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Abstract

This paper proposes a new technique to solve n-th order linear uncer-
tain but bounded (interval) differential equations with interval initial con-
ditions using the interval midpoint. First, the interval differential equation
is solved in terms of the interval midpoint. This solution is then used to
find the solution of the original interval differential equation. The method
is discussed by considering various cases for the coefficients in the differ-
ential equation with examples. We have compared the results obtained
by the proposed method with exact and homotopy perturbation method
(HPM) to demonstrate the validity and applicability of the method.

Keywords: Interval midpoint, interval arithmetic, n-th order linear interval differen-
tial equations, generalized Hukuhara differentiability
AMS subject classifications: 65G40, 49K15

1 Introduction

Interval differential equations play an important role for uncertainty modelling of
physical and engineering problems. Intervals represent a natural way to model the
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systems under uncertainty when the number of variables and parameters is small. For
example, we might have only vague and incomplete information about the variables
and parameters being a result of errors in measurement, observations, experiments,
applying different operating conditions, or maintenance-induced errors, etc. To han-
dle these uncertainties and vagueness, one may use interval or fuzzy parameters and
variables in the governing differential equations. Some papers related to interval and
fuzzy differential equations are given in [1, 6, 8, 9, 18, 20-32].

In this regard, Moore [15, 16] first introduced the concept of interval analysis and
computations. This concept has been applied successfully by different authors for
uncertainty analysis. Several books also have been written by different authors rep-
resenting the scope and various aspects of interval analysis such as in [2, 10, 14-17].
These books also give an extensive review of interval computation and interval differ-
ential equations which may help the reader understand the basic concepts of interval
analysis. In view of this, Lohner [11, 12] developed a comprehensive software package
implementing an advanced interval Taylor series method. Lohner [13], Corliss and
Rihm [7] and Nedialkov [19] have proposed modified versions of Lohner’s algorithm.
Detailed surveys of interval Taylor series methods for Ordinary Differential Equations
(ODEs) are given in Corliss [8] and Rihm [22]. Abdelhay et al. [1] implemented a
modified exponential interval technique for the solution of singularly perturbed ini-
tial value problems. A new interval method based on Taylor series expansion for the
solution of linear n-th order ordinary differential equations was developed by Neher
[20, 21]. An interval Hermite-Obreschkoff method has been applied by Nedialko et al.
[18] for the solution of interval solution of an initial value problem. Hoffmann and
Marciniak [9] solved a Poison equation using an interval difference method. Differen-
tial calculus is studied by Chalco-Cano et al. [6] for interval-valued functions by using
generalized Hukuhara differentiability, which is the most general concept of differen-
tiability for interval-valued functions. Also, the Hukuhara concept was applied by
Stefanini and Bede [23, 24] in a more generalised way for interval-valued functions and
interval differential equations. Stefanini and Bede [23] presented the local existence
and uniqueness of two solutions with characterizations of the solutions of an interval
differential equation. In Stefanini and Bede [24] the authors corrected the imprecision
presentation of Stefanini and Bede [23]. As the interval differential equation may be
considered as the special case of fuzzy differential equation, a few recent papers related
to fuzzy differential equations are also cited here. Buckley and Feuring [5] applied two
analytical methods for solving n-th order linear differential equations with fuzzy ini-
tial conditions. In the first method, they simply fuzzify the crisp solution to obtain a
fuzzy function and then check whether it satisfies the differential equation. The second
method was just the reverse of the first method.

The analytical method is developed by Bede [3] using the Hukuhara derivative to
obtain the solution of fuzzy differential equations. Behera and Chakraverty [4] ob-
tained the solution of uncertain impulse responses of imprecisely defined half order
mechanical system. Tapaswini and Chakraverty [25, 27] developed a new technique
based on Euler and improved Euler methods for the solution of fuzzy initial value prob-
lems. Also, a homotopy perturbation method is used by Tapaswini and Chakraverty
[26, 28, 30] to obtain the numerical solution of fuzzy differential equations. A new dou-
ble parametric form of fuzzy number is developed by Tapaswini and Chakraverty [29]
and then applied to a homotopy perturbation method to get the numerical solution of
uncertain beam equations. Ivaz et al. [32] investigated the numerical algorithms for the
solution of fuzzy differential equations and hybrid fuzzy differential equations. Nieto
et al. [31] investigated some interesting properties of the diameter and the midpoint
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of the solution and compared the solution with the crisp case.
For interval evaluation of derivatives, automatic differentiation has been used by

