Excluding Regions Using Sobol Sequences
in an Interval Branch-and-Prune Method
for Nonlinear Systems*

Barttomiej Jacek Kubica

Institute of Control and Computation Engineering,
Warsaw University of Technology, Poland

bkubica@elka.pw.edu.pl

Abstract

Traditional rejection/reduction tests used in branch-and-prune meth-
ods for nonlinear systems usually are based on various forms of the interval
Newton operator and constraint propagation techniques. Hence, they are
relatively costly. This paper considers an additional phase of a branch-
and-prune method for the exclusion of regions not containing any solu-
tions. Low-discrepancy sequences of Sobol are used to locate such regions,
together with solving the interval tolerance problem and e-inflation. Par-
allelization using the TBB library is also considered, and some numerical
results are presented.

Keywords: interval computations, nonlinear systems, exclusion, Sobol sequences
AMS subject classifications: 65G40, 65Y05

1 Introduction

Let us consider the system of nonlinear equations, using the notation of [9]:
filxy=0,i=1,....,m, (1)
rc€x CR".

We will develop an efficient interval method for locating all the solutions of such
systems. We concentrate on the case of underdetermined systems (i.e., m < n), but
the method should work also for well-determined case (m = n). Underdetermined
systems are encountered in robotics (e.g., [7, [18]), in the stability theory of dynamical
systems [I9], in differential equations solving or seeking the Pareto set of a multi-
criteria problem [I7], and in several other fields.

In [I3], the author considered an interval solver of such systems and its shared-
memory parallelization. In subsequent papers, several improvements have been con-
sidered, including various parallelization tools [I0, [12] and using sophisticated tools
and heuristics to increase the efficiency of the solver [1T}, [16].

*Submitted: February 21,2013; Revised: May 30, 2014; Accepted: June 25, 2014.

385

bkubica@elka.pw.edu.pl

386 Kubica, Excluding Regions Using Sobol Sequences. . .

2 Basic Algorithm

Our solver uses interval methods based on interval arithmetic operations and inter-
val extensions of basic functions so that the result of an operation on intervals is
guaranteed to enclose the mathematically correct result set. We shall not define inter-
val operations here, but refer the interested reader to several papers and textbooks,
e.g., [6 8 20} 25].

Our solver is based on the “branch-and-prune” schema (see, e.g., [7]) that can be
expressed by the following pseudocode:

Algorithm IBP (z(¥; f)
// 9 is the initial box, f(-) is the interval extension of the function f:R"™ — R™
// Lyer is the list of boxes verified to contain a segment of the solution manifold
// Lpos is the list of boxes that possibly contain a segment of the solution manifold
L:Lvm‘:Lposzw;
z=20
loop
process the box @, using the rejection/reduction tests ;
if (x does not contain solutions) then
discard x ;
else if (x is verified to contain a segment of solution manifold) then
push (Lyer, @) ;
else if (tests subdivided z into ") and x(*) then
x=a;
push (L, w(2)) ;
cycle loop;
else if (x is small enough) then
push (Lpos, T) ;
end if ;
if (x was discarded or stored) then
x = pop (L) ;
if (L was empty) then exit loop ;
else
bisect (x), obtaining ") and 2®;
x=ax
push (L, m(2)) ;
end if ;
end loop
end IBP

In the above pseudocode, the operations “push” and “pop” mean inserting and re-
moving elements to/from the set (no matter in what form the set is represented, as a
stack, queue, or a more sophisticated data structure).

The “rejection/reduction tests” in Algorithm IBP are described in [1I6], i.e.:

e switching between the component-wise Newton operator for larger boxes and
Gauss-Seidel with inverse-midpoint preconditioner for smaller ones,

e the sophisticated heuristic to choose the bisected component (described in [16]).

One might suggest using some consistency operators too, but we do not apply them
in the investigated algorithm for the following reasons:

Reliable Computing 19, 2014 387

e It is not certain when consistency methods are successful on underdetermined
problems, and we focus on solving such problems.

e Component-wise Newton operator is similar to enforcing box-consistency, so it
seems a proper replacement.

e We use the solver described in [I6], so it seems appropriate not to change irrel-
evant features to investigate the influence of the initial exclusion phase.

