
Scalability of Algorithms

for Arithmetic Operations in Radix Notation∗

Anatoly V. Panyukov †

Department of Computational Mathematics
and Informatics, South Ural State University,

Chelyabinsk, Russia
paniukovav@susu.ac.ru

Abstract

We consider precise rational-fractional calculations for distributed com-
puting environments with an MPI interface for the algorithmic analysis of
large-scale problems sensitive to rounding errors in their software imple-
mentation. We can achieve additional software efficacy through applying
heterogeneous computer systems that execute, in parallel, local arithmetic
operations with large numbers on several threads. Also, we investigate
scalability of the algorithms for basic arithmetic operations and methods
for increasing their speed.

We demonstrate that increased efficacy can be achieved of software
for integer arithmetic operations by applying mass parallelism in het-
erogeneous computational environments. We propose a redundant radix
notation for the construction of well-scaled algorithms for executing ba-
sic integer arithmetic operations. Scalability of the algorithms for integer
arithmetic operations in the radix notation is easily extended to rational-
fractional arithmetic.

Keywords: integer computer arithmetic, heterogeneous computer system,
radix notation, massive parallelism

AMS subject classifications: 68W10

1 Introduction

Verified computations have become indispensable tools for algorithmic analysis of large
scale unstable problems (see e.g., [1, 4, 5, 7, 8, 9, 10]). Such computations require spe-
cific software tools; in this connection, we mention that our library “Exact computa-
tion” [11] provides appropriate instruments for implementation of such computations

∗Submitted: January 27, 2013; Revised: August 17, 2014; Accepted: November 7, 2014.
†The author was supported by the Federal special-purpose program ”Scientific and

scientific-pedagogical personnel of innovation Russia”, project 14.B37.21.0395.

417

paniukovav@susu.ac.ru

418 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

Figure 1: Fragment of a heterogenous system architecture

in a distributed computing environment. Further increases of efficacy are possible by
involving heterogeneous computing environments that allow one to parallelize execu-
tion of local arithmetic operations through a large number of processes.

Let several processes, numbered k = 0, 1, . . . , n, execute an operation ρ and require
execution times tρk, respectively. Then the time required for the entire operation to
be completed is tρ = max{tρk : k = 0, 1, . . . , n}. The key algorithm property which
determines the efficiency of the operation execution in parallel is scalability. If a
sufficient number of processes for execution of an algorithm is available, an algorithm
is called completely scalable if its execution time does not depend on the length of
operands, and an algorithm is called well-scalable if its execution time is O(log2 n),
where n is the maximal length of the operands.

In this paper, we investigate scalability of the basic algorithms implementing arith-
metic operations, and we develop completely and well-scalable algorithms for these
operations. We demonstrate that redundant positional notation produces completely
scalable addition/subtraction algorithms and well-scalable algorithms for the remain-
ing basic arithmetical operations. We present here the results on scalable algorithms
for integer arithmetic announced at the conferences [2, 3, 8, 12, 13].

2 Heterogenous Computational Systems

Figure 1 presents the structure of a typical heterogenous computational system con-
sisting of the managing host unit containing the CPU and a set of devices. The CPU
runs programs and provides operating system connections. The Device block provides
parallel execution of basic operations with the objects of the program.

Reliable Computing 19, 2015 419

Inter-block data exchange on the Thread Control Bus connects device memory
and host memory via the direct memory access bus (DMA) of the host. All local
device interprocess communications (“Point to Point”) can be executed in parallel and
asynchronously. Sending the data from process k to many processes can be carried
out in two steps. First, process k positions the data to be sent on a shared thread or a
shared device memory. Second, recipients processes knowing the sender process k read
transmitted data. Reading the message from the shared memory may be performed
by all the devices simultaneously.

In summary, such a system offers low-cost, low-powered, high-performance com-
puting. However, the transfer speed between the host CPU and the multi-kernel device
can become a bottleneck, making it unfit for applications that require frequent data
exchange.

Programs for heterogenous computational systems contain Host and Device mod-
ules. Host modules are similar to programs for homogenous systems. Their functional-
ity includes transmissions of the operation code, address and word length of operands
to the device modules, and initialization of the required number of the processes. Let
us use the prefix global for the names of host procedures. The Device modules
include a wide variety of devices with high demands for scalability of the algorithms
executed on them because of the large numbers of device kernels that may have more
time steps than the central processing unit.

In this paper, we offer Pascal-like pseudo-code for the algorithms.

3 Parallel Algorithms for Integer Arithmetic
Operations in the Classical Radix Notation

3.1 Addition of nonnegative numbers

A possible method of parallel execution of the classical addition algorithm for n-
digit numbers is the parallel digit-by-digit summation. As the result, a part of the
digits appear as binary carries, and we assume their number to be l. After that, we
can form l parallel processes for binary carry propagation. Algorithm 1 describes the
procedures Digit Addition, Carry Propagation, and Add Process for a local digit process,
and the procedure global Add that defines the width of summands and creates the
required quantity of the parallel processes. Further, it is necessary to call the procedure
global Add to get the result of the addition (an−1 . . . a0)R + (bm−1 . . . b0)R.