Jaulin et al. [10]. This differentiation has two types viz. forward and backward (or
reverse). Here Jaulin et al. [10] applied a midpoint method with automatic differenti-
ation to obtain the solution of interval differential equations. This is a good procedure
to obtain the derivative, but one may not be sure about the order in which the mul-
tiplication of the matrices is to be done, i.e., from left to right or from right to left.
The computational complexity depends on whether one may go from left to right or
right to left [10]. Keeping the above computational complexity of the method in mind,
the present authors have developed a new analytical approach using interval midpoint
with Hukuhara derivative to solve n-th order linear interval differential equations.

This paper is organized as follows. In Section 2, we give some basic preliminaries,
and the proposed technique is discussed in Section 3. Also in Section 3, the basic idea
of HPM is explained. In Section 4, numerical examples are solved. Finally, in the last
section, conclusions are drawn.

2 Preliminaries

In this section, we present some notations, definitions and preliminaries which are used
in this paper [2, 10].
Definition 2.1 (Interval midpoint)
The midpoint of an arbitrary interval u = [u, u] is defined as uc = u+u

2
.

Definition 2.2 Interval arithmetic
For two intervals x̃ = [x, x] and ỹ = [y, y], and scalar k, interval arithmetic operations
are defined as follows:

i. x̃+ ỹ = [x+ y, x+ y].

ii. x̃× ỹ =
[

min
{

x× y, x× y, x× y, x× y
}

,max
{

x× y, x× y, x× y, x× y
}]

.

iii. kx =

{

[kx, kx] , k < 0,
[kx, kx] , k ≥ 0.

iv. x̃/ỹ = [x, x]×
[

1
y
, 1
y

]

, where 0 /∈ ỹ.

Let I be the set of (closed bounded) intervals of the real line and let Θ be the usual
Hukuhara difference.
Definition 2.3 [23] Let f : ]a, b] → I and t0 ∈ ]a, b]. We say that f is strongly
gH-differentiable (generalized Hukuhara differentiable) at t0 if there exists an element
f ′(t0) ∈ I, such that, for all h > 0 sufficiently small,

i. ∃f(t0 + h)Θf(t0), f(t0)Θf(t0 − h) and

lim
h→0+

f(t0 + h)Θf(t0)

h
= lim

h→0+

f(t0)Θf(t0 − h)

h
= f ′(t0),

or

ii. ∃f(t0)Θf(t0 + h), f(t0 − h)Θf(t0) and

lim
h→0+

f(t0)Θf(t0 + h)

−h
= lim

h→0+

f(t0 − h)Θf(t0)

−h
= f ′(t0),

or
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iii. ∃f(t0 + h)Θf(t0), f(t0 − h)Θf(t0) and

lim
h→0+

f(t0 + h)Θf(t0)

h
= lim

h→0+

f(t0 − h)Θf(t0)

−h
= f ′(t0),

or

iv. ∃f(t0)Θf(t0 + h), f(t0)Θf(t0 − h) and

lim
h→0+

f(t0)Θf(t0 + h)

−h
= lim

h→0+

f(t0)Θf(t0 − h)

h
.

Definition 2.4 [23] Let f : ]a, b] → I be gH− differentiable at t0 ∈ ]a, b]. We say that
f is (i) gH− differentiable at t0 if

i. f ′(t0) =
[

f ′(t0), f
′
(t0)

]

,

and that f is (ii) gH− differentiable at t0 if

ii. f ′(t0) =
[

f
′
(t0), f

′(t0)
]

.

