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Abstract

In the paper, we consider interval linear algebraic systems of equations
Ax = b, with an interval matrix A and interval right-hand side vector
b, as a model of imprecise systems of linear algebraic equations of the
same form. We propose a new regularization procedure that reduces the
solution of the imprecise linear system to computing a point from the
tolerable solution set for the interval linear system with a widened right-
hand side.

The points from the tolerable solution set to the widened interval linear
system are called pseudo-solutions, while the best pseudo-solutions are
those corresponding to the minimal extension of the right-hand side that
produces a nonempty tolerable solution set. We prove the existence of
the best pseudo-solutions and propose a method for their computation,
as a solution to a linear programming problem. Since the auxiliary linear
programming problem may become nearly degenerate, it is necessary to
perform computations with a precision that substantially exceeds that of
the standard floating point data types. A simplex method with errorless
rational computations gives an effective solution to the problem. Coarse-
grained parallelism for distributed computer systems using MPI and the
software for errorless rational calculations using CUDA C small-grained
parallelism are the main instruments of our suitable implementation.
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1 Introduction and Main Idea

A system of linear algebraic equations is a fundamental object that arises in the
solution of many problems. Sometimes, the coefficients of such systems cannot be
determined precisely, but we know intervals that contain them. Under such interval
uncertainty, the definition of a solution must be specified.

In our paper, we consider the interval linear system of equations as a class of
equivalent point linear systems specified to within a prescribed accuracy set by the
interval elements in the matrix and right-hand side vector. We are going to find
a single point solution to such an interval system that represents a solution of the
“approximate” linear system best of all.

We first give a short survey of various concepts of solutions and solution sets to
interval systems of equations. Different interpretations of the interval uncertainty have
been systematized and its classified in [17, 18]. In particular, one has to distinguish
between two interval uncertainty types, A-uncertainty and E-uncertainty, that corre-
spond to the logical quantifiers “∀” and “∃”, respectively. In accordance with this
classification, there exist many solution sets to interval systems of equations and in-
equalities that differ in the logical quantifiers applied to the interval parameters. The
interval E-uncertainty is also called weak, while the A-uncertainty is called strong.

The most popular solution sets to the interval systems of equations are those
formed by ∃∃-solutions. Such solution sets often are called united solution sets or sets
of weak solutions (as far as they correspond to the “weak” interval uncertainties both
in the matrix and right-hand side). Given a square system of interval linear algebraic
equations of the form Ax = b with A = aij = ([aij , aij ]) and b = (bj) = ([bj , bj ]), aij ,

aij , bi, bi ∈ R for i, j = 1, 2, . . . , n, the united solution set or the set of weak solutions
is formally defined as

Ξuni(A, b) =

{
x

∣∣∣∣ (∀i, j = 1, 2, . . . , n) (∃aij ∈ aij) (∃bi ∈ bi)

(
n∑

j=1

aijxj = bi

)}
,

(see details in [2, 7, 19]), which is equivalent to

Ξuni(A, b) =
{
x ∈ Rn

∣∣ (∃A ∈ A) (∃b ∈ b) (Ax = b)
}
.

Another solution set frequently encountered in various practical problems is the toler-
able solution set

Ξtol(A, b) =

{
x

∣∣∣∣ (∀i, j = 1, 2, . . . , n) (∀aij ∈ aij) (∃bi ∈ bi)

(
n∑

j=1

aijxj = bi

)}
,

usually written as

Ξtol(A, b) =
{
x ∈ Rn

∣∣ (∀A ∈ A) (∃b ∈ b) (Ax = b)
}
.

It is formed by all points x such that the product Ax falls into the right-hand side
interval bounds b for every A ∈ A [17, 18]. These two solution sets have much in
common, but their behavior differ greatly as the interval matrix of the system varies.
When the interval matrix widens, the united solution set grows in size, while the
tolerable solution set shrinks.