Let us estimate the time expenditures for the execution of Algorithm 1 as well as
a possible gain from executing it in parallel. Numbers in a computer’s memory are
stored in a binary format. If r is the word length, the base of the radix notation is
R = 2r. Most modern processors use either 32 bit words or 64 bit words. Below, we
use the noted values of R and r.

For each of the parallel processes, the procedure Digit Addition requires time for
elementary addition on the register actually equal to the time of sending s. The
execution time of the procedures Carry Propagation and Add Process can vary within
the bounds [0, n · s], that is, the execution time of Algorithms 1 can change in the
above interval depending on the initial terms. The execution time of the addition
executed by a strictly sequential algorithm (i.e., digit after digit) is evaluated as 3n · s,
if the above terms are accepted.

Let us estimate the mean execution time of Algorithm 1, assuming that the digits
of the summands are random uniformly distributed quantities. To simplify our ac-

420 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

Algorithm 1 Addition

Requires: R = 2r, n ≥ m, ai =
(
ar−1
i . . . a0i

)
2
, i = 0, 1, 2, . . . , n − 1, and

bj =
(
br−1
j . . . b0j

)
2
, j = 0, 1, 2, . . . ,m− 1;

Produces: t = (tn, . . . , t0)R = (an−1 . . . a0)R + (bm−1 . . . b0)R, tn ∈ {0, 1}.

1: procedure Digit Addition(In: a, b, i, Out: c, t)
2:

(
sri s

r−1
i . . . s1i s

0
i

)
2
←
(
ar−1
i ar−2

i . . . a1i a
0
i

)
2

+
(
br−1
i br−2

i . . . b1i b
0
i

)
2
;

3: ti ←
(
sr−1
i . . . s1i s

0
i

)
2

. i-th digit before carry propagation
4: c← sri . carry value to (i + 1)-th digit
5: end procedure

6: procedure Carry Propagation(In: n, i, InOut: c, t)
7: while c 6= 0 do . there is not carry if c = 0
8: i← i + 1;
9:

(
sri s

r−1
i . . . s1i s

0
i

)
2
← ti + c

10: ti ←
(
sr−1
i . . . s1i s

0
i

)
2

. i-th digit after carry propagation
11: c← sri . carry value to next digit
12: end while
13: Terminate process
14: end procedure

15: procedure Add Process(In: a, b, i, Out: t)
16: var c . for carry of this local process
17: Digit Addition(a, b, i, c, t)
18: Carry Propagation(n, i, c, t)
19: end procedure

20: procedure global Add(In: a, b, Out: n, m, t) . exec add in parallel
21: n← max{sizeof (a), sizeof (b)}
22: m← min{sizeof (a), sizeof (b)}
23: for all i = 0, 1, . . . ,m− 1 do
24: ExecInParallel Add Process(a, b, i, t)
25: end for
26: end procedure

Reliable Computing 19, 2015 421

counting, we assume n = m. The probability that a carry takes place in at least one
of the digits during the summation is

p = P {ai + bi ≥ 2r} =

2r−1∑
l=1

P {ai = l}P {bi ≥ 2r − l} =

2r−1∑
l=1

1

2r
· l

2r
=

1

2

(
1− 1

2r

)
.

The probability of obtaining the value 2r − 1 as the result of the summation is

q = P {ai + bi = 2r − 1} =

2r−1∑
l=0

P {ai = l}P {bi = 2r − 1− l} =

2r−1∑
l=0

1

2r
· 1

2r
=

1

2r
.

The probability of chaining the carry with the length k ≥ l is

Pl = P

{
m−l−1⋃
i=0

((
ai + bi ≥ 2r − 1

) l⋂
j=1

(ai+j + bi+j = 2r − 1)

)}
= (m− l)pql.

An r-bit operating system supports numbers with m = 2r of r-bit digits. Therefore,
let m = 1/q be an under-estimation of probabilities Pl, l = 0, 1, . . . ,m, and we have
Pl ≤ ql−1.

It is easy to see that the value of the probability satisfies P2 ≤ q. Therefore,
the mean time of the algorithm execution is equal to 2s asymptotically. Also, the
average speed of the examined algorithm is n times greater than that of the sequential
algorithm, and this figure does not depend on the length of the summands. We can
decrease the time of the addition execution for the worst case after improvement of
the carry propagation algorithm. One of the possible ways to do that is calculation
of the carry propagation chains simultaneously with their propagation. If the carry
falls on the calculated chain, then its propagation within this chain is accomplished
for one time. The procedure Carry Propagation described in Algorithm 2 implements
such accelerated carry propagation.

The essence of Algorithm 2 can be described as follows. Initially, the result of the
procedure Digit Addition (i.e., the number t and digit-by-series carry c) is represented
in the form of n fragments, each digit di, i = 0, 1, . . . , n− 1 corresponding to the frag-
ment with a separate process i. At the k-th iteration of the while cycle, we join the
fragments associated with the processes l2k and (l+1)2k into one fragment associated
with the process (l+1)2k. When joining, the lower process l2k sends the absent ripple
carry flag NotCarry, the carry c itself, and possible ripple carry merge V into the
higher process (l+ 1)2k. If the transfer from the lower-order fragment l2k takes place,
the higher joining process (l+1)2k is produced into all necessary digits (from l2k+1-th
to V ((l + 1)2k)-th). The merge of the propagation of the ripple-through carry in the
united fragment also is refined, and unnecessary processes are terminated for all cases.