3 Proposed Method

In this section, we propose a new method based on interval midpoints, known as the
Interval Midpoints Method (IMM), to solve an n-th order linear interval differential
equation. To compare the results of the interval midpoints method, we also have
obtained the exact solution using interval computation.
Let us consider the n-th order linear interval differential equation

ỹ(n)(t) + an−1(t)ỹ
(n−1)(t) + · · ·+ a1(t)ỹ

′(t) + a0(t)ỹ(t) = g̃(t), (1)

where ai(t), 0 ≤ i ≤ n − 1, continuous on some interval I, subject to interval initial
conditions

ỹ(0) = b̃0, ỹ
′(0) = b̃1, . . . ,ỹ

(n−1)(0) = b̃n−1.

For interval b̃i, 0 ≤ i ≤ n− 1, where ỹ(t) is the solution to be determined. Now three
cases may arise:
Case 1 Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all positive.
Case 2 Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all negative.
Case 3 Coefficients an−m−1(t), an−m−2(t), · · · , a1(t), a0(t) are negative for n ≥ m.
We now discuss the above three cases in detail.

Case 1 Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all positive.
First we will write Eq. (1) in terms of interval midpoints as

yc(n)

(t)yc(n)

(t) + an−1(t)y
c(n−1)

(t) + · · ·+ a1(t)y
c
′

(t) + a0(t)y
c(t) = gc(t), (2)

with initial conditions

yc(0) = bc0, y
c
′

(0) = bc1, . . . ,y
c(n−1)

(0) = bcn−1.
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The solution to Eq. (2) may be found easily for yc by any analytical method.
We may write interval differential equation (1) as

[

y(n)(t), y(n)(t)
]

+ an−1(t)
[

y(n−1)(t), y(n−1)(t)
]

+ · · ·+ a1(t)
[

y′(t), y′(t)
]

+a0(t)
[

y(t), y(t)
]

=
[

g(t), g(t)
]

,
(3)

subject to interval initial conditions

[

y(0), y(0)
]

=
[

b0, b0
]

,
[

y′(0), y′(0)
]

=
[

b1, b1
]

, . . . ,
[

y(n−1)(0), y(n−1)(0)
]

=
[

bn−1, bn−1

]

.

It may be noted that the repeated interval evaluation of derivatives of functions re-
quires an interval solver. For example, Newton contractors, contractors based on
parallel linearization, the evaluation of centred inclusion functions and magnitude all
require the computation of derivatives of functions with interval arguments [10].

Automatic differentiation also has been used to handle the differentiation [10]. To
overcome the difficulties in the automatic differentiation (as mentioned in the Intro-
duction), we may use an alternative midpoint method using generalized Hukuhara
derivative. Using generalized Hukuhara derivatives and interval arithmetic, one may
write Eq. (3) as

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ a1(t)y

′(t) + a0(t)y(t) = g(t), (4)

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ a1(t)y

′(t) + a0(t)y(t) = g(t). (5)

Now solving either Eq. (4) or (5), one may get y(t) or y(t), respectively. Next, substi-
tuting the above value yc and y(t) or y(t) into the definition of an interval midpoint,
we may find the solution as y = 2yc − y or y = 2yc − y.

Case 2 Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all negative.
Eq. (1) may be written in terms of interval midpoints as

yc(n)

(t)− an−1(t)y
c(n−1)

(t)− · · · − a1(t)y
c
′

(t)− a0(t)y
c(t) = gc(t), (6)

with initial conditions

yc(0) = bc0, y
c
′

(0) = bc1, . . . ,y
c(n−1)(0) = bcn−1.

yc may be obtained by solving Eq. (6).
As mentioned in the previous Case 1, we use Hukuhara derivatives and interval arith-
metic as

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ a1(t)y

′(t) + a0(t)y(t) = g(t), (7)

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ a1(t)y

′(t) + a0(t)y(t) =
⇀

g (t). (8)

Using the definition of interval midpoints, one may write Eqs. (7) and (8) as

y(n)(t) + an−1(t)
(

2yc(t)− y(t)
)(n−1)

+ · · ·+ a1(t)
(

2yc(t)− y(t)
)′

+a0(t)
(

2yc(t)− y(t)
)

= g(t),
(9)



30 Tapaswini and Chakraverty, Midpoint Approach, n-th Order Interval ODE

y(n)(t) + an−1(t) (2y
c(t)− y(t))(n−1) + · · ·+ a1(t) (2y

c(t)− y(t))
′

+a0(t) (2y
c(t)− y(t)) =

⇀

g (t).
(10)

It may be seen that the above differential equations are now crisp differential equa-
tions. Hence, solving one of the above crisp differential equations, one may get the
solution as y(t) or y(t). Applying the definition of interval midpoints, one may get

y(t) =
(

2yc − y(t)
)

or y(t) = (2yc − y(t)).

