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Abstract

This paper discusses Numerical Probabilistic Analysis (NPA) for
problems under aleatory and epistemic uncertainty. The basis of NPA
are numerical operations on probability density functions of the ran-
dom values and probabilistic extensions. The numerical operations
of the histogram arithmetic constitute the major component of NPA.
The concepts of natural, probabilistic and histogram extensions of a
function are considered. Using NPA approach, we construct numer-
ical methods that enable us to solve systems of linear and nonlinear
algebraic equations with stochastic parameters. To facilitate a more
detailed description of the epistemic uncertainty, we introduce the
concept of second order histograms. Relying on specific practical ex-
amples, we show that using second order histograms may prove helpful
in decision making. In particular, we consider risk assessment of in-
vestment projects, where histograms of factors such as Net Present
Value (NPV) and Internal Rate of Return (IRR) are computed.
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1 Introduction

Many important practical problems involve different uncertainty types. In prac-
tice, several sources of uncertainty of the required information impede optimal
decision making in the classical sense. When only uncertain information is avail-
able (which is most often the case), then decision making requires more complex
methods for data representation and their analysis.

We consider Numerical Probabilistic Analysis (NPA) for problems under alea-
tory and epistemic uncertainty. The general approach is to choose the represen-
tation of the uncertainty according to the type and amount of information that
can be made available in the process. Aleatory uncertainty characterizes inherent
randomness in the behavior of the system under study. Alternative terms possibly
used in connection with this kind of uncertainty are ‘variability’, ‘stochastic uncer-
tainty’, ‘irreducible uncertainty’, and ‘Type A uncertainty’. On the other hand,
epistemic uncertainty characterizes a lack of knowledge about a considered value.
Generally, epistemic uncertainty may be inadequate for the frequency interpreta-
tion typical for classical probability and hence, for uncertainty description in the
traditional probability theory. Other terms for epistemic uncertainty are ‘state of
knowledge uncertainty’, ‘subjective uncertainty’, and ‘irreducible uncertainty’ [13].

Once an uncertainty representation has been chosen, the problem is to carry out
subsequent calculations in a way that produces correct results with no additional
uncertainty being introduced into the answer. Clearly, processing aleatory and
epistemic uncertainties may require the use of special methods

The Monte Carlo method [12] is a powerful approach for problems with uncer-
tainties, but it has serious shortcomings. These are difficulties in handling uncer-
tain quantities having unknown dependency relationships or those with imprecise
probabilities, that is, with not fully specified probability distributions.

Non-Monte Carlo methods have been developed since the 1960’s [2, 8, 15].
A major non-Monte Carlo approach is interval analysis. For the solution of our
problems, interval analysis has developed such powerful tools as probabilistic dis-
cretizations of random variables [1, 7], p-boxes [6], or clouds [9]. An interesting
comparison of interval analysis approaches vs. Monte Carlo techniques is given
in [10] and repeated in the Conclusions of the book [11].

Several alternative approaches to the decision making and risk assessments
under epistemic uncertainty have been considered in [14, 16, 17].
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In our work, we develop a technique that uses Numerical Probabilistic Analysis
to solve various problems with stochastic data uncertainty.

NPA is based on numerical operations on probability density functions of the
random values approximated by histograms. These are operations “+”, “−”, “·”,
“/”, “↑”, “max”, “min”, binary relations “≤”, “≥”, and some others. The numer-
ical operations of histogram arithmetic constitute the major component of NPA.
One of the first implementations of the numerical histogram arithmetic is in [2].

Using the arithmetic of probability density functions and probabilistic exten-
sions of usual functions, we can construct numerical methods that enable us to
solve systems of linear and nonlinear algebraic equations with stochastic param-
eters [3]. To facilitate more a detailed description of the epistemic uncertainty,
we introduce the concept of second order histograms, which are defined as piece-
wise histogram functions [4]. Second order histograms can be constructed using
experience and/or intuition of experts.

Relying on specific practical examples, we show that using second order his-
tograms may prove very helpful in decision making. In addition, we present meth-
ods that are able to cope with uncertainties in strategic decision situations, in
particular, involving calculations of the economic uncertainties. We consider risk
assessment of investment projects, where histograms of factors such as Net Present
Value (NPV) and Internal Rate of Return (IRR) are computed.