The tolerable solution set can be represented as

Ξtol(A, b) =
⋂

A∈A

{
x ∈ Rn

∣∣ (∃b ∈ b) (Ax = b)
}
, (1)
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while for the united solution set, the dual representation is valid:

Ξuni(A, b) =
⋃

A∈A

{
x ∈ Rn

∣∣ (∃b ∈ b) (Ax = b)
}
.

In the above formulas,
{
x ∈ Rn

∣∣ (∃b ∈ b)(Ax = b)
}

is the solution set to the interval
system Ax = b with the interval uncertainty concentrated only in the right-hand side
vector.

The presence of the universal quantifier ∀A ∈ A in the definition (1) of the tolerable
solution set is equivalent to the set-theoretical intersection. Then, it follows from (1)
that the tolerable solution set is least sensitive, among all the solution sets, to the
change in the interval matrix of the system Ax = b, since (1) is not greater than the
solution set

{
x ∈ Rn

∣∣ (∃b ∈ b) (Ax = b)
}

determined by the “best” and “most robust”
matrix A ∈ A. Although some matrices from A may be “bad” and even singular, the
contribution of “good” matrices to (1) causes the tolerable solution set to be bounded
and well-estimated. Consequently, we can involve the tolerable solution set as a kind
of “regularizing tool” in the solution of sensitive and ill-conditioned problems, when
one needs to somehow “smooth” the effect of variation in the solution of the problem
caused by imprecise data or any disturbances. Our paper exploits and elaborates this
idea that may be called interval regularization.

In many practical situations, the interval linear system of equations may be ill-
conditioned or even inconsistent, that is, represent ill-conditioned or incompatible
point equations. For such cases, it makes sense to introduce a concept of a pseudo-
solution by analogy with the work [5, 22].

J. Rohn obtained in 1985 a result on a characterization of the points from the
tolerable solution set [15] (called ’inner solutions’ at that time). Rohn’s Theorem
claims that any point x ∈ Ξtol(A, b) may be represented in the form x = x+ − x−,
where x+ and x− are solutions to the inequality system

n∑
j=1

(
aijx

+
j − aijx

−
j

)
≥ bi, i = 1, 2, . . . , n.,

n∑
j=1

(
aijx

+
j − aijx

−
j

)
≤ bi, i = 1, 2, . . . , n,

x+, x− ≥ 0.

Consequently, finding tolerable solutions to interval linear systems has polynomial
complexity.

Estimation of the tolerable solution set for the case Ξtol(A, b) 6= ∅ is considered
in detail, e.g., in [17] and other work. A very powerful tool for the investigation of the
tolerable solution set is developed in Novosibirsk [17, 20] as the “method of recognizing
functional”. It draws a conclusion on the solvability of the problem (i.e., about empty-
ness / nonemptyness of the solution set) after computing an unconstrained maximum
of a special (nonsmooth and concave) functional, named “recognizing”. Maximization
of the recognizing functional may be performed practically with the use of nonsmooth
optimization methods (e.g., those developed in the Institute of Cybernetics NAS of
Ukraine by P.I. Stetsyuk are very popular and thoroughly tested [21]). Addition-
ally, the information obtained during the seach of the maximum of the recognizing
functional makes it possible to correct the initial tolerance problem in a desirable
way. Computer codes for investigation of solvability of the interval linear tolerance
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problem (emptiness / nonemptyness of solutions set, etc.), developed by S.P. Shary
and P.I. Stetsyuk are publicly available at [25]. These programs are implemented us-
ing INTLAB, an interval extension of Matlab, and Int4Sci, an interval extension of
Scilab.

This paper presents in a more detailed form the results previously announced
in [8, 9, 10], that relate to pseudo-solutions for systems of linear equations under in-
terval uncertainty and numerical methods for computation of the best possible pseudo-
solution for such systems.

In our paper, we use the standard notation of interval analysis [6].

