A| ≤ B ⇒ ‖A‖p ≤ ‖B‖p , (2)

where comparison is understood to be componentwise. This is clear for p ∈ 1,∞, F .
For p = 2 use ‖A‖22 ≤ ‖ |A| ‖22 = ρ(|A|T |A|) ≤ ρ(BTB) = ‖B‖22, where ρ(·) denotes the
spectral radius and the latter inequality follows by Perron-Frobenius Theory [4].

2 Main Results

Bounds for the p-norm of a matrix with p ∈ {1,∞, F} are immediate using interval
arithmetic, and bounds for the spectral norm are obtaind by the methods in [8]. So
we concentrate on bounds for the norm of the inverse of a matrix A.

Such bounds are computed on the basis of an approximate inverse R of A. The
quality of the bounds for ‖A−1‖ relates directly to the quality of the approximation
R ≈ A−1. This quality depends, in turn, on the condition number of the matrix A,
which is to be bounded and which is not known a priori.

What sounds like a vicious circle is resolved by computing a bound α for the norm
of E := I − RA. If α < 1, then lower and upper bounds for the norm of the true
inverse A−1 follow using the norm of R. The norm of R is bounded using interval
arithmetic as we explained previously for the norm of A.

Note that mathematically R ∈ Fn×n is an arbitrary matrix. If R is of poor quality,
the condition α < 1 is not satisfied. In practice R is computed by some standard
numerical algorithm, usually based on Gaussian elimination with partial pivoting.
Numerically, we can expect α < 1 if κ(A) . eps−1 for eps denoting the relative
rounding error unit (about 1.1 · 10−16 in IEEE 754 binary64). It is important to note
that all our bounds are valid without any a priori assumption on the condition number
of A or the the quality of R.

2.1 Perturbations of the Identity Matrix

Denoting the identity matrix of proper dimension by I, we first investigate ‖(I−E)−1‖p
for admissible perturbations E.

Lemma 2.1 Let E ∈ Kn×n and p ∈ {1, 2,∞} be given, and suppose ‖E‖p ≤ α < 1.
Then

1

1 + α
≤ ‖(I − E)−1‖p ≤

1

1− α . (3)

Equality is attained in both bounds for E = −αI and E = αI, respectively, for all p
and any n.

Proof. The result follows by using the Neumann series and

1 = ‖(I − E)(I − E)−1‖p ≤ (1 + α)‖(I − E)−1‖p,

a commonly used “splitting of 1”. �
Note the apparent asymmetry of the bounds: For nonzero α, the lower bound is

closer to 1 than the upper bound. This will be utilized later. For the Frobenius norm,
things are a little more involved.
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Lemma 2.2 Let E ∈ Kn×n be given, and suppose ‖E‖F ≤ α < 1. Then

√
n

1 + ‖E‖2
≤ ‖(I − E)−1‖F ≤

√
n

1− ‖E‖2
. (4)

Equality is attained in both bounds for β = n−1/2α and E = −βI and E = βI,
respectively, for any n. Moreover,

√
n− α

1− α ≤ ‖(I − E)−1‖F ≤
√
n+

α

1− α . (5)

The left and right bound in (5) can be better up to a factor 2 and
√
n than the corre-

sponding bounds in (4), respectively. Conversely, both bounds in (5) can be arbitarily
weaker than the bounds in (4).

Proof. The standard perturbation bound for singular values (Theorem 3.3.16 in
[3]) states that

A,E ∈ Km×n ⇒ |σi(A+ E)− σi(A)| ≤ ‖E‖2 for 1 ≤ i ≤ min(m,n) .

Setting m = n and A := I, it follows that for all 1 ≤ i ≤ n

1− ‖E‖2 ≤ σi(I − E) ≤ 1 + ‖E‖2 .