2 Types of Probability Density Functions

The basis of NPA are numerical operations on probability density functions of ran-
dom values and very important operations of probabilistic extension of functions.
Before elaborating the details, we describe various types of probability density
functions, e.g., a discrete function, a histogram (piecewise constant function), or
a piecewise-polynomial function.

Discrete random variables. A discrete random variable ξ may take only a
countable number of distinct values x1, x2, . . . , xn (potentially, an infinite number
of them). The probability distribution p(x) of a discrete random variable is a list of
probabilities associated with each of its possible values, also called the probability
function or the probability mass function.

Histograms. A random variable whose probability density function is repre-
sented by a piecewise constant function called a histogram. Any histogram P is
defined by a grid {xi | i = 0, 1, . . . , n} and a set of values pi, i = 1, . . . , n, such
that the histogram takes the constant value pi at the interval [xi−1, xi].

Interval histograms. Random variable is called an interval histogram if its
probability density function P (x) is a piecewise interval constant function.
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Second order histograms. When epistemic uncertainty is present, second
order histograms may be used along with interval histograms. A probability den-
sity function P (x) of a second order histogram is a piecewise-histogram function,
i. e., a histogram whose each column is a histogram [5].

Piecewise linear functions. A piecewise linear function is a function com-
posed of straight-line sections. These are the simplest splines. Although such
functions are relatively simple, they have good approximating properties, and they
can be tools for approximating probability density functions.

Splines. A spline is a piecewise degree n polynomial function with n− 1 con-
tinuous derivatives at its nodes (points where the polynomial pieces connect). We
approximate the probability density of the random variables by spline functions.

Analytically defined probability density functions. Random variables
and their density distributions can be expressed analytically by explicit formulas.

3 Operations on Probability Densities of

Random Variables

In this section, we consider operations on different kinds of probability density
functions.

Operations on discrete values. Let ∗ ∈ {+,−, ·, /, ↑} be an operation
between two independent discrete random variables ξ and η. If ξ takes the values
xi with the probability pi, and η takes the values yi with the probability qi, then
the result ξ ∗η of any operation between ξ and η is a random variable ψ that takes
its possible values xi ∗ yj with the probability piqj .

Operations on histograms. Let p(x, y) be a joint probability density func-
tion of two random variables x and y. Also, let pz be a histogram approximating
the probability density of the operations between two random variables x ∗ y,
where ∗ ∈ {+,−, ·, /, ↑}. Then the probability to find the value z within the
interval [zi, zi+1] is determined by the formula (see [3])

P (zk ≤ z ≤ zk+1) =

∫
Ωk

p(x, y) dx dy , (1)

where Ωk = {(x, y) | zk ≤ x ∗ y ≤ zk+1}.
We outline a numerical implementation of the general approach in the previous

paragraph. Let the histogram variables x and y be given on the grids {ai} and
{bi}, respectively, with the corresponding probabilities {pi} and {qi}. Let [a0, an]
and [b0, bn] be supports of the probability densities of these variables, and let the
rectangle [a0, an]× [b0, bn] be the support of the joint probability density p(x1, x2).
We divide the rectangle [a0, an]×[b0, bn] into n2 sub-rectangles [ai, ai+1]×[bj , bj+1],
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in which the probability of getting a constant is equal to piqj for independent
random variables and pij for dependent ones.

To compute the resulting histogram, it is necessary to pass through all the
sub-rectangles [ai, ai+1] × [bj , bj+1] calculating for each of them its contribution
to every segment [zk, zk+1] of the resulting histogram. To this end, we define the
region Ω′k, for which the sub-rectangle [ai, ai+1]× [bj , bj+1] intersects Ωk:

Ω′k = Ωk ∩
(
[ai, ai+1]× [bj , bj+1]

)
.

Then we compute the integral over Ω′k,

pzk =

∫
Ω′

k

p(x, y) dx dy . (2)

Note that, for each [ai, ai+1] × [bj , bj+1], the joint probability density p(x, y) is
constant, and so is the ratio of the integration area Ω′k to the area of the sub-
rectangle [ai, ai+1]× [bj , bj+1].

Walking through all the rectangles, we compute the desired histogram pz.
Overall, the number of arithmetic operations required for the construction of the
histogram is O(n2).