Consider the time complexity of Algorithm 2. The procedure Carry Propagation
contains a loop that is carried out by any of the processes not more than dlog2 ne
times. Each of the active processes runs operators indicated in the lines 2, 3, 4, 5,
and 41 of this loop. After appropriate optimization of the heterogenous computing
environment, these operators can be executed in parallel in one tick. Each of the active
processes also executes not more than one receiving communication and not more than
one sending communication. Their preparation and execution requires two ticks.

Thus, the mean and worst case execution times of the carry propagation by Algo-
rithm 2 are 3s and 3sdlog2 ne, respectively. Asymptotically, the mean time of executing
addition by Algorithm 2 for the carry propagation is 4s, which is 4/3 times the mean
time for Algorithm 1. However, the efficiency of Algorithm 2 is obvious, provided there
are carry circuits with the length of more than two digits.

422 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

Algorithm 2 Improved carry propagation.

1: procedure Carry Propagation(In: n, i, Out: c, t)
2: L← 1, V ← i . length and verge of the joined fragments
3: while L ≤ n do . there are fragments for joining
4: M ← i mod 2L
5: if (M < L) then . i belong to the lower fragment
6: if (M = L− 1) then . i is high digit of the low fragment
7: j ← min {i + L, n− 1} . high digit of joined fragment
8: NotCarry ← (ti 6= 2r − 1) ∪ (V 6= i) . absent ripple carry
9: send {c, NotCarry, V } to process j

10: if
(

(c 6= 0) ∪NotCarry
)
then

11: terminate process
12: end if
13: end if
14: else . i belong to the higher fragment
15: j ← i + L−M − 1 . j is higher digit of the lower fragment
16: flag ← ((M = 2L− 1) ∪ (i = n− 1))
17: if flag then . i is higher digit of the higher fragment
18: receive {Cj, NotCarry, V j} from process j
19: send {Cj, NotCarry} to processes k = j + 1, . . . , V
20: if (NotCarry) then
21: V ← V j
22: else if (i = V) then
23:

(
sr sr−1 . . . s1 s0

)
2
←
(
c tr−1

i . . . t1i t
0
i

)
2

+ Cj

24: ti ←
(
sr−1 . . . s1 s0

)
2
, c← sr

25: end if
26: else . i is not high digit of the high fragment
27: if (i ≤ V) then . i belong to the ripple carry chain
28: receive {Cj, NotCarry} from process j + L
29: if (Cj 6= 0) then
30: ti ← 0
31: if (i = V) then
32: ti+1 ← ti+1 + 1
33: end if
34: terminate process
35: else if NotCarry then
36: terminate process
37: end if
38: end if
39: end if
40: end if
41: L← 2L
42: end while
43: terminate process
44: end procedure

Reliable Computing 19, 2015 423

3.2 The binary relations

To check the value of any binary relation a ρ b : ρ ∈ {<,≤,=,≥, >, 6=}, it is sufficient
to check the relations ρ ∈ {=, >}. In fact, (a ≤ b) = ¬(a > b), (a 6= b) = ¬(a = b),
(a ≥ b) = (a > b) ∨ (a = b), (a < b) = ¬(a ≥ b).

Algorithm 3 calculates the Boolean value of the binary relations (a = b) and
(a > b) for non-negative integers a and b. The essence of the algorithm can be
described as follows. The initial data are presented as n fragments with separated
processes i = 0, 1, . . . , n− 1. In this case, pi and qi are truth of relations (ai = bi) and
(ai > bi) for fragments i = 0, 1, . . . , n − 1. With the k-th execution of for loop, the
confluence of the fragments associated with the processes of l2k and (l + 1)2k to one
fragment associated with the process l2k−1 is accomplished. During this confluence,
the values of pi and qi are recalculated, and the unnecessary processes are terminated.

It is easy to see that the speed of Algorithm 3 is n/log2 n times higher in comparison
with the sequential one.

3.3 Determination of the number of significant digits

To distribute computational resources rationally for execution of the arithmetic oper-
ations, it is necessary to know the number of significant digits of its operands.

For addition, multiplication, and division, the number of significant digits of the
operands determines the number of significant digits of the result with the error of one
digit. For subtraction, the number of significant digits can be determined only after
its execution. Therefore, the rational use of the computational resources requires an
algorithm for determining the number of significant digits of the result.

Algorithm 4 calculates the number of significant digits for a non-negative integer
represented in the radix (positional) notation with the base R = 2r. It is evident from
the description of Algorithm 4 that its execution time does not exceed 4sdlog2 ne . It
is reasonable to use the number of significant digits as one of the object attributes,
and Algorithm 4 should be used only after a subtraction is executed.