Then ‖E‖2 ≤ ‖E‖F and ‖E‖F ≤ α < 1 shows that I − E has full rank and

1

1 + ‖E‖2
≤ σi

(
(I − E)−1

)
≤ 1

1− ‖E‖2
. (6)

For any matrix M ∈ Kn×n

‖M‖2F = trace(MTM) =

n∑
i=1

σi(M
TM) =

n∑
i=1

σ2
i (M)

because the eigenvalues and singular values of MTM coincide, so (6) implies the
bounds in (4). Furthermore,

‖(I − E)−1‖F = ‖I +

∞∑
ν=1

Eν‖F and ‖
∞∑
ν=1

Eν‖F ≤
α

1− α

imply the bounds in (5). Using ‖E‖2 ≤ ‖E‖F implies

left (5)

left (4)
≤
√
n− α/(1− α)√
n/(1 + α)

≤ 1 + α < 2

and
right (4)

right (5)
≤

√
n√

n(1− α) + α
=

1

1− α(1− 1/
√
n)
≤
√
n .

For α close to 1, the bounds in (5) tend to ±∞ whereas, with a gap between ‖E‖2 and
‖E‖F , the bounds in (4) remain finite. A simple example is again E being a multiple
of the identity matrix. This completes the proof. �
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2.2 General Point Matrices

Bounds for the condition number of a point matrix A ∈ Kn×n follow by direct appli-
cation of the previous lemma.

Lemma 2.3 Let A,R ∈ Kn×n and p ∈ {1, 2,∞, F} be given, abbreviate E := I −RA
and assume ‖E‖p ≤ α for some α ∈ R. Suppose α < 1 in the cases p ∈ {1, 2,∞}, and
‖E‖2 < 1 in the case p = F . Then A and R are non-singular and

‖A‖p‖R‖p
1 + α

≤ κp(A) ≤ ‖A‖p‖R‖p
1− α for p ∈ {1, 2,∞} , (7)

and
‖A‖F ‖R‖F

(
1− αβ

)
≤ κF (A) ≤ ‖A‖F ‖R‖F

(
1 + αβ

)
(8)

for β :=
√
n/(1 − ‖E‖2). If α < 1 in the case p = F , then (8) is also true for

β =
√
n+ α/(1− α).

Proof. The assumptions imply I−E and therefore A and R are invertible. Using

A−1 = (I − E)−1R = R+ (I − E)−1ER

together with Lemmas 2.1 and 2.2 yields the right bound in (7) and both bounds in
(8), whereas the left bound in (7) follows by

‖R‖p = ‖(I − E)(I − E)−1R‖p = ‖(I − E)A−1‖p ≤ (1 + α)‖A−1‖p.

�
Note that for both lower bounds, only upper bounds of ‖(I − E)−1‖ have been

used. For the lower bound in (7), we could use the splitting of 1 since ‖I‖p = 1 for
p ∈ {1, 2,∞}; this is not possible for the lower bound in (8). One might be inclined to
expand (I − E)−1 = I + (I − E)−1E to improve the bounds in (7) as well. However,
this yields

‖R‖
(

1− α

1− α

)
≤ ‖A−1‖ ≤ ‖R‖

(
1 +

α

1− α

)
(9)

implying the same upper, but a weaker lower bound. This is due to the mentioned
asymmetry of the bounds in Lemma 2.1.

2.3 General Interval Matrices

Let A ∈ IKn×n be given, so that

A = 〈M,∆〉 := {Ã ∈ Kn×n : |Ã−M | ≤ ∆} for M ∈ Kn×n and 0 ≤ ∆ ∈ Rn×n .
(10)

Let Ã ∈ A be fixed but arbitrary, so that Ã = M + ∆̃ with |∆̃| ≤ ∆. Denoting

Ẽ := I −RÃ and using (2) it follows

‖Ẽ‖ ≤ ‖I −RM‖+ ‖R‖‖∆̃‖ ≤ ‖I −RM‖+ ‖R‖‖∆‖ .