Operations between histograms and discrete random variables. We
consider the operations of the form x ∗ c, where ∗ ∈ {+,−, ·, /}, c is a constant,
and x is a random variable with the probability density fx. If ∗ ∈ {+,−}, the
probability density function fz of the random variable z = x ∗ c can be easily
expressed as fz(ξ ∗ c) = fx(ξ), ξ ∈ R. Let “∗” be multiplication and c 6= 0. Then
fz(ξ) = fx(ξ/c)/c. If c = 0, the random variable z takes only one value 0 with
probability 1. The operation of division by c 6= 0 is treated analogously, which
results in fz(ξ) = fx(ξ · c) · c, ξ ∈ R.

In the case of operations between discrete and histogram random variables,
we have one-dimensional segments Ai × [bj , bj+1] instead of rectangles [ai, ai+1]×
[bj , bj+1]. Similar to the previous case, going through all these segments, we cal-
culate the contribution of each one to the final histogram. As compared to the
previous case, the difference in the numerical implementation is that we do not
have to divide the result by the measure of the region under study (or the length
of the subinterval). However, if the number of values that the discrete random
variable can take is large, the calculations can be very laborious. In this situation,
it makes sense to represent the discrete random variable in the form of a histogram,
and then operate as described in the preceding case.

Operations between histograms and an analytically determined den-
sity function. In this case, the computation algorithm is similar to the case of
two histograms. However, the joint probability density is not constant, which re-
quires the numerical calculation of integrals of the form of Equation (2). The result
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is again a histogram that approximates the density distribution of the unknown
random variable.

Operations on second order histograms. Let X and Y be second order
histograms defined by grids { vi | i = 0, 1, . . . , n } and {wi | i = 0, 1, . . . n } and
sets of histograms {Pxi} and {Pyi}. By Z = X ∗ Y , we denote a second order
histogram resulting in the operation ∗ ∈ {+,−, ·, /, ↑} between X and Y . After
having defined a grid {zi | i = 0, 1, . . . , n}, the histogram Pzi on the interval
[zk, zk+1] is determined, following Equation (1), by the formula

Pzk =

∫∫
Ωk

X(ξ)Y (η) dξ dη
/

(zk+1 − zk) ,

where Ωk = { (ξ, η) | zk ≤ ξ ∗ η ≤ zk+1}.
The function X(ξ)Y (η) on each rectangle [vi−1, vi] × [wj−1, wj ] is a constant

histogram Pxi ·Pyj . In particular, the integral of a histogram over a certain region
is equal to the sum of the histogram values multiplied by the areas of the regions.

4 Probabilistic Extensions

One of the most important problems that NPA handles is the computation of
probability density functions of random variables expressed as functions of other
random variables with given densities. Let us start with the general case when
(x1, . . . , xn) is a vector of continuous random variables that have the joint proba-
bility density function p(x1, . . . , xn), while the random variable z is a function f
of (x1, . . . , xn), i. e.

z = f(x1, . . . , xn) .

By probabilistic extension of the function f , we mean a probability density function
of the random variable z.

We construct a histogram F that approximates the probability density func-
tion of the variable z = f(x1, . . . , xn). Suppose the histogram F is defined on a
grid { zi | i = 0, 1, . . . , n }. The region is denoted as Ωi = {(x1, . . . , xn) | zi ≤
f(x1, . . . , xn) ≤ zi+1}. Then the value Fi of the histogram on the interval [zi, zi+1]
is

Fi =

∫
Ωi

p(x1, x2, . . . , xn) dx1dx2 . . . dxn

/
(zi+1 − zi). (3)

By histogram probabilistic extension of the function f , we mean a histogram F
constructed according to (3).

Let f(x1, . . . , xn) be a rational function. To construct its histogram extension,
we replace the variables x1, x2, . . . , xn by histograms of their possible values, while
the arithmetic operations are replaced by the histogram operations. We call the
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resulting histogram F the natural histogram extension of the function f (similar
to “natural interval extension”).

Case 1. [4] Let x1, . . . , xn be independent random variables. If f(x1, . . . , xn)
is a rational expression in which each variable xi occurs no more than once, then
the natural histogram extension approximates the probabilistic extension.