2 Pseudo-Solutions to Interval Linear Systems

Let an interval linear system of equations Ax = b be given, where elements of the
matrices A and b are intervals aij =

[
aij , aij

]
, bj =

[
bj , bj

]
, i, j = 1, 2, . . . , n. Accord-

ing to the ideas presented in the previous section, we wish to define pseudo-solutions
for Ax = b as points from the tolerable solution set Ξtol(A, b). However, the main
problem with this construction is that the tolerable solution set Ξtol(A, b) may be
empty even for common interval data A and b (see e.g., [17, 19]).

A natural way out of the difficulty is to artificially extend (“inflate”) the right-hand
side b of the interval system to get a nonempty tolerable solution set Ξtol(A, b). The
details of the construction are as follows. We embed the given system of equations
Ax = b into a parameterized family of systems of the equations of the form Ax = b(z)
with a modified right-hand side vector b(z) =

[
b− z |b|, b+ z |b|

]
, z ≥ 0. Then the

parameter z is chosen to ensure the nonemptyness of Ξtol(A, b).

Let z be such that Ξtol(A, b(z)) 6= ∅. We will refer to points of the tolerable set
Ξtol(A, b(z)) as pseudo-solution of the original system Ax = b. A pseudo-solution that
corresponds to the minimal extension of the right-hand side of the system of equations,
i.e., to z∗ = inf { z | Ξtol(A, b(z)) 6= ∅}, is the best possible pseudo-solution.

The following theorem states the existence of the introduced objects.

Theorem 2.1 For any interval linear system of equations Ax = b and for all z ≥ 1,
the tolerable set Ξtol(A, b(z)) is nonempty.

Proof: It follows from Rohn’s theorem that the condition Ξtol(A, b(z)) 6= ∅ is equiv-
alent to the consistency of the inequality system

n∑
j=1

(
aijx

+
j − aijx

−
j

)
≥ bi − z |bi| , i = 1, 2, . . . , n., (2)

n∑
j=1

(
aijx

+
j − aijx

−
j

)
≤ bi + z

∣∣bi∣∣ , i = 1, 2, . . . , n, (3)

x+, x− ≥ 0. (4)

Put in (2) – (4) x+ = x− = 0, this yields

0 ≥ bi − z|bi|, 0 ≤ bi + z|bi|, i = 1, 2, . . . , n.

Thus, for all z ≥ 1, the inclusion 0 ∈ Ξtol(A, b(z)) is true, completing the proof. �
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Traditional linear systems of equations are a special case of interval linear systems
of equations, so the pseudo-solution is not unique, e.g., when rankA < n for the square
n× n-matrix. The case Ξtol(A, b) = ∅, i.e., z > 0 has its own features.

Another concept that arises in connection with interval linear systems and relates
to our pseudo-solutions: is that these are universal solutions, as introduced in [1]. Let
ε be a nonnegative vector from Rn. Then the set of ε-solutions to the system of linear
equations Ax = b is

Xε =
{
x ∈ Rn

∣∣ |Ax− b| ≤ ε }.
For an interval linear system Ax = b, the concept of ε-solutions requires that the
inequality |Ax− b| ≤ ε holds for all the admissible A ∈ A and b ∈ b. That is, the set
of ε-solutions to Ax = b should be

Xε =
{
x ∈ Rn

∣∣ max
A∈A, b∈b

|Ax− b| ≤ ε
}
.

Then we set a norm ‖·‖ and find minimal, with respect to this norm, vector ε̃ such that
the set Xε̃ of ε-solutions is still nonempty. The “universal solutions” to the interval
linear system under study are defined as points from such a set Xε̃. In other words,
the universal solution xuni to the interval linear system of equations Ax = b is

xuni ∈ Arg min
Xε 6=∅

‖ε‖,

where a large letter in Arg means that the argument of min may be set-valued.