Furthermore, again using (2),

‖M‖p − ‖∆‖p ≤ ‖M‖p − ‖∆̃‖p ≤ ‖Ã‖p ≤ ‖M‖p + ‖∆̃‖p ≤ ‖M‖p + ‖∆‖p .

Proceeding as before by using Ã−1 = (I − Ẽ)−1R = R+ (I − Ẽ)−1ẼR, we obtain
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Lemma 2.4 Let A be as in (10), R ∈ Kn×n and p ∈ {1, 2,∞, F} be given, and
assume ‖I − RM‖p + ‖R‖p‖∆‖p < γp for some γp ∈ R. Suppose γp < 1 in case

p ∈ {1, 2,∞}, and γ2 < 1 in case p = F . Then for every Ã ∈ A

(‖M‖p − ‖∆‖p)‖R‖p
1 + γp

≤ κp(Ã) ≤ (‖M‖p + ‖∆‖p)‖R‖p
1− γp

for p ∈ {1, 2,∞} , (11)

and(
‖M‖F −‖∆‖F

)
‖R‖F

(
1− γFβ

)
≤ κF (Ã) ≤

(
‖M‖F + ‖∆‖F

)
‖R‖F

(
1 + γFβ

)
(12)

for β :=
√
n/(1− γ2). If γF < 1, then (12) is also true for β =

√
n+ γF /(1− γF ).

Again one might try to improve the bounds using Ã−1 = (I +M−1∆̃)−1M−1 and
the implicit estimate for ‖M−1‖ in (7). But again a computation yields that the upper
bounds coincide, whereas the lower bound is weaker than in (11).

2.4 Extremely Ill-Conditoned Matrices

We finally address matrices with κ(A) > eps−1, where eps denotes the relative round-
ing error unit. In IEEE 754 binary64 (double precision), this means κ(A) > 1016.
In that case there is likely no preconditioner R ∈ Kn×n at all such that I − RM is
convergent.

Here a method as in [9, Section 6], which is based on unpublished results of the mid
1980’s (see the citations in [9]), can be used. If κ(A) > eps−1, then an approximate
inverse has, in general, no correct digits, but it contains enough information to ensure
κ(RA) ≈ eps · κ(A). Denote B := RA, and let S be an approximate inverse of B.
Abbreviating with F := I − SB and assuming ‖F‖p ≤ α < 1, we obtain as before
A−1 = B−1R = (I − F )−1SR, and Lemma 2.3 implies

‖A‖p‖SR‖p
1 + α

≤ κp(A) ≤ ‖A‖p‖SR‖p
1− α (13)

for p ∈ {1, 2,∞}, and similarly for the Frobenius norm using Lemma 2.2.
It is seen in the final section that this approach works up to condition numbers

near eps−2, which is up to 1032 in IEEE 754 binary64. Note that this is far beyond
the scope of common numerical algorithms. It is mandatory in that case to use extra-
precise accumulation of dot products for computing the error bounds for B = RA (and
only there). A number of such algorithms using only floating-point operations in the
current working precision are available, see [8] and the literature cited therein.

We close this section with some hints on the implementation for p = 2, the spectral
condition number. The spectral norm of a matrix can be bounded using the methods in
[8], however, this requires O(n3) operations. In contrast, bounds for the spectral norm
of a non-negative matrix C are computed in O(n2) operations using ‖C‖22 = ρ(CTC),
CTC ≥ 0 and Perron–Frobenius Theory. The inequalities

min
i

(CTCx)i
xi

≤ ρ(CTC) ≤ max
i

(CTCx)i
xi

(14)

are valid for any positive vector x, see [1]. Here (·)i denotes the i-th entry of a vector.
Since the vector x is arbitrary, a power set iteration replacing x by CT (Cx) may
be perfomed. Each iteration requires O(n2) floating-point operations. It is known
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[10] that this produces a nested sequence of lower and upper bounds, guaranteed to
improve in each step.