Case 3 Coefficients an−m−1(t), an−m−2(t), · · · , a1(t), a0(t) are negative for, n ≥ m
In this case, we may write Eq. (1) in terms of interval midpoints as

yc(n)

(t) + an−1(t)y
c(n−1)

(t) + · · ·+ an−m(t)yc(n−m)

(t)− an−m−1(t)y
c(n−m−1)

(t)

+ · · · − a0(t)y
c(t) = gc(t),

(11)
with interval initial conditions

yc(0) = bc0, y
c
′

(0) = bc1, . . . ,y
c(n−1)

(0) = bcn−1.

Similarly we may solve for yc.
From Eq. (1) we have,

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ an−m(t)y(n−m)(t)

+an−m−1(t)y
(n−m−1)(t) + · · ·+ a0(t)y(t) = g(t),

(12)

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ an−m(t)y(n−m)(t)

+an−m−1(t)y
(n−m−1)(t) + · · ·+ a0(t)y(t) = g(t).

(13)

Eqs. (12) and (13) are written as

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ an−m(t)y(n−m)(t)

+an−m−1(t)
(

2yc(t)− y(t)
)(n−m−1)

+ · · ·+ a0(t)
(

2yc(t)− y(t)
)

= g(t),
(14)

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ an−m(t)y(n−m)(t)

+an−m−1(t) (2y
c(t)− y(t))(n−m−1) + · · ·+ a0(t) (2y

c(t)− y(t)) = g(t).
(15)

Similar to the previous cases, here also the system of Eqs. (12) and (13) are crisp
differential equations. Substituting the value of yc(t) into Eqs. (14) and (15) and
solving the crisp differential equation, one may get y(t) or y(t). Finally, the interval
solution is obtained by using the definition of interval midpoint.

Here the coefficients in the differential equation also play a great role. That is
why we have three cases viz. Case (1) when all the coefficients are positive, Case (2)
when all the coefficients are negative, and Case (3) when the coefficients are both
positive and negative. Case (1) may give a direct solution, but for Cases (2) and (3),
in general, we get coupled systems of equations. In that case, one may not bound all
trajectories by following the extreme ( i.e., the quasimonotonicity argument [35, 36])
because in these cases, we have a combination of positive and negative coefficients, and
we may not uncouple the system. However, our interval midpoints method uncouples
the system to provide a direct solution of interval differential equations.
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3.1 Homotopy Perturbation Method [33, 34]

To illustrate the basic idea of this method, we consider the following differential equa-
tion.

A(u)− f(r) = 0, r ∈ Ω, (16)

with the boundary condition

B

(

u,
∂u

∂n

)

= 0, r ∈ Γ, (17)

where A is a general differential operator, B is a boundary operator,f(r) is a known
analytical function, and Γ is the boundary of the domain Ω. A can be divided into
two parts, L and N , where L is linear, and N is nonlinear. Eq. (16) can be written as

L(u) +N(u)− f(r) = 0, r ∈ Ω. (18)

By the homotopy technique, we construct a homotopy U(r, p) : Ω× [0, 1] → R, which
satisfies:

H(U, p) = (1− p) [L(U) − L(v0)] + p [A(U)− f(r)] = 0, p ∈ [0, 1] , r ∈ Ω, (19)

or
H(U, p) = L(U) − L(v0) + pL(v0) + p [N(U) − f(r)] = 0, (20)

where, r ∈ Ω, and p ∈ [0, 1] is an embedding parameter, and v0 is an initial approxi-
mation of Eq.(16). Hence, it is obvious that

H(U, 0) = L(U)− L(v0) = 0, (21)

H(U, 1) = A(U)− f(r) = 0, (22)

and the changing process of p from 0 to 1 is just that of changing H(U, p) from
L(U)−L(v0) to A(U)− f(r). In topology, this is called a deformation, L(U)−L(v0),
and A(U) − f(r) is called homotopic. Applying the perturbation technique [32, 33],
due to the fact that 0 ≤ p ≤ 1 can be considered as a small parameter, we can assume
that the solution of Eq. (19) or (20) can be expressed as a series in P

U = u0 + pu1 + p2u2 + p3u3 + · · · (23)

when p → 1, Eq. (19) or (20) corresponds to Eq.(18). Then Eq. (23) becomes the
approximate solution of Eq. (18), i.e.

u = lim
p→1

U = u0 + u1 + u2 + u3 + · · · (24)

The convergence of the series (24) has been proved in [33, 34].