3.4 Multiplication of a multi-digit number by a digit

Algorithm 5 calculates the product (cn, . . . , c0)R of non-negative integers a = (an−1,
. . . , a0)R and b = (b0)R represented in the radix notation with base R = 2r. First, the
algorithm calculates products of the digit b and digits ai, i = 0, . . . , n− 1 (line 3). In
general, any such product is a two-digit number (x1 x2)R ≤ (2r − 1)2 = 2r(2r − 2) + 1,
i.e., the value x1 carried to the next digit (lines 4,9, and 10) does not exceed 2r − 2.
Also, one can see that there are no delayed carry chains (lines 11, 12, 13, 14) with the
length more than 1, and we have ti ≤ 2r − 1 for all i = 0, . . . , n− 1, n.

It is evident from the description of Algorithm 5 that the time expenditure for
execution of the procedure M is not greater than 4s, so the speed of Algorithm 5 is
n times higher than that of the sequential algorithm, and this conclusion does not
depend on the length of the multiplied numbers.

3.5 Multiplication of multi-digit numbers

Algorithm 6 calculates the product of two non-negative integers represented in the
radix notation with the base R = 2r.

424 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

Algorithm 3 Checking the truth of the binary relations (a = b) and (a > b).

Requires: a = (an−1 . . . a0)R, and b = (bn−1 . . . b0)R, R = 2r, n > 0,
ai =

(
ar−1
i . . . a0i

)
2
, bi =

(
br−1
i . . . b0i

)
2
, i = 0, 1, 2, . . . , n− 1

Produces: p is truth of relation a = b, and q represents truth of relation a > b.

1: procedure EqG Process(In: a, b, n, i, Out: p, q)
2: p← (a = b)
3: q = (a > b)
4: L← n/2
5: while (L > 1) do
6: if (i > 0) then
7: send {p, q} to process i/2
8: end if
9: if (i < L) then

10: if (there is sending from process 2i) then
11: receive {p0, q0}
12: else p0 = true, q0 = false
13: end if
14: if (there is sending from process 2i + 1) then
15: receive {p1, q1}
16: else p1 = true, q1 = false
17: end if
18: syncthreads()
19: p← p1 ∧ p0
20: q ← q1 ∨ (p1 ∧ q0)
21: else
22: terminate process
23: end if
24: L← L/2
25: end while
26: end procedure

27: procedure global EqG(In: a, b, n, Out: p, q)
28: for all i = 0, 1, . . . , n− 1 do
29: ExecInParallel EqG Process(ai, bi, n, i, pi, qi)
30: end for
31: p← p0, q ← q0
32: end procedure

Reliable Computing 19, 2015 425

Algorithm 4 Calculating the number of significant digits of unsigned a

Requires: a = (an−1 . . . a0)R, n > 0, R = 2r.
Produces: S is the number of significant digits of a.

1: procedure NSD Process(In: a, i, n, Out: s)
2: if a > 0 then
3: s← i
4: else
5: s← 0
6: end if
7: L← n/2
8: while (L > 1) do
9: if (i > 0) then

10: send s to process i/2
11: end if
12: if (i < L) then
13: if (there is sending from process 2i) then
14: (receive value for s0
15: else s0 ← 0
16: end if
17: if (there is sending from process 2i + 1) then
18: receive value for s1
19: else S1 ← 0
20: end if
21: syncthreads()
22: s← max{s0, s1}
23: else
24: terminate process
25: end if
26: L← L/2
27: end while
28: end procedure

29: procedure global NSD(In: a, n, Out: s)
30: for all i = 0, 1, . . . , n− 1 do
31: ExecInParallel NSD Process(ai, i, n, si)
32: end for
33: s← s0
34: end procedure

426 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

Algorithm 5 Calculating the product of a and digit b

Requires: a = (an−1 . . . a0)R, n > 0, b = (b0)R, R = 2r.
Produces: (tn tn−1 . . . t0)R is product of a and b.

1: procedure M Process(In: ad, b, i, n, dt)
2: if (i < n) then
3: (x1 x0)R ← ad · b
4: send x1 to process (i + 1)
5: else
6: x0 ← 0
7: end if
8: if (i > 0) then
9: receive x1 from process (i− 1)

10:
(
sr sr−1 . . . s1 s0

)
2
← x0 + x1

11: c← sr, dt←
(
sr−1 . . . s1 s0

)
12: send c to process (i + 1)
13: receive c from process (i− 1)
14: dt← dt + c
15: else
16: dt← x0

17: end if
18: end procedure

19: procedure global M(a, b, n, t)
20: for all i = 0, 1, . . . , n do
21: ExecInParallel M Process(ai, b, i, n, ti)
22: end for
23: end procedure

The execution time of procedure GLOBAL M (line 2 of Algorithm 6) is 4s. The
body of the while loop (lines 4 to 23) is performed not more than dlog2me times. It
contains no more than one sending (line 6) communication, two receiving (lines 11 and
15) communications “point-to-point”, and one addition of (n+m−2L)-digit numbers.
The remaining operators can be executed in one tick. Hence, on the average, the time
necessary for performing the multiplication does not exceed (4 + 3log2m) s. In the
worst case, the time does not exceed (4 + 3(n+m)log2m) s.