There are several possible variants, also (see, e.g., [I3} [I1]), but in this report, only
the heuristic form [I6] is considered.

Algorithm IBP has been parallelized using TBB [2]. The parallelization was based
on the concept of parallel_do (i.e., a few tasks execute some sort of a do...while
loop). The initial box is passed to one of the tasks, and results of its bisection are
distributed between tasks using the so-called “feeder”. Hence, we do not have a list
of boxes to consider there, i.e., we do not keep it explicitly.

We have two sets of solutions: possible solutions and verified solutions. They are
represented by concurrent vectors provided by the TBB library.

Several other details of the implementation are given in [16].

3 Exclusion Regions

3.1 Motivation

An interval Newton operator is the main tool used by Algorithm IBP. It is powerful,
yet relatively time consuming. An interval Newton operator requires computing the
Jacobi matrix (or its analog, e.g., the slope matrix) of the system and often some
expensive operations such as computing a preconditioner). Hence, it is beneficial to
apply this operator only for boxes close to the solution manifold and to reject other
boxes by some cheaper technique, e.g., using function values only and no higher-order
information.

Schichl [22] considers several techniques of excluding regions from the branch-and-
prune process. These techniques can be divided into two classes: removing regions
containing no solutions and removing regions around a unique solution. All use first
or even second order information, so they are of little use to us.

For underdetermined systems, we do not have isolated solutions, but continuous
sets of solutions (see [14] — especially Section 4 — and the references therein for the
discussion of various forms of the solution set). Hence, verifying the uniqueness is
of little use, in general. Yet, it might be beneficial to remove infeasible regions early
(and/or by a cheap procedure) so that the algorithm can concentrate on the vicinity of
the solution manifold and verify segments of it. In other words, we want to find boxes,
as large as possible, satisfying fi(z) > 0 or f;(z) < 0 for some i € {1,...,m}. We can
consider it as a problem of finding the tolerable solution of a nonlinear equation:

fiz) =p,)

where p € p, and p = [g, +00] or p = [—00, —¢].
Linearizing the left side around a point ¢ in the box @, possibly its midpoint, we
obtain

A-(z—t)+fi(t)Cp, ®3)

388 Kubica, Excluding Regions Using Sobol Sequences. . .

and reduce the problem to the linear tolerance problem (see, e.g., [21], 23] 24 [25]), the
problem of finding an inner box of the tolerable solution set to the interval system

A-xz=0b, (4)
where A is the Lipschitz matrix (see, e.g., [8]) of the function f;(-), and

Note that A is actually a vector (a matrix with a single row), but we retain the more
general matrix notation. The tolerable solution set is defined to be the set

{zeR"|VAc ATbeb Ax =1},

ie,{r eR"| A -2 C b}
How can we find an inner box of the tolerable solution set to the system ? One
of the classical results, due to Shary (see, e.g., [23] [24] [25]), is the following: if a point

t = (t1,t2,...,t,) " belongs to the tolerable solution set, then the interval vector
u=t+r-e (5)
also is included in the tolerable solution set if e = ([—1,1],...,[=1,1])", and

radbk — ‘midbk — Zakj tj

7= min T . (6)

n
> lax;|
j=1

In our case, formula @ has to be modified. Since b has one of the bounds equal to
infinity, its midpoint and radius are infinite. In the proof of Proposition 6.7.1 in [25],
we can find the adequate formula,

inf(bo A-t)r sup(bo A t);
inf(A-e)r ' sup(A-e) ’

(7)

where © is subtraction in Kaucher arithmetic, following [9].
As stated above, the matrix A has only one row, so we can reduce formula (7 to

_m.n{inf(bGA-t) sup(b@A-t)}
e inf(A-e) ’ sup(A-e) '

(8)

One of the expressions under minimization is equal to oo, as either b = oo, or —b = co.
Also, —inf(A-e) =sup(A-e) = |(A-e)| =3]7_, |a| holds.

Relying on these facts and providing the definition of b, the other expression under
minimization can be transformed, leading to the following formula for r in :

r=fly @%) , (9)

where fly denotes computing in floating-point arithmetic with rounding towards —oo [9].
How should we find ¢ for the above formulae? Actually, we would like to exclude

several regions centered around several points. For most systems of equations, almost

all points of the domain lie in the interior of the set of solutions of either {z € « |

Reliable Computing 19, 2014 389

fi(z) > 0}, or {x € | fi(x) < 0} Clearly, this condition must be checked for each ¢
(see the algorithm description in Subsection .