4 Numerical Implementation of the Interval Mid-

points Method

In this section, the interval midpoints method is applied to three mathematical ex-
amples and one application problem related to an electric circuit. The results are
compared with the exact and HPM solutionS to show the efficiency and applicability
of the interval midpoints method.
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Example 1. Let us consider the following second order interval differential equation
(Case 1).

ỹ′′ + 6ỹ′ + 9ỹ = 0 (25)

subject to the interval initial conditions

ỹ(0) = [1.8, 2.2], ỹ′(0) = [−3.2, − 2.8].

According to Eq. (2), the differential equation (Eq. (25)) can be written as

yc′′ + 6yc′ + 9yc = 0. (26)

Solving Eq. (26) one may obtain yc = (2 + 3t) e−3t.
Proceeding as Eq. (4) or (5) with the above value of yc and solving any one of the
systems gives the value of y(t) =

(

9
5

)

e−3t+
(

11
5

)

te−3t or y(t) =
(

11
5

)

e−3t+
(

19
5

)

te−3t.
Hence, one may have the final solution as ỹ(t) = [y(t), y(t)]. Corresponding interval
solution plots are given in Figs. 1 to 3 by varying t. It is interesting to note from the
figures that, with increasing of time the uncertainty width of the solution gradually
decreases. To show the difference of the solution bounds clearly, the plot has been
made by varying the time range from 30 to 31 as given in Fig. 3. Also, the absolute
errors obtained by the present and HPM methods are given in Tables 1 and 2. The
solutions obtained by the present method agree well with the exact solution.

Table 1: Comparison of lower bound of exact, present and HPM solutions of
Example 1

t

Exact
Solution
Y (t)
by Bede

y(t)

(HPM)
(n = 3)

y(t)

(HPM)
(n = 4)

Present
Solution
y(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 1.8 1.8 1.8 1.8 0 0 0
0.1 1.4965 1.4959 1.4965 1.4965 0.0006 0 0
0.2 1.2293 1.2204 1.2315 1.2293 0.0089 0.0022 0
0.3 1.0002 0.95092 1.0184 1.0002 0.0493 0.0182 0
0.4 0.8072 0.63996 0.8911 0.8072 0.1672 0.0839 0
0.5 0.6470 0.21219 0.9242 0.6470 0.4349 0.2771 0
0.6 0.5157 -0.4380 1.2572 0.5157 0.9538 0.7415 0
0.7 0.409 -1.4495 2.123 0.409 1.8585 1.7140 0
0.8 0.3229 -2.9961 3.881 0.3229 3.3191 3.5580 0
0.9 0.2540 -5.2903 7.0549 0.2540 5.5443 6.8009 0
1 0.1991 -8.585 12.375 0.1991 8.7842 12.175 0

Example 2 Consider the following second order interval differential equation (case
2).

ỹ′′ − 3ỹ′ − 4ỹ = 0, (27)
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Figure 1: Interval solution of Example 1 using the interval midpoints method

Figure 2: Interval solution of Example 1 using the interval midpoints method
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Table 2: Comparison of upper bound of exact, present and HPM solutions of
Example 1

t

Exact
Solution

Y (t)
by Bede

y(t)
(HPM)
(n = 3)

y(t)
(HPM)
(n = 4)