Procedure M of Algorithm 6 creates m processes, each of which calls procedure M
(line 2), which creates n processes. Consequently, the total number of the processes
generated is mn. In the worst case, the execution time grows slightly faster than a
linear function of the length of the operands, whereas the sequential long multiplication
algorithm has quadratic execution time in the length of factors.

3.6 Division

The classical “long division” algorithm, in contrast to the preceding operations, is not
scalable. Its execution requires (n+m−1) sequential carry operations of multiplication-

Reliable Computing 19, 2015 427

Algorithm 6 Calculating the product c = a · b
Requires: a = (an−1 . . . a0)R, b = (bm−1 . . . b0)R, n ≥ m > 0, R = 2r

Produces: (cn+m−1, . . . , c0)R is product of a and b

1: procedure MM Process(a, b, i, n, m, c)
2: global M(a, bi, n, z)
3: L← m/2, B ← R
4: while (L > 1) do
5: if (i > 0) then
6: send z to process i/2
7: end if
8: syncthreads()
9: if (i < L) then

10: if (there is sending from process 2i) then
11: receive value for s0
12: else s0 ← 0
13: end if
14: if (there is sending from process 2i + 1) then
15: receive value for s1
16: else s1 ← 0
17: end if
18: s1 ← s1 ·B
19: global Add(s0, s1, n, m, z)
20: else
21: terminate process
22: end if
23: L← L/2, B ← B2

24: end while
25: c← z
26: end procedure

27: procedure global MM(a, b, n, m c)
28: for all i = 0, 1, . . . ,m− 1 do
29: ExecInParallel MM Process(a, b, i, n, m, z)
30: end for
31: c← z
32: end procedure

428 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

subtraction withm-digit numbers. References [6] and [13] propose to increase efficiency
of the division operation by applying Newton’s method. To divide an integer u =
(u[n − 1] u[n] . . . u[1] u[0])R by an integer v = (v[m − 1] . . . v[0])R, we first find
a sufficiently accurate approximation to the number 1/v. Then we multiply it by u,
giving an approximation to u/v. The length of the integer answer is not more than
n − m + 1. The number 1/v contains not more than m insignificant zeros in the
high-order places. To obtain the correct result of division, it is sufficient that the
approximate value of 1/v additionally contains at least n −m + 1 significant digits.
Thus, adequate accuracy of calculation of 1/v is determined by the value R−n+1.

Applying Newton’s method to the problem of finding the root of the equation
f(x) = 0, where f(x) = v − 1/x, consists of the sequential calculations

xk+1 ← (2− v · xk) · xk, k = 0, 1, 2, . . . ,

where x0 is a sufficiently accurate initial approximation. The function f(x) = v− 1/x
is twice continuously differentiable and strictly convex for x > 1. Hence, Newton’s
method exhibits quadratic convergence, i.e., the number of correct digits doubles with
each iteration. The initial approximation of x0 = 1/v[m− 1] for 1/v has error

1

v[m− 1] ·Rm−1
− 1

v
=
v − v[m− 1] ·Rm−1

v · v[m− 1] ·Rm−1
≤ 1

v · v[m− 1]
≤ R−m+1,

i.e., it has m digits correctly calculated. Thus, the required number of Newton itera-
tions does not exceed 4log2(n+ 1)− log2m.

Algorithm 7 calculates the quotient of two non-negative integers represented in the
radix notation with the base R = 2r.

Algorithm 7 Calculating the quotient c = a/b of non-negative integers a and
b
Requires: a = (an−1 . . . a0)R, b = (bm−1 . . . b0)R, n ≥ m > 0 are represented

in the radix notation with the base R = 2r

Produces: (cn+m−1, . . . , c0)R is the quotient c = a/b.

1: procedure global D(a, b, n, m, c)

2: x←
⌊

R−1
b[m−1]

⌋
R
, R̃← Rm . Initial approximation

3: for i = 0, 1, ,
⌈
log2

n+1
m

⌉
do . More precise definition

4: d← x, x←
(

2 · R̃− b · d
)
· d, R̃← R̃ · R̃

5: end for
6: z = a · x . Multiplication
7: c = z/R̃ . Answer forming
8: end procedure

At iteration k, k = 0, 1, 2, . . . , l, l < log2(n + 1) − log2m of the for loop, the
variable x represents an integer (2k+1−1)-digit number. Within the loop body, parallel
algorithms perform one multiplication of x by an m-digit number b, one subtraction of
(2k)-digit numbers, and one multiplication of (2k)-digit numbers. Consequently, the
execution time of the loop body does not exceed 11 + 3(log2m + k)] · s (average) or

Reliable Computing 19, 2015 429

[
3 · 2kk + 2.5 · 2k + 6k + 3mlog2m+ 10

]
s (worst case). Since

l∑
k=0

k = l(l+1)
2

,
l∑

k=0

2k = 2l+1 − 1,

l∑
k=0

(
k · 2k

)
≤

√
l∑

k=0

k2
l∑

k=0

4k =
√

2l3+3l2+l
6

· 4l+1−1
3
≤ 2l+1

√
l3

3
,

the average and worst case execution times of the for loop do not exceed

O
(
log2n · log2

(
n+1
m

))
and O

(
n+1
m

log2
3/2
(
n+1
m

))
, respectively.