Case 2. [4] Let us assume that, through the change of variables, the expres-
sion of the function f(x1, . . . , xn) can be transformed to a rational expression
f(z1, . . . , zk), depending on new variables z1, . . . , zk, that satisfies the conditions
of Case 1, while the variable zi is a function of xi, i ∈ Indi ⊆ {1, 2, . . . , n}, and
the index sets Indi are mutually disjoint. Suppose that, for each zi, it is possible
to construct a probabilistic extension. Then the natural histogram extension of
f(z1, . . . , zk) approximates the probabilistic extension of f(x1, . . . , xn).

Example. Let f(x1, x2) = (−x2
1 +x1) sinx2, and z1 = (−x2

1 +x1), z2 = sinx2.
Notice that it is possible to construct probabilistic extensions for the functions z1

and z2, and then compute f = z1 · z2, which is a rational function satisfying the
conditions of Case 1. Hence, the natural histogram extension approximates the
probabilistic extension for the function f(x1, x2).

Case 3. We have to find a probabilistic extension for the function f(x1, x2,
. . . , xn), but the conditions of Case 1 and Case 2 are not fulfilled. Suppose that
only one variable has several occurrences in the expression for f ; let it be x1 for def-
initeness. If, instead of the random variable x1, we substitute a determinate value
t, then it is possible to construct a natural histogram extension for the function
f(t, x2, . . . , xn). We shall assume that t is a discrete random value approximating
x1 in the following sense: t takes values ti with probability Pi, and it is possi-
ble to construct a natural histogram extension ϕi for each one of the functions
f(ti, x2, . . . , xn). Then a probabilistic extension of the function f(x1, . . . , xn) can
be approximated by such a probability density function ϕ (see [4]),

ϕ(ξ) =
n∑
i=1

Piϕi(ξ) .

Clearly, this technique can be applied recursively to functions whose expressions
have several occurrences of few variables.

Example. Let f(x, y) = x2y+x, and let x and y be random values uniformly
distributed over the interval [0, 1]. We change x to a discrete random value t,
{ ti | ti = (i − 0.5)/m, i = 1, 2, . . . ,m}, Pi = 1/m, and then calculate natural
histogram extensions ϕi.

More detailed analysis of the calculated results shows that ϕ approximates f
with the order α = 1.4998, that is, ‖f − ϕ‖2 ≤ O(1/mα).
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m ‖f − ϕ‖2

10 1.2888E-03
20 4.5593E-04
40 1.6121E-04
80 5.6996E-05
160 2.0151E-05

Table 1: Approximation error of the probabilistic extensions

Case 4. We consider the problem of construction the probability density
function for

y = f(x1, x2, . . . , xn) ,

when repeated samples for the vector (x1, x2, . . . , xn) are known.
Suppose that x1, x2, . . . , xn are dependent variables, and repeated samples

X1 = (x1, x2, . . . , xn)1, X2 = (x1, x2, . . . , xn)2, . . . , XN = (x1, x2, . . . , xn)N are
known. We shall construct a histogram approximation Py of the probability density
function of the random value y. Let histogram Py be defined on a grid {zi | i =
0, 1, . . . ,m} takes the value pj over the interval [zi−1, zi], such that

pj =
mj

N(zj − zj−1)
,

where mj is the number of points yi = f(Xi) that falls into the interval [zi−1, zi].

5 Solving Equations and Systems of

Equations

Using NPA techniques, we construct numerical methods that solve linear and non-
linear equations and systems of algebraic equations with stochastic parameters [3].

First, we consider an NPA method for the solution of a system
f1(x, k) = 0,

...
. . .

...
fn(x, k) = 0 ,

(4)

either linear or nonlinear, where k ∈ Rm is a vector of random parameters, its
probability density is p(ξ1, ξ2, . . . , ξm) with the support set K, and x ∈ Rn is a
random solution vector. The solution set of system (4) is the random set

Ξ =
{
x ∈ Rn | (∃k ∈ K)( fi(x, k) = 0, i = 1, 2, . . . , n)

}
.
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Figure 1: Probability density of the solutions to a linear system.

To every x ∈ Ξ, we can assign a parameter subset Kx ⊆ K such that

Kx = { k ∈ K | fi(x, k) = 0, i = 1, 2, . . . , n } .