Present
Solution
y(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 2.2 2.2 2.2 2.2 0 0 0
0.1 1.9113 1.9117 1.9113 1.9113 0.0004 0 0
0.2 1.6245 1.6287 1.6233 1.6245 0.0042 0.0012 0
0.3 1.3579 1.3729 1.3508 1.3579 0.0150 0.0071 0
0.4 1.1204 1.149 1.0983 1.1204 0.0286 0.0221 0
0.5 0.9148 0.9425 0.8700 0.9148 0.0277 0.0448 0
0.6 0.7405 0.7175 0.6842 0.7405 0.0230 0.0563 0
0.7 0.5951 0.4144 0.5891 0.5951 0.1807 0.0060 0
0.8 0.4753 -0.0525 0.6840 0.4753 0.5280 0.2087 0
0.9 0.3776 -0.7975 1.143 0.3776 1.1752 0.7653 0
1 0.2987 -1.965 2.2425 0.2987 2.2637 1.9438 0

subject to the interval initial conditions:

ỹ(0) = [0.8, 1.2], ỹ′(0) = [1.8, 2.2].

Using the interval midpoint method, we have

yc = 2
5
e−t + 3

5
e4t.

Subsequently, by applying the procedure discussed previously, we get the upper and
lower solution bounds respectively as

y(t) =
3

5
e4t +

2

5
e−t −

√
7

7
e−3t/2 sin

(
√
7

2
t

)

+

(

−1

5

)

e−3t/2 cos

(
√
7

2
t

)

and

y(t) =
3

5
e4t +

2

5
e−t +

√
7

7
e−3t/2 sin

(
√
7

2
t

)

−
(

−1

5

)

e−3t/2 cos

(
√
7

2
t

)

.

Graphs of the solution bounds by varying t of Example 2 are depicted in Fig. 4. Again,
absolute errors obtained by the interval midpoint method and HPM are presented in
Tables 3 and 4. Again, the solution obtained by present method exactly matches the
exact solution.

Example 3 Next, let us consider the following third order interval differential equation
(Case 3).

ỹ′′′ − 6ỹ′′ + 11ỹ′ − 6ỹ = 0, (28)

subject to the interval initial conditions

ỹ(0) = [0.8, 1.2], ỹ′(0) = [0.8, 1.2], ỹ′′(0) = [1.8, 2.2].

Following the interval midpoints method, the solution is
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Figure 3: Interval solution of Example 1 using the interval midpoints method

Figure 4: Interval solution of Example 2 using the interval midpoints method
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Table 3: Comparison of lower bound of exact, present and HPM solutions of
Example 2

t

Exact
Solution
Y (t)
by Bede

y(t)

(HPM)
(n = 3)

y(t)

(HPM)
(n = 4)

Present
Solution
y(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 0.8 0.8 0.8 0.8 0 0 0
0.1 1.0435 1.043 1.0435 1.0435 0.0005 0 0
0.2 1.4466 1.4379 1.4458 1.4466 0.0087 0 0
0.3 2.0776 2.0282 2.0704 2.0776 0.0494 0.0008 0
0.4 3.0405 2.8633 3.0051 3.0405 0.1772 0.0354 0
0.5 4.4918 3.9992 4.367 4.4918 0.4926 0.1248 0
0.6 6.6669 5.4987 6.3076 6.6669 1.1682 0.3593 0
0.7 9.9176 7.4315 9.0187 9.9176 2.4861 0.8989 0
0.8 14.77 9.8749 12.738 14.77 4.8951 2.0320 0
0.9 22.011 12.914 17.758 22.011 9.0970 4.2530 0
1 32.813 16.64 24.43 32.813 16.1730 8.3830 0

Table 4: Comparison of upper bound of exact, present and HPM solutions of
Example 2

t

Exact
Solution

Y (t)
by Bede

y(t)
(HPM)
(n = 3)

y(t)
(HPM)
(n = 4)