The multiplication of n-digit numbers completes the execution of the procedure
D. The execution time of this step does not exceed O(log2 n) on average and O(n ·
log2 n) in the worst case. Thus, the final estimates for the execution time of Al-
gorithm 7 on average and in the worst case are equal to O

(
log2n · log2

(
n+1
m

))
and

O
(
n+1
m

log2
3/2
(
n+1
m

)
+ n log2n

)
, respectively.

4 Use of Signed Radix Notation

The number system we have considered is unsigned, and the digits of the position
system with the base R are numbers 0, 1, 2, . . . , R − 2, R − 1. Its drawback is
the quite complex implementation of the addition and subtraction operations, which
requires numeric comparison. We can remove that deficiency by applying signed radix
notation. The digits of the signed radix notation with base R are integers

−
⌊
R

2

⌋
, −
⌊
R

2

⌋
+ 1, . . . ,−1, 0, 1, 2, . . . ,

⌈
R

2

⌉
− 2,

⌈
R

2

⌉
− 1.

For odd R, the number of positive and negative digits are equal, and for even R the
number of positive digits is one less than the number of negative digits.

In the sequel, the representation of a number in the signed position radix notation
with the base R = 2r is designated as (an−1, . . . , a0)±R, and its digits are ai =
(ar−1
i ar−2

i . . . a1i a
0
i)±2, i = 0, 1, . . . , n − 1. The higher bit of the digit representation

determines its sign (0 for positive numbers and 1 for negative ones). Hence, the digits
of the signed radix notation are objects of type integer. All the basic algorithms for
the unsigned numeration systems, except for addition/subtraction, can be transferred
to signed systems without any change. The addition/subtraction algorithms are united
into one general algorithm, the algebraical addition Algorithm 8.

The procedure SDigit Addition of Algorithm 8 calculates the sum of unsigned rep-
resentations of data type integer and forms the result of summation and the carry
into the next digit. If overflow does not occur, then the carry is absent, and the sign
of the result does not change. Otherwise, if overflow occurs, the sign of result changes
switches, and the carry of the corresponding sign is formed. The application of signed
position systems simplifies the algorithm of algebraic addition, but it does not change
the efficiency of computations if there are ripple-through carries.

As in unsigned systems, it is possible to perform accelerated calculation of the
chain of ripple-through carry and its propagation, as shown in Algorithms 9 and 10.

Advantages and deficiencies of the accelerated carry propagation are the same as
for unsigned systems. The truth of binary relations in signed systems is recognized
easily by a subtraction. The sign of the number is determined by the sign of its highest
digit. The algorithms for determining the number of significant digits, multiplication,
and division are similar to the those for unsigned systems.

430 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

Algorithm 8 Algebraic addition

Requires: ai =
(
ar−1
i . . . a0i

)
±2

, bj =
(
br−1
j . . . b0j

)
±2

, n ≥ m, R = 2r.

Produces: t = (tn, . . . , t0)±R = (an−1 . . . a0)±R + (bm−1 . . . b0)±R.

1: procedure CarryForm(In: s, Out: c, t)
2: if (sr = sr−1) then
3: c← 0
4: else if (sr = 1) then
5: sr−1 ← c← 1
6: else if (sr = 0) then
7: sr−1 ← 0, c← −1
8: end if
9: ti ←

(
sr−1
i . . . s1i s

0
i

)
±2

10: end procedure

11: procedure SCarry Propagation(In: n, i, c, Out: t)
12: while c 6= 0 do . there is not carry if c = 0
13: i← i + 1;
14:

(
sri s

r−1
i . . . s1i s

0
i

)
±2
← ti + c

15: CarryForm(si, c, t)
16: end while
17: Terminate process
18: end procedure

19: procedure SDigit Addition(In: a, b, i, Out: c, t)
20:

(
sri s

r−1
i . . . s0i

)
±2
←
(
ar−1
i ar−2

i . . . a0i
)
±2

+
(
br−1
i br−2

i . . . b0i
)
±2

;

21: CarryForm(si, c, t)
22: end procedure

23: procedure AAdd Process(In: a, b, i, Out: t)
24: var c . for carry of this local process
25: SDigit Addition(a, b, i, c, t)
26: SCarry Propagation(n, i, c, t)
27: end procedure

28: procedure global AAdd(In: a, b, Out: n, m, t) . addition in parallel
29: n← sizeof (a), m← sizeof (b)
30: for all i = 0, 1, . . . ,m− 1 do
31: ExecInParallel AAdd Process(a, b, i, t)
32: end for
33: end procedure

Reliable Computing 19, 2015 431

Algorithm 9 Improved carry propagation. (Part I)

1: procedure SCarry Propagation(In: n, i, c, InOut: t)
2: L← 1, V ← i . length and verge of the joined fragments
3: while L ≤ n do . there are fragments for joining
4: M ← i mod 2L
5: if (M < L) then . i belongs to the lower fragment
6: if (M = L− 1) then . i is higher digit of the lower fragment
7: j ← min {i + L, n− 1} . higher digit of joined fragment
8: nrc← (−2r−1 < ti < 2r−1 − 1) ∪ (ti 6= ti+1)
9: nrc← nrc ∪ (c 6= 0) ∪ (V 6= i) . no ripple carry through i