Choosing a set of points randomly seems promising. However, the author [I5]
investigated random point selection and described several disadvantages. Also, theo-
retical analysis (e.g., [5]) shows that there are sequences filling the area more uniformly
(with respect to some discrepancy measure) than random ones. This suggests using
quasi-random (instead of pseudo-random) sequences, specifically Sobol sequences.

3.2 Sobol Sequences

Sobol sequences (also known as LP: sequences) are an example of low-discrepancy
sequences [5]. These are sequences designed to fill an area as uniformly as possible,
yet in a completely deterministic manner. They are used in some variants of Monte
Carlo methods called quasi-Monte Carlo methods. A Sobol sequence is constructed so
that it is “well distributed” on the unit interval [5], i.e., this interval is filled uniformly,
according to some discrepancy measure. Although the details are relatively compli-
cated (see [B]), there are efficient generators based on the Gray code due to Antonov
and Saleev. Open source implementations of this algorithm are available [4], giving
the advantage of making the method deterministic, simplifying its investigation.

Generating sequences over a given box. Sobol sequences are defined over a
unit interval [0, 1]™, but they can simply be scaled in an affine manner to fill any other
interval. The question is: do we want to generate the points over the whole search
domain or over a subset of it?

Choosing points close to the boundaries as seeds of exclusion regions does not
seem very promising, so we decided to test an additional variant, when we generate
the points over some interval in the interior of the search domain. Specifically, we have
chosen the box: [x40.1-widax,Z —0.1-wid «]. Results presented in Section |5|suggest,
that this choice is effective.

3.3 The Method

Our proposed algorithm for exclusion using Sobol sequences is
e generate a set of points from x, using Sobol sequences;
e for each point ¢, compute the value of f;(t) for ¢ chosen in a round-robin manner;
o for e = 1074, if f;(t) € [—¢,¢€], the point is ignored;
e otherwise, generate an infeasible box around ¢ using Formula ;
e expand the infeasible boxes, using the e-inflation procedure [§];

e remove the exclusion regions (i.e., infeasible boxes) obtained from the search
domain @ and perform the branch-and-prune procedure on their complement.

Different exclusion regions can be located in parallel, e.g., using the parallel_for
concept of TBB, which is used in our code.
Infeasible boxes are removed from the search domain using the procedure from [g]:

complement_of (x, y, L)

L={}
if (zNy==0) then
push (L, y);

390 Kubica, Excluding Regions Using Sobol Sequences. . .

return;
end if
forv=1,...,n do
z =z NY;;

if (z >y) then
create a box w such that w; = [y, z], w; = y; when j # i;
push (L, w);

end if

if (Z <7) then
create a box w such that w; = [2,7], w; = y; when j # i;

push (L, w);
end if
Y, = %5
end for

end complement_of

To compute the complement of a set of boxes, we execute the complement_of procedure
sequentially: we compute the complement of the first box, then for each box of the
list L, we compute the complement of the second exclusion box, etc.

This is the only sequential part of our code. Some parallelization is possible here; el-
ements of the list L can be processed concurrently. Yet, as this parallelization would be
relatively fine-grained ,and the completion is computed quite efficiently (only floating-
point comparisons are used in this procedure with no computations of transcendental
functions), we have not parallelized this procedure.

After removing infeasible boxes from the domain, the branch-and-prune method
is performed on the remaining region (represented by the set of boxes).

3.4 Analysis of the Exclusion Process

Early experiments have shown that results of our algorithm for exclusion using Sobol
sequences are not deterministic. The number of processed boxes (gradient evaluations)
and the computation time vary, due to the by parallelization of the exclusion process,
as it affected the order in which excluded boxes have been cut from the initial box
z©. Let us consider the details of this phenomenon.

When we exclude a few boxes using our algorithm, the resulting set itself does not
rely on the order of exclusion, but the number of boxes that enclose this set does. As
a simple example, let us consider the situation presented on Figure [I} computing the
complement of the union of two boxes (black) in a box. If we exclude the larger box
first, we get seven resulting boxes, otherwise, we get nine boxes.