Present
Solution
y(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 1.2 1.2 1.2 1.2 0 0 0
0.1 1.4706 1.4702 1.4705 1.4706 0.0004 0.0001 0
0.2 1.879 1.8721 1.878 1.879 0.0069 0.0010 0
0.3 2.4992 2.4583 2.4902 2.4992 0.0409 0.0090 0
0.4 3.4394 3.2894 3.3969 3.4394 0.1500 0.0425 0
0.5 4.8603 4.4342 4.7133 4.8603 0.4261 0.1470 0
0.6 7 5.97 6.5845 7 1.0300 0.4155 0
0.7 10.213 7.9833 9.1901 10.213 2.2297 1.0229 0
0.8 15.028 10.57 12.749 15.028 4.4580 2.2790 0
0.9 22.232 13.835 17.525 22.232 8.3970 4.7070 0
1 32.999 17.893 23.832 32.999 15.1060 9.1670 0

y(t) = 3
2
et + 1

2
e3t − e2t +

(

− 3
5

)

e−3t +
(

8
5

)

e−2t +
(

− 6
5

)

e−t,

y(t) = 3
2
et + 1

2
e3t − e2t −

(

− 3
5

)

e−3t −
(

8
5

)

e−2t −
(

− 6
5

)

e−t.

Corresponding solution bounds by varying t are now depicted in Fig. 5. The results
are shown in Tables 5 and 6 using the exact, HPM, and interval midpoints method,
respectively. Again, the results obtained by the interval midpoints method agree well
with the exact solution.
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Table 5: Comparison of lower bound of exact, present and HPM solutions of
Example 3

t

Exact
Solution
Y (t)
by Bede

y(t)

(HPM)
(n = 3)

y(t)

(HPM)
(n = 4)

Present
Solution
y(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 0.8 0.8 0.8 0.8 0 0 0
0.1 0.89096 0.89092 0.89096 0.89096 0.00004 0 0
0.2 1.0121 1.011 1.012 1.0121 0.0011 0.0001 0
0.3 1.1776 1.1693 1.1772 1.1776 0.0083 0.0004 0
0.4 1.4061 1.3711 1.404 1.4061 0.0350 0.0021 0
0.5 1.7225 1.6156 1.7154 1.7225 0.1069 0.0071 0
0.6 2.162 1.8944 2.1428 2.162 0.2676 0.0192 0
0.7 2.7737 2.1903 2.7301 2.7737 0.5834 0.0436 0
0.8 3.6263 2.475 3.539 3.6263 1.1513 0.0873 0
0.9 4.8159 2.7085 4.6565 4.8159 2.1074 0.1594 0
1 6.4763 2.8372 6.205 6.4763 3.6391 0.2713 0

Table 6: Comparison of upper bound of exact, present and HPM solutions of
Example 3

t

Exact
Solution

Y (t)
by Bede

y(t)
(HPM)
(n = 3)

y(t)
(HPM)
(n = 4)

Present
Solution
y(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 1.2 1.2 1.2 1.2 0 0 0
0.1 1.3316 1.3316 1.3316 1.3316 0 0 0
0.2 1.4906 1.4903 1.4904 1.4906 0.0003 0 0
0.3 1.6873 1.6853 1.6848 1.6873 0.0020 0.0025 0
0.4 1.9384 1.9294 1.9248 1.9384 0.0090 0.0136 0
0.5 2.2688 2.2395 2.2169 2.2688 0.0293 0.0519 0
0.6 2.7137 2.6368 2.5595 2.7137 0.0769 0.1542 0
0.7 3.3233 3.1468 2.935 3.3233 0.1765 0.3883 0
0.8 4.1675 3.8006 3.3016 4.1675 0.3669 0.8659 0
0.9 5.3434 4.6359 3.583 5.3434 0.7075 1.7604 0
1 6.9859 5.6981 3.6563 6.9859 1.2878 3.6563 0

Example 4 Finally, let us consider the electrical circuit shown in Fig. 6 [5], where
L = 1h, R = 2Ω, C = 0.25f and E(t) = 20 cos t. If Q is the charge on the capacitor at
time t > 0, then

Q̃′′(t) + 2Q̃′(t) + 4Q̃(t) = 50 cos t, (29)

subject to the interval initial conditions

Q̃(0) = [4, 6], Q̃′(0) = [0, 2].

By following the interval midpoints method, we get the solution for Eq. (29) as
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Figure 5: Interval solution of Example 3 using the interval midpoints method

Figure 6: Electrical circuit [5] in Example 4
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Q(t) = 2
39
e−t sin(

√
3t)(−99)

√
3 + e−t cos(

√
3t)

(

− 98
13

)

+
(

150
13

)

cos(t) +
(

100
13

)

sin(t),

Q(t) = − 2
39
e−t sin(

√
3t)(73)

√
3 + e−t cos(

√
3t)

(

− 72
13

)

+
(

150
13

)

cos(t) +
(

100
13

)

sin(t).