The components of the matrix E = I−RA or I−RM are, for not too ill-conditioned
matrices, likely to be small, and usually it does no harm to bound the norm by ‖ |E| ‖.
To this end (14) can be used, and also for bounding ‖ |∆| ‖. This method should not
be used to bound ‖A‖ or ‖R‖.

Note that all approaches use an approximate inverse, so they may be time and
memory consuming for sparse matrices. However, error bounds for the condition
number of a matrix imply bounds for the solution of linear systems. For general,
sparse matrices, this is one of the grand challenges in verification methods [6]. The
presented algorithms will be included in Version 7.2 of INTLAB [7].

3 Computational Results

We now show some computational results. Matrices of specified condition number
are generated by predefining a geometric sequence of singular values as in the Matlab
function randsvd; for extremely ill-conditioned matrices, we use the INTLAB-function
randmat, see [9].

condition number
n 102 105 1010 1013 1014 1015 fail
10 3.1 · 10−14 1.6 · 10−11 1.5 · 10−6 1.5 · 10−3 1.4 · 10−2 1.3 · 10−1 0
20 5.9 · 10−14 2.7 · 10−11 2.1 · 10−6 2.0 · 10−3 1.9 · 10−2 1.9 · 10−1 0
50 1.9 · 10−13 6.6 · 10−11 4.3 · 10−6 3.5 · 10−3 3.9 · 10−2 4.2 · 10−1 0
100 1.0 · 10−5 1.0 · 10−5 1.9 · 10−5 7.8 · 10−3 7.1 · 10−2 1.2 5
200 1.0 · 10−5 1.0 · 10−5 3.1 · 10−5 1.6 · 10−2 1.6 · 10−1 30 95
500 1.0 · 10−5 1.0 · 10−5 6.5 · 10−5 4.1 · 10−2 4.6 · 10−1 - 100
1000 1.0 · 10−5 1.0 · 10−5 9.7 · 10−5 6.5 · 10−2 9.4 · 10−1 - 100

Table 1: Test for p = 2, median over 100 samples, number of failures for condi-
tion number 1015 in the last column.

condition number
n 102 105 1010 1013 1014 fail 1015 fail

10 3.8 · 10−14 2.4 · 10−11 2.3 · 10−6 2.2 · 10−3 2.1 · 10−2 0 2.1 · 10−1 0
20 7.4 · 10−14 4.5 · 10−11 3.6 · 10−6 3.5 · 10−3 3.3 · 10−2 0 3.7 · 10−1 0
50 2.2 · 10−13 1.2 · 10−10 8.3 · 10−6 7.0 · 10−3 7.0 · 10−2 0 1.1 11

100 5.4 · 10−13 2.6 · 10−10 1.6 · 10−5 1.4 · 10−2 1.4 · 10−1 0 3.6 87
200 1.4 · 10−12 6.2 · 10−10 3.7 · 10−5 3.1 · 10−2 3.3 · 10−1 0 − 100
500 9.2 · 10−12 3.9 · 10−9 2.3 · 10−4 2.0 · 10−1 − 100 − 100

1000 2.1 · 10−11 7.7 · 10−9 3.7 · 10−4 3.4 · 10−1 − 100 − 100

Table 2: Test for p = 1, median over 100 samples, number of failures for condi-
tion numbers 1014 and 1015.

For a given matrix A and computed bound c ∈ IR for κ(A) the following tables
show the relative error φ(c, c) := rad(c)/c, where rad(c) := (c−c)/2 denotes the radius
of c = [c, c]. Here c = cond(A) is the approximate condition number computed by
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ordinary Matlab for anticipated condition numbers up to 1015, and using the symbolic
toolbox for higher condition numbers. The quality of the approximation seems still
acceptable for κ(A) . 1015.

Tables 1 and 2 show the results for the spectral norm and the 1-norm, respectively.
Bounds for the condition number are calculated for 100 samples, and the median of
φ(c, c) of the bounds is displayed. The lower bound of c is set to zero if it becomes
negative.