Figure 1: Subsequent exclusion of the same two boxes can result in different
numbers of boxes

In a typical case, we it would seem that we should get better results when larger

Reliable Computing 19, 2014 391

boxes are removed earlier than smaller ones. This can be achieved in a simple way:
after computing the exclusion regions, we sort them according to deceasing Lebesgue
measure. The TBB library provides us a useful function tbb: :parallel_sort() that
performs this operation in a concurrent manner. Unfortunately, results of this function
are not deterministic. If some boxes have identical Lebesgue measure, their order
cannot be determined a priori, but this indeterminism seems insignificant.

4 Test Problems

The following problems used in [I3] or [I6] are used as numerical experiments.
The first example is a simple benchmark, two concentric circles in a plane:

(@f +a3 —4)- (el +25-1) =0, (10)
x1,T2 € [—3,5] s
with accuracy e = 1072,
The second example is the Hippopede problem, with two equations in three vari-
ables:
i +as—x3=0, (11)
x§+x§ —1.1z3=0".
x1 € [-1.5,1.5], z2 € [-1,1], z3 € [0,4] ,
with accuracy € = 107".
The third example, called Puma, arose in the inverse kinematics of a Puma 560
robot and is a typical benchmark for nonlinear system solvers:
B 42i—1=0, z2+27-1=0, (12)
:c?—k:cé—l:(), x?—&—xg—l:O,
0.004731z1x3 — 0.3578z2x3 — 0.1238x1 — 0.001637z2 — 0.9338z4 + 7 =0,
0.2238z1x3 + 0.7623z223 + 0.2638x1 — 0.07745z2 — 0.6734x4 — 0.6022 =0 ,
zexrg + 0.3578x1 + 0.004731x2 =0
—0.7623z1 4+ 0.2238z2 + 0.3461 =0,
Z1,...,28 € [-1,1] .
In the form of (I2)), the Puma example is a well-determined (eight equations and eight
variables) problem with 16 solutions that are easily found by several solvers. To make
it underdetermined, the two last equations were dropped, as in [I3]. The resulting
variant with six equations was considered in numerical experiments as the third test
problem, with accuracy € = 0.05.
The fourth system, which we call the Rheinboldt problem, arose in aircraft equi-
librium problems:
—3.93321 + 0.107z2 + 0.1262x3 — 9.9925 — 45.83x7 — 7.64xs +
—0.727x2x3 + 8.392x324 — 684.42425 + 63.52427 =0 s (13)
—0.987x2 — 22.95x4 — 28.37x6 + 0.949z123 + 0.173z125 =0,
0.002z1 — 0.235x3 + 5.67x5 + 0.921z7 — 6.51zs — 0.716x122 +
—1.578x1x4 + 1.132x427 =0,

392

Kubica, Excluding Regions Using Sobol Sequences. . .

X1 — T4 — 0.168I6 — X122 = 0 ;
—x3 — 0.196x5 — 0.0071z7 + 124 =0,

with accuracy € = 0.05. This problem has five equations in eight variables. Since
originally no bounds are given, we take x; € [-2,2],9=1,...,8, as in [13].
The last problem is well-determined, the well-known Broyden-banded system:

zi-(24527) 41— Y ;- (142;)=0, i=1,...,N, (14)
JEJ;

Ji = {j\j;ﬁiand max{l,i—5}§j§min{n,i+1}} ,

z; € [-100,101], € {l,...,N}.

We consider dimensions N = 12 and N = 16.

5 Numerical Experiments

Numerical experiments were performed on a computer with 16 cores, a 8 Dual-Core
AMD Opterons 8218 with 2.6GHz clock, under a Fedora 10 Linux operating system
with GCC 4.6.3, glibc 2.14 and the Linux kernel 2.6.43.8.

The solver is written in C++ and compiled using the GCC compiler. The C-XSC
library (version 2.5.3) [I] was used for interval computations. The parallelization (8
threads) was done with TBB 4.0, update 3 [2]. OpenBLAS 0.1 alpha 2.2 [3] was linked
for BLAS operations.