Figs.7 to 9 represent the corresponding interval plots for this example. Similarly, the
width of the solution gradually deceases with increasing time t. Fig. 9 represents
the solution bounds for the time range from 4 to 4.1. The results for this problem
are shown in Tables 7 and 8, using the method of Bede [3], HPM, and the interval
midpoints method, respectively. Again there is good agreement between the results
obtained by the present and by the exact methods.

Table 7: Comparison of lower bound of exact, present and HPM solutions of
Example 4

t

Exact
Solution
Q(t)

by Bede

Q(t)

(HPM)
(n = 3)

Q(t)

(HPM)
(n = 4)

Present
Solution
Q(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 4 4 4 4 0 0 0
0.1 4.1585 4.1579 4.1585 4.1585 0 0 0
0.2 4.5869 4.5772 4.5878 4.5869 0.0097 0.0009 0
0.3 5.2141 5.1635 5.2207 5.2141 0.0506 0.0066 0
0.4 5.9701 5.8062 5.9994 5.9701 0.1639 0.0293 0
0.5 6.7888 6.3802 6.8823 6.7888 0.4086 0.0935 0
0.6 7.6094 6.7479 7.8525 7.6094 0.8615 0.2431 0
0.7 8.3783 6.7608 8.9257 8.3783 1.6175 0.5474 0
0.8 9.0498 6.2619 10.158 9.0498 2.7879 1.1082 0
0.9 9.5865 5.0878 11.655 9.5865 4.4987 2.0685 0
1 9.9594 3.0715 13.578 9.9594 6.8879 3.6186 0

For all the above examples, the results obtained by the interval midpoints method
are exactly same as the computed exact interval solutions using the method of Bede
[3] for the special case r = 0 in their method. Here, the main aim is to develop a new
analytical method to handle n-th order interval differential equations giving all the
possible cases. The known differential equations are solved as test problems to have
confidence in the interval midpoints method. The solution by the interval midpoints
method in all the test problems exactly matches the exact solution. The interval
midpoints method gives us a straightforward, alternate and computationally efficient
way to handle n-th order linear interval differential equations.

5 Conclusions

This paper investigates the solution of n-th order linear interval differential equations
by proposing a new method. First, the interval differential equation is solved in terms
of midpoints, then this solution is used to get the required solution of the original
n-th order interval differential equation. The interval midpoints method makes the
procedure straightforward and efficient. The obtained results are compared with the
HPM and exact solutions. The results obtained from the interval midpoints method
are found to be in good agreement with the exact solutions.
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Figure 7: Interval solution of Example 4 using the interval midpoints method

Figure 8: Interval solution of Example 4 using the interval midpoints method
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Table 8: Comparison of upper bound of exact, present and HPM solutions of
Example 4

t

Exact
Solution

Q(t)
by Bede

Q(t)
(HPM)
(n = 3)

Q(t)
(HPM)
(n = 4)

Present
Solution

Q(t)

Absolute
Error by
HPM
(n = 3)

Absolute
Error by
HPM
(n = 4)

Absolute
Error by
Present

0 6 6 6 6 0 0 0
0.1 6.3012 6.3008 6.3012 6.3012 0.0004 0 0
0.2 6.7691 6.7629 6.7696 6.7691 0.0062 0.0005 0
0.3 7.3497 7.3177 7.3539 7.3497 0.0320 0.0042 0
0.4 7.9904 7.8878 8.0088 7.9904 0.1026 0.0184 0
0.5 8.6417 8.3886 8.7001 8.6417 0.2531 0.0584 0
0.6 9.2583 8.7303 9.409 9.2583 0.5280 0.1507 0
0.7 9.8006 8.8206 10.137 9.8006 0.9800 0.3364 0
0.8 10.235 8.5668 10.91 10.235 1.6682 0.6750 0
0.9 10.535 7.8789 11.783 10.535 2.6561 1.2480 0
1 10.68 6.6715 12.842 10.68 4.0085 2.1620 0
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