For the spectral norm, the method works in all examples up to condition number
1014 and, for p = 1, always up to condition number 1013 in our examples. If there
are failures for a certain condition number, the number of failures is displayed in the
following column. For the spectral norm and dimensions up to 50, bounds for the
norm are computed on the base of a full eigendecomosition, otherwise the accuracy
is restricted to about 10−6 to save computing time. This is because an inclusion of
the condition accurate to a few digits seems appropriate and sufficient in almost all
applications.

Despite this the computational results are consistent with the fact that the condi-
tion number of the condition number is the condition number [2]. The results for the
Frobenius norm are a little bit better in accuracy than those for the 1-norm, and (of
course) equal to those for the spectral norm in terms of failures.

Tables 3 and 4 show the results for the spectral norm and the 1-norm, respectively,
for extremely ill-conditioned matrices. As has been mentioned, (only) the product RA
is computed with extra-precise dot product accumulation. It means that each entry
(RA)ij is computed with algorithm Dot2 in [8]. This algorithm uses only floating-
point operations in working precision and produces a result as if computed in twice
the working precision. Otherwise the bounds in (13) are straightforwardly computed.

The results are as expected in terms of accuracy and failure. As before, the results
for the Frobenius norm are similar in accuracy to those of the 1-norm, and equal to
those the spectral norm in terms of failure.

condition number
n 1015 1020 1025 1028 fail 1029 fail
10 7.2 · 10−15 1.7 · 10−13 9.3 · 10−9 6.7 · 10−6 0 3.3 · 10−6 0
20 1.3 · 10−14 2.1 · 10−13 3.7 · 10−8 1.6 · 10−5 1 3.0 · 10−5 0
50 3.5 · 10−14 1.3 · 10−12 3.0 · 10−8 1.6 · 10−4 1 2.6 · 10−1 91
100 1.0 · 10−5 1.5 · 10−5 2.0 · 10−4 8.5 · 10−2 26 8.8 · 10−1 99

Table 3: Test for p = 2, median over 100 samples, number of failures for condi-
tion numbers 1028 and 1029.

condition number
n 1015 1020 1025 1028 fail 1029 fail
10 3.1 · 10−15 1.9 · 10−13 7.1 · 10−9 5.1 · 10−6 0 3.6 · 10−6 0
20 5.4 · 10−14 2.3 · 10−13 3.2 · 10−8 1.1 · 10−5 1 1.5 · 10−5 1
50 1.2 · 10−14 1.3 · 10−12 3.9 · 10−8 1.8 · 10−4 0 3.0 · 10−1 92
100 2.4 · 10−14 1.4 · 10−9 1.6 · 10−4 7.1 · 10−2 15 8.2 · 10−1 97

Table 4: Test for p = 1, median over 100 samples, number of failures for condi-
tion numbers 1028 and 1029.
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We finally mention that using (1) produces, in general, more accurate inclusions but
needs more computing time. Table 5 shows the median of the computing times of 100
examples each. We choose some random matrices because there is not much difference
in time for well- or ill-conditioned matrices. As can be seen, the new approach is
faster than (1). The timing for interval matrices is very similar and therefore omitted.
Matrices with condition number beyond eps−1 are outside the scope of (1).

n = 100 n = 200 n = 500 n = 1000
new (1) new (1) new (1) new (1)

‖ · ‖1 0.0034 0.0089 0.0092 0.032 0.070 0.35 0.35 2.01
‖ · ‖2 0.0141 0.0196 0.0276 0.054 0.158 0.45 0.93 2.57
‖ · ‖∞ 0.0038 0.0092 0.0090 0.035 0.070 0.35 0.35 2.00
‖ · ‖F 0.0051 0.0098 0.0089 0.033 0.065 0.34 0.34 1.97

Table 5: Computing time in seconds new vs. (1)
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