Suppose that, for a subset Y ⊆ Ξ, we have to find the probability P (Y ) of the
solution x falling into the subset Y , i. e., of the membership x ∈ Y . If we introduce
the parameter subset KY = {Kx | x ∈ Y }, then the required probability is

P (Y ) =

∫
KY

p(ξ1, ξ2, . . . , ξm) dξ1dξ2 . . . dξm .

Constructing the subsets Kx and KY is not an easy task in general. However, it
is quite feasible for some particular cases.

Let us consider two illustrative examples.
First, we turn to a system of linear algebraic equations

Ax = b , where

A =

(
a11 −1

−1 2

)
, b =

(
b1

b2

)
,

and the variables a11, b1, and b2 are independent random variables such that
a11 ∈ [2, 4], b1 ∈ [0, 1], and b2 ∈ [0, 1] with uniform probability distributions
on the respective intervals. Discretizing the variables, we can employ the above
elaborated technique (see details in [3]).
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Figure 2: Probability density of the solutions to the system (5).

Figure 1 shows a histogram of the solution density for the step 0.1 along each
component. The overall square has the size [0, 1]×[0, 1], and the solid line indicates
the boundary of the solution set.

As a second example, consider the system of nonlinear equations{
ax2 + by2 − 4 = 0,

xy − c = 0,
(5)

where a, b, and c are uniformly distributed random variables over the intervals
a ∈ a = [1, 1.1], b ∈ b = [2, 2.1], and c ∈ c = [0.505, 0.51], respectively. If c is
fixed, then for every x and y, the subset K(x,y) of the parameter space of all the
(x, y)’s defined by the equation ax2 + by2 − 4 = 0 is a straight line. Next, it is
not hard to find the probability density of the solution vector (x, y) and, as the
result, to compute probability of the membership (x, y) ∈ [x, x]× [y, y], i. e., that
the solution falls into a specified rectangle.

For example, we can find that the probability of being the solution within the
rectangle [0.37, 0.275]× [1.36, 1.365] is equal to 0.1465. The comparable accuracy
of the result is achieved by Monte Carlo modeling after ≈ 106 trials.

Figure 2 shows a piecewise constant approximation of the joint probability
density for the solution (x, y) to the system (2) (details can be found in [3]).
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Figure 3: Second order histogram.

6 Second Order Histogram

In this section, we briefly consider the idea of second order histograms and their
construction in the case of epistemic uncertainty.

Suppose that we have a series of histograms {Yi, i = 1, 2, . . . , N}. Let each
Yi be assigned a probability pi such that

∑N
i pi = 1. For simplicity, we assume

that all the histograms Yi, i = 1, 2, . . . , N , are defined on a common grid {zj |
j = 0, 1, . . . , n}, and the histogram Yi takes the value Yik at the interval [zk−1, zk].
We have thus a random variable denoted as Y (k), taking the value Yik with the
probability pi on the interval [zk−1, zk]. Using these values, we can restore the
histogram Pzk on each interval [zk−1, zk].

Example. Let Pt be a random variable triangularly distributed on [0, 1], with
the height h = 2 and its top at the point (t, 2). Then t is a random variable,
triangularly distributed on [0.25, 0.75], with the top (0.5, 4) (see Figure 3a).

Figure 3b shows the corresponding second order histogram where the values
of probability densities are shades in gray. Interval distributions (maximum and
minimum Pt for all t) are shown by the boundary lines, and the middle line indi-
cates an “efficient” probability density of the second order histogram, that is, the
mean of the probability density at a specific point.
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7 Risk Assessment

In this section, we consider application of Numerical Probabilistic Analysis to risk
assessment procedures for investment projects. We use a priori information about
the probability densities of sales and product price and calculate Net Present Value
and Internal Rate of Return, important financial variables.

Net Present Value (NPV) of a time series of cash flows is the sum of the present
values (PVs) of the individual cash flows. When studying specific investment
projects, NPV is used to determine the present value of an investment by the
discounted sum of all cash flows anticipated to be received from the project. The
formula for the discounted sum of all cash flows is

NPV (r) = Cz1s1

T∑
i=1

Ci
(1 + r)i

− C0 , (6)

where C0 is the initial investment, Ci is the i-th cash flow, T is time (assumed to be
discrete), r is the discount rate, s1 is the cost, and z1 represents the expenditure.