10: send {c, nrc, V } to process j
11: if nrc then
12: terminate process
13: end if
14: end if

5 Use of Redundant Radix Notation

The analysis above shows high average efficiency of parallel execution of all the arith-
metic operations. The mean computing time of addition, subtraction, multiplication
by a single-digit number, and binary operations is O(1); the mean computing time
of multiplication and division of the numbers with word length n does not exceed
O(log2

2 n). However, in the worst case, the computing time of any operation with
n-digit numbers is not smaller than O(n) with the usual carry propagation and not
smaller than O(log2 n) with accelerated carry propagation. Such deviations from the
mean values occur because chains of length more than one appear in carry propagation.
To exclude undesired long chains, we can use a redundant radix notation [2].

A positive integer n-digit number N in the radix notation with the base R is
represented as a unique ordered set of numbers,

N = (an−1 . . . a1 a0)R =

n−1∑
l=0

alR
l, an−1, . . . , a1, a0 ∈ D = {0, 1, 2, . . . , R− 1} .

This representation is unique because the set D contains exactly R elements that
represent a segment of the set of positive integers including zero. The extension of the
set D leads to the extension of the family of representations for the number N .

Next, we consider extending the number set D in a manner which enables adding
(and subtracting) in time O(1). Let the computing system use 2r-bit registers with
a base of the number system R = 2r−1. Therefore, any digit ai has non-redundant
representation

(
0 ar−2

i . . . a1i a
0
i

)
2
. In a redundant representation, we suppose that ai

may be represented with possible nonzero delayed carry ar−1
i as

(
ar−1
i ar−2

i . . . a1i a
0
i

)
2
.

Let us consider a possible implementation of addition. Suppose that the i-th digits
of the summands have the form

ai =
(
ar−1
i ar−2

i . . . a1i a
0
i

)
2
, bi =

(
br−1
i br−2

i . . . b1i b
0
i

)
2
,

i.e., they represent binary r-digit numbers. Digit-by-digit summation for each position
yields an (r + 1)-digit result

si = ai + bi =
(
ar−1
i ar−2

i . . . a1i a
0
i

)
2

+
(
br−1
i br−2

i . . . b1i b
0
i

)
2

=
(
sri s

r−1
i . . . s1i s

0
i

)
2
.

432 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

Algorithm 10 Improved carry propagation. (Part II)

15: else . i belongs to the higher fragment
16: j ← i + L−M − 1 . j is higher digit of the lower fragment
17: flag ← ((M = 2L− 1) ∪ (i = n− 1))
18: if flag then . i is higher digit of the higher fragment
19: receive {Cj, jnrc, V j} from process j
20: nrc← jnrc ∪ (i 6= V) ∪ (c 6= 0) . no ripple carry through i
21: if (i 6= V) then
22: send {Cj, jnrc, nrc} to processes j + 1, . . . , V − 1, V
23: else
24: send {Cj, jnrc, nrc} to processes j + 1, . . . , V − 1
25: ti ← ti + Cj
26: end if
27: if (jnrc) then
28: V ← V j
29: end if
30: else . i is not higher digit of the higher fragment
31: receive {Cj, jnrc, nrc} from process j + L
32: if (jnrc) then
33: if (Cj = 1) then
34: if (ti = 2r−1 − 1) then
35: ti ← −2r−1

36: else if (i = j + 1) then
37: ti ← ti + Cj
38: else
39: ti ← ti + 1
40: end if
41: else if (Cj = −1) then
42: if (ti = −2r−1) then
43: ti ← 2r−1 − 1
44: else if (i = j + 1) then
45: ti ← ti + Cj
46: else
47: ti ← ti + Cj
48: end if
49: terminate process
50: end if
51: end if
52: end if
53: end if
54: L← 2L
55: end while
56: terminate process
57: end procedure

Reliable Computing 19, 2015 433

In each digit, we use two elder bits for the transfer into the next digit, yielding the
r-digit result

s̃i =
(
0 0 sr−2

i sr−3
i . . . s1i s

0
i

)
2

+
(
sri−1 s

r−1
i−1

)
2

=
(
s̃r−1
i s̃r−2

i . . . s̃1i s̃
0
i

)
2
.

Three clock ticks are required for executing the addition: (1) sending one of the terms
into a register, (2) summing the terms, and (3) summing the carry.

The above algorithm uses a position numeration system with the redundant digit
set. In our example, the use of the redundant bit as a postponed carry makes it
possible to perform addition in constant time. Subsequently, we will designate the
representation of the number in the redundant radix notation with the base R as
(an−1, . . . , a0)∗R. Since the algorithms for multiplication and division are correct in
this numeration system and contain only the addition operation, its use makes the
execution time of these operations not worse than the estimates of the mean execution
time obtained earlier in this paper.

As a disadvantage, the non-uniqueness of the number representation in the re-
dundant radix notation enables efficient computation of the binary relations, but the
number of significant digits can be computed only after the global carry propagation
that removes the redundancy of representation. Let us recall that, asymptotically, the
probability of the appearance of additional carries approaches zero.