We present results for the following versions of the algorithm:

“basic” — no exclusion, only the algorithm from [I6],

“excl, N” — N exclusion regions (the number of variables of the problem), gen-
erated on the whole domain,

“excl, 2N” — 2 - N exclusion regions, generated on the whole domain,

“excl, N, inter” — N exclusion regions, generated on the box
[+ 0.1 -wide,T — 0.1 - wid],

“excl, 2N, inter” — as above, 2 - N exclusion regions.

For each experiment, the following quantities are presented:

fun. evals — number of functions evaluations,
grad. evals — number of gradients evaluations,
bisections,

preconds — number of preconditioning matrix computations (i.e., performed
Gauss-Seidel steps),

bis. Newt., del. Newt. — number of boxes bisected (resp. deleted) by the
interval Newton operator,

pos.boxes, verif.boxes — number of resulting boxes in both lists — of possible and
verified solutions,

Leb.pos., Leb.verif. — Lebesgue measures of sets, covered by boxes in both lists.

Reliable Computing 19, 2014 393

Table 1: Computational results for problem

version basic | excl, N excl, 2N | excl, N, inter excl, 2N, inter
fun. evals 5979 5659 5634 5496 5913
grad. evals | 6708 6222 6077 6027 6442
bisections 2092 1988 1868 1896 2011
preconds 5528 5157 5075 5014 5356
bis. Newt. 39 40 34 39 38
del. Newt. 0 0 0 0 0
pos.boxes 128 128 117 118 130
verif.boxes | 1061 1048 991 990 1046
Leb.pos. 2e-9 2e-9 2e-9 2e-9 3e-9
Leb.verif. 0.55 0.59 0.61 0.63 0.62
time (sec.) <1 <1 <1 <1 <1

Table 2: Computational results for the Hippopede problem

version basic | excl, N excl, 2N | excl, N, inter excl, 2N, inter
fun. evals | 1184664 | 560712 1121708 439598 466934
grad. evals | 1361152 | 639616 1288326 501766 533010
bisections 329911 | 151299 310701 115764 125752
preconds 591814 | 279776 560234 219183 232866
bis. Newt. 5 15 81 14 89
del. Newt. 69760 33693 67787 24200 28118
pos.boxes 149952 63297 134961 43205 52975
verif.boxes 21672 14557 24402 16952 11400
Leb.poss. le-17 Te-18 le-17 8e-18 3e-18
Leb.verif. 0.004 0.003 0.002 0.003 0.003
time (sec.) <1 <1 <1 <1 <1

6 Analysis of the Results

For all of the test problems, we achieved some speedup, but the improvements happen
to be very “capricious,” varying from minor to dramatic.

Results for underdetermined problems sometimes are hard to analyze, as we might
have a tradeoff between computation time and precision of enclosing the solution man-
ifold. Thankfully, this did not occur in our experiments. Only in Table [4] ,one version
of the method (specifically, “2N excl”) results in a relatively crude approximation of
guaranteed boxes, yet computation time is not saved by that.

We tried to investigate the number of exclusion regions. In [15], we claimed that
the number of regions equal to the number of variables was optimal. Indeed, for most
problems, the version generating N points from the internal subinterval of the domain

394

Kubica, Excluding Regions Using Sobol Sequences. . .

Table 3: Computational results for the Puma problem , with 6 equations

version basic | excl, N excl, 2N | excl, N, inter excl, 2V, inter
fun. evals | 3673215 | 3442659 3376097 3621021 3444777
grad. evals | 3236880 | 2978364 2940528 3163032 3039000
bisections 269711 | 247685 244245 263205 251761
preconds 461464 | 417272 412512 447832 429851
bis. Newt. 0 78 104 99 197
del. Newt. 54280 49752 45731 53495 A4T747
pos.boxes 188208 | 173440 174344 184904 180288
verif.boxes 3744 2600 2192 2520 2168
Leb.poss. 2¢e-9 3e-9 2e-9 3e-9 3e-9
Leb.verif. 4e-11 5e-8 2e-7 3e-7 3e-9
time (sec.) 4 4 4 4 4