Internal Rate of Return (IRR) determines the maximum acceptable discount
rate at which one can invest without any loss to the owner. In other words,
IRR = r providing that NPV (r) = 0.

To provide an example of computing Net Present Value, we consider a company
that decides whether it should invest in a new project. Specifically, let the company
be expected to invest C0 = $3.4 · 106 for the development of the new product. At
the same time, the company estimates that the cash flow is going to be Ci = ci ·xi
during the i-th year, where ci is the price, and xi is sales volume. The expected
return of 10% is used as the discount rate.

Under the circumstances, there is very high market uncertainty about the spe-
cific values of the main parameters of the model, so that the standard (’point’)
financial model cannot produce an adequate recommendation on how to make this
or that decision. To take into account simultaneously the uncertainty in prices,
sales, costs, and expenses, it makes sense to use Numerical Probabilistic Analysis.
We represent the main parameters of the financial model, i. e., prices and sales,
as random variables that have numerical probability distributions. The technique
based on NPA enables one to understand which factors exhibit the greatest influ-
ence on the financial results of the project.

First, using expert estimates, we can construct histograms that approximate
the probability densities of ci, xi, s1, and z1.

To model the selling price, we use a triangular distribution, determined by three
parameters: the minimum value, the maximum value, and the most probable value
(“top value”). Let the sale price in the first year have the minimum value $5.90,
the maximum value $6.10, while the top value is a random variable with uniform
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Figure 4: The mean of the second order histogram for NPV.

distribution on [$5.95, $6.05]. Similarly, the sale price for the second year has the
triangular distribution with the parameters $5.95, $6.15, and [$6.0, $6.1]. Finally,
the third year price has the triangular distribution with the parameters $6.0, $6.20,
and [$6.05, $6.15].

Sales are approximated by random variables with normal Gaussian distribu-
tions. In the first year, the mathematical expectation µ1 of the sale is a uniform
random variable on [$800,000, $805,000], and the standard deviation σ1 is a uni-
form random variable on [$20,000, $30,000]. In the second year, the expectation µ2

is a uniform random variable on [$950,000, $1,000,000], and the standard deviation
σ1 is a uniform random variable on [$20,000, $30,000]. In the third year, µ3 is a
uniform random variable on [$1,100,000, $1,150,000], and the standard deviation
σ3 is a uniform random variable on [$20,000, $30,000].

Cost s1 (as percentage of sales) is assumed to have a triangular distribution
with the minimum of 50%, maximum of 65%, and the most likely value of 55%.

The expenditure z1 (percentage of sales) is modeled as the normal Gaussian
distribution with expectation of 15% and standard deviation of 2%.

The presence of various expert assessments leads to the necessity to build a
second order histogram. Probability density functions for the histogram variables
ci, xi, s1, and z1 are presented for n = 50.

Figures 4 and 5 show the mean of the second order histograms of NPV and
IRR. Support of the NPV is [−$0.704 · 106, $2.07 · 106], and support of the IRR is
[5%, 30%]. Considering the histograms of NPV and IRR, one can see the possibility
of both negative outcomes and considerable profits, contrary to the results of the
standard ’point’ analysis that does not capture the variability of the outcome.

Using estimates of NPV and IRR densities in the form of histograms and second
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Figure 5: The mean of the second order histograms for IRR.

order histograms, we can assess the risk that the investment project is loss-making.
If PNPV is the probability density function of NPV, the probability P that the
investment project is loss-making is

P =

∫ 0

−∞
PNPV (ξ) dξ .

8 Conclusions

We have considered the representation of uncertainty information and computa-
tional aspects of its processing with the use of Numerical Probabilistic Analysis
(NPA).

Relying on practical examples, we demonstrate that using the histograms and
second order histograms may prove very helpful in decision making. In particular,
we applied the new technique in a computation of NPV and IRR estimates for risk
assessment of investment projects.

Comparison of NPA and Monte Carlo method showed good agreement of their
results. For instance, for the number of samples N = 106 and histogram dimension
n = 30, four significant digits matched. At the same time, the numerical exper-
iments demonstrate that the histogram arithmetic is more than 100 times faster
than the Monte Carlo method. As a result, the approach based on NPA can be
applied successfully to the solution of certain economic problems for which Monte
Carlo simulation is infeasible.
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