6 Conclusion

Massive parallelism in a heterogeneous computational environment supports increas-
ing efficiency of the software that implements integer arithmetic. Using a redundant
radix notation proposed here allows construction of well-scaled algorithms of the basic
arithmetic operations. Scalability of the algorithms for integer arithmetic operations
in the radix notation can be extended easily to rational-fractional arithmetic.

The results our work relate to local arithmetic operations over numbers whose
execution can be organized on computers with random-access memory. If the numbers
are so huge that the random-access memory is not sufficient for their storage, then
several devices may prove necessary. However, interfaces between the central processor
and the device or between the devices have restrictions on capacity and access. The
efficiency of the arithmetic operations with huge numbers is the subject of the further
research. Perhaps an implementation of Toom-Cook or Karatsuba rapid multiplication
algorithms [6] may prove efficient for this case.

References

[1] R. Alt, J.-L. Lamotte, and S. Markov. On the accuracy of the solution of linear
problems on the CELL processor. Reliable Computing, 15:1–12, 2011.

[2] A.V. Panyukov. Application of redundant positional notations for increasing of
arithmetic algorithms scalability. In 15th GAMM-IMACS International Sym-
posium on Scientific Computing, Computer Arithmetic and Verified Numeric
SCAN’2012, Novosibirsk, Russia, September 23–29, 2012: Book of Abstracts.
Institute of Computational Technologies Publisher, 2012.

[3] A.V. Panyukov, V.A. Golodov.Scalability of algorithms for arithmetic’s operations
in radix notation. In GPU Technology Conference 2013 (San Jose, California,

434 A.V. Panyukov, Scalability of Arithmetic Operations in Radix Notation

March 18–21, 2013) Nvidia Corporation, Santa Clara, 2013.
Electronic version avaiable at http://on-demand.gputechconf.com/gtc/2013/

poster/pdf/P0174_Panyukov.pdf.

[4] O. Beaumont, B. Philippe.Linear interval tolerance problem and linear program-
ming techniques. Reliable Computing, 6(4):365–390, 2001.

[5] G.E. Coxson. Computing exact bounds on elements of an inverse interval matrix
is NP-hard. Reliable Computing, 5(2):137–142, 1999.

[6] D.E. Knuth.The Art of Computer Programming, volume 2. Addison-Wesley Long-
man, 2nd edition, 1981.

[7] C. Keil, C. Jansson.Computational experience with rigorous error bounds for the
netlib linear programming library. Reliable Computing, 12(4):303–321, 2006.

[8] V.V. Gorbik, A.V. Panyukov. Exact and guaranteed accuracy solutions of linear
programming problems by distributed computer systems with MPI. Tambov Uni-
versity Reports. Series: Natural and Technical Sciences, 15(4):1392–1404, 2010.

[9] V.V. Gorbik, A.V. Panyukov.Using massively parallel computations for absolutely
precise solution of the linear programming problems. Automation and Remote
Control, 73(2):276–290, 2012.

[10] V.A. Golodov, A.V. Panyukov. Computing the best possible pseudo-solutions to
interval linear systems of equations. In 15th GAMM-IMACS International Sym-
posium on Scientific Computing, Computer Arithmetic and Verified Numeric
(SCAN’2012, Novosibirsk, Russia, September 23-29, 2012): Book of Abstracts,
pages 134–135. Institute of Computational Technologies, 2012.

[11] V.A. Gorbik, A.V. Panyukov, M.I. Germanenko.Library of classes “exact compu-
tational”. State registration No. 2009612777 on May 29, 2009. In Programs for
Computers, Data bases, Topology of VLSI. Official Bulletin of Russian Agency
for Patents and Trademarks, number 3, page 251. Federal Service for Intellectual
Property, 2009.

[12] S.Yu. Lesovoy, A.V. Panyukov.Application of massive-parallel calculations for the
realization of the basic operations of the integral arithmetic. In Performance
of Parallel Calculations on the Cluster Systems (HPC - 2010). Materials of the
X International Conference (Perm’, on November 1 to 3, 2010.). In the 2nd
volumes., volume 2, pages 77–84. Perm: Publishing house of PermGTU, 2010.

[13] S.Yu. Lesovoy, A.V. Panyukov. Implementing basic operations of integer arith-
metic in the heterogeneous systems. In Parallel Computational Technologies
(PaVT’ 2012) [electronic resource]. - Proceedings of International Scientific Con-
ference PaVT’2012, Novosibirsk, March 26–30, 2012, pages 77–84. Chelyabinsk:
SUSU Publishing Center, 2012.

http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0174_Panyukov.pdf
http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0174_Panyukov.pdf

	Introduction
	Heterogenous Computational Systems
	Parallel Algorithms for Integer Arithmetic Operations in the Classical Radix Notation
	Addition of nonnegative numbers
	The binary relations
	Determination of the number of significant digits
	Multiplication of a multi-digit number by a digit
	Multiplication of multi-digit numbers
	Division

	Use of Signed Radix Notation
	Use of Redundant Radix Notation
	Conclusion