Table 4: Computational results for the Rheinboldt problem

version basic excl, N excl, 2N e>§cl, N, exgl, 2N,
nter mter

fun. evals | 213645211 | 186210881 183873684 | 180742165 180380236
grad. evals | 128791915 | 112809925 111877105 | 107399315 109435240
bisections 12225817 | 10688351 10604774 | 10116277 10381309
preconds 21095388 | 18622946 18525362 | 17586376 18084865
bis. Newt. 4401 5057 4880 5106 4890
del. Newt. 3293093 2835923 2846290 2724531 2766737
pos.boxes 7684286 6828040 6759768 6422468 6639564
verif.boxes 486738 425256 423483 404854 398901
Leb.poss. le-6 le-6 le-6 le-6 le-6
Leb.verif. 0.003 0.070 4.091 0.052 0.040
time (sec.) 232 202 198 188 192

resulted in the lowest computation time (and gradient evaluations). Yet for some
problems, such as the Broyden-banded system with N = 16 (Table@, a higher number
(e.g., twice the number of variables) performs better. Nevertheless, the difference was
not tremendous, and for some problems, using the larger number of exclusion regions
performed significantly worse, for example, Broyden-banded with N = 12 (Table5) or
the Hippopede problem (Table .

For Table , all algorithm versions performed in a similar way, but the version
with N internal points results also in the smallest number of gradient evaluations.

It seems clear that generating points on some subinterval of the interior of the
search domain outperformed generating them over the whole search domain.

Reliable Computing 19, 2014

395

Table 5: Computational results for the Broyden-banded problem , N =12

version basic excl, N excl, 2N excl, N, exg:l, 2N,
inter inter

fun. evals 23364196 | 19432059 19173335 14561810 32407927
grad. evals | 8625492 6722376 6617988 5499084 10143900
bisections 337884 264036 254267 213554 397373
preconds 138663 77903 88259 93771 107581
bis. Newt. 21510 14642 14620 14071 17614
del. Newt. 205614 173386 168008 127934 282202
pos.boxes 0 0 0 0 0
verif.boxes 1 1 1 1 1
Leb.poss. 0.0 0.0 0.0 0.0 0.0
Leb.verif. 2e-114 le-117 3e-97 9e-105 4e-105
time (sec.) 21 16 16 14 25

Table 6: Computational results for the Broyden-banded problem (1)), N = 16

version basic excl, N excl, 2N ex_cl, N, expl, 2N,
mter nter

fun. evals | 7975494792 | 4705422366 4564484468 | 2892322332 2771968224
grad. evals | 2139405184 | 1257731440 1193654000 | 834621936 810178304
bisections 66082093 38905745 36790866 25747517 24752411
preconds 24741064 9628066 10304221 8552837 6374714
bis. Newt. 774318 394943 476259 331213 525063
del. Newt. 50634661 28798049 28148442 18288848 17249029
pos.boxes 0 0 0 0 0
verif.boxes 1 1 1 1 1
Leb.poss. 0.0 0.0 0.0 0.0 0.0
Leb.verif. 3e-119 8e-129 le-118 4e-137 3e-186
time (sec.) 6911 4035 3826 2597 2485

7 Conclusions

We have presented an improved version of a previously developed parallel interval
solver for (underdetermined) nonlinear systems. The improvement is based on an
initial procedure to delete regions not containing solutions. This procedure uses Sobol
low-discrepancy sequences, interval linear tolerance problem theory, and e-inflation.

Overall, the method performs quite well (even if not tuned in the optimal way),
and it parallelizes simply using the Intel TBB library.

396 Kubica, Excluding Regions Using Sobol Sequences. . .

Acknowledgments

The author would like to acknowledge many fruitful and inspiring discussions with
colleague Adam Wozniak. The author is grateful to an anonymous referee for helping
to make the paper more clear.

References

1
2| Intel TBB. http://www.threadingbuildingblocks.org.

[1] C-XSC interval library. http://www.xsc.del

2]

[3] OpenBLAS library. http://xianyi.github.com/OpenBLAS/.
(4]

(5]

4] Sobol sequence generator. http://web.maths.unsw.edu.au/ fkuo/sobol/.

5] Michael Drmota and Robert F. Tichy. Sequences, Discrepancies and Applications.
Springer, 1997.

[6] Eldon Hansen and William Walster. Global Optimization Using Interval Analysis.
Marcel Dekker, New York, 2004.

[7] Daisuke Ishii, Alexandre Goldsztejn, and Christophe Jermann. Interval-based
projection method for under-constrained numerical systems. Constraints, 17
(4):432-460, 2012.

[8] Ralph B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dor-
drecht, 1996.

[9] Ralph B. Kearfott, Mitsuhiro T. Nakao, Arnold Neumaier, Siegfried M. Rump,
Sergey P. Shary, and Pascal van Hentenryck. Standardized notation in interval
analysis. Vychislennyie Tekhnologii (Computational Technologies), 15(1):7-13,
2010.

[10] Barttomiej J. Kubica. Intel TBB as a tool for parallelization of an interval solver
of nonlinear equations systems. Technical Report 09-02, Institute of Control and
Computation Engineering, Warsaw University of Technology, 2009.

[11] Barttomiej J. Kubica. Performance inversion of interval Newton narrowing oper-
ators. Prace Naukowe Politechniki Warszawskiej. Elektronika, 169:111-119, 2009.
KAEiOG 2009 Proceedings.

[12] Barttomiej J. Kubica. Shared-memory parallelization of an interval equations
systems solver — comparison of tools. Prace Naukowe Politechniki Warszawskiej.
Elektronika, 169:121-128, 2009. KAEiOG 2009 Proceedings.

[13] Barttomiej J. Kubica. Interval methods for solving underdetermined nonlinear
equations systems. Reliable Computing, 15:207-217, 2011. SCAN 2008 Proceed-
ings.

[14] Barttomiej J. Kubica. A class of problems that can be solved using interval
algorithms. Computing, 94:271-280, 2012. SCAN 2010 Proceedings.

[15] Barttomiej J. Kubica. Exclusion regions in the interval solver of underdetermined
nonlinear systems. Technical Report 12-01, Institute of Control and Computation
Engineering, Warsaw University of Technology, 2012.

[16] Barttomiej J. Kubica. Tuning the multithreaded interval method for solving un-
derdetermined systems of nonlinear equations. Lecture Notes on Computer Sci-
enses, 7204:467-476, 2012. PPAM 2011 Proceedings.

http://www.xsc.de
http://www.threadingbuildingblocks.org
http://xianyi.github.com/OpenBLAS/
http://web.maths.unsw.edu.au/~fkuo/sobol/

Reliable Computing 19, 2014 397

[17]

Bartlomiej J. Kubica and Adam Wozniak. Using the second-order information in
Pareto-set computations of a multi-criteria problem. Lecture Notes on Computer
Scienses, 7134:137-147, 2012. PARA 2010 Proceedings.

Jean-Pierre Merlet. Interval analysis for certified numerical solution of problems
in robotics. International Journal of Applied Mathematics and Computer Science,
19 (3):399-412, 2009.

Arnold Neumaier. The enclosure of solutions of parameter-dependent systems of
equations. In Reliability in Computing, pages 269—286. Academic Press, 1988.

Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge Uni-
versity Press, Cambridge, 1990.

Jiri Rohn. Inner solutions of linear interval systems. In Interval Mathematics,
pages 157-158. Springer-Verlag, New York, 1986.

Herman Schichl and Arnold Neumaier. Exclusion regions for systems of equations.
SIAM Journal of Numerical Analysis, 42:383-408, 2004.

Irene A. Sharaya. The largest interval of given proportions for the interval lin-
ear tolerable solution set. http://conf.nsc.ru/files/conferences/niknik-90/
fulltext/38714/49309/Sharaya.pdf, 2011. NIKNIK-90 International Confer-
ence.

Sergey P. Shary. An interval linear tolerance problem. Automation and Remote
Control, 65:1653-1666, 2004.

Sergey P. Shary. Finite-dimensional Interval Analysis. XYZ, Novosibirsk,
2013. (in Russian) Electronic book, http://www.nsc.ru/interval/Library/
InteBooks/SharyBook. pdf| (accessed 2014.05.15).

http://conf.nsc.ru/files/conferences/niknik-90/fulltext/38714/49309/Sharaya.pdf
http://conf.nsc.ru/files/conferences/niknik-90/fulltext/38714/49309/Sharaya.pdf
http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf
http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf

	Introduction
	Basic Algorithm
	Exclusion Regions
	Motivation
	Sobol Sequences
	The Method
	Analysis of the Exclusion Process

	Test Problems
	Numerical Experiments
	Analysis of the Results
	Conclusions