The concept of universal solutions to interval systems of equations proves useful in
some practical situations [1], but it differs from our pseudo-solutions intended primarily
for regularization of ill-conditioned problems.

3 Computing the Best Pseudo-Solution

Our computational approach to finding the best possible pseudo-solutions to the sys-
tem of equations Ax = b is based on the following result.

Theorem 3.1 There exists a solution x+
∗

and x−
∗
∈ Rn, z∗ ∈ R to the linear pro-

gramming problem

z → min
x+, x−, z

, (5)

n∑
j=1

(aijx
+
j − aijx

−
j ) ≥ bi − z |bi|, i = 1, 2, . . . , n, (6)

n∑
j=1

(aijx
+
j − aijx

−
j ) ≤ bi + z |bi|, i = 1, 2, . . . , n, (7)

x+j , x
−
j , z ≥ 0, j = 1, 2, . . . , n. (8)

In addition, the vector x∗ = x+
∗
− x−

∗
is the best possible pseudo-solution to Ax = b.

Proof: First, we prove the existence of the optimal solution x+
∗

and x−
∗
∈ Rn, z∗ ∈ R

to the linear programming problem (5)–(8). From Theorem 2.1 and Rohn’s theorem,
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it follows that the tolerable solution set of the considered problem is not empty. The
corresponding dual problem is

n∑
i=1

biy1i −
n∑

i=1

biy2i → max
y1i,y2i

, (9)

n∑
i=1

ajiy1i −
n∑

i=1

ajiy2i ≤ 0, j = 1, 2, . . . , n, (10)

−
n∑

i=1

ajiy1i +

n∑
i=1

ajiy2i ≤ 0, j = 1, 2, . . . , n, (11)

n∑
i=1

|bi|y1i +

n∑
i=1

|bi|y2i ≤ 1, (12)

y1i, y2i ≥ 0, i = 1, 2, . . . , n. (13)

The zero solution y1i, y2i = 0, i = 1, 2, . . . , n is a suitable solution to the problem (9)–
(13). Hence, the primal linear programming problem (5)–(8) and the dual (9)–(13)
are solvable. Therefore, the problem (5)–(8) really has optimum. �

It is readily seen that the above results, both Theorems 2.1 and 3.1, can be gener-
alized to the case when we widen the right-hand-side in the form([

b1 − p1z, b1 + q1z
]
,
[
b2 − p2z, b2 + q2z

]
, . . . ,

[
bn − pnz, bn + qnz

])>
,

that is, with real positive factors pi and qi, instead of |bi| and |bi|. This gives rise
to a new interpretation of the above results and a new concept of pseudo-solutions
closely related to that introduced in the preceding section. At the same time, one can
ask a natural question on how to choose these factors in an optimal manner. We will
consider these issues in our future research.

Both the problem (5)–(8) and the problem (9)–(13) are nearly degenerate. There-
fore, an implementation of the numerical solution requires special attention. First,
it is necessary to provide high precision of the calculations to prevent the simplex-
method from cycling. Such anti-cycling techniques for the simplex-method are de-
scribed, e.g., [16]. Second, calculations should be sufficiently fast to solve the prob-
lems within comfortable time limits. Third, the linear programming problem under
solution should be decomposed to exploit modern multicore/multithread processors
and the capabilities of cluster architectures.

4 Necessary Precision of Computation

The software tools necessary for exact computation have been developed earlier in
South Ural State University (Chelyabinsk, Russia) as a C++ class library “Exact
Computation 2.0” [4] based on reimplemented overlong and rational classes [4, 13,
14]. They prove to be almost as useful as the standard C++ data types, but without
their range and precision limitations.

The objects of the class rational are common fractions p/q, where p and q are
overlong integer numbers. The class overlong provides integer number from the

range ] − 2232 , 2232 [ for 32-bit operating systems, or from the range ] − 2264 , 2264 [
for 64-bit operating systems, while the minimal “sampling intervals” of the rational
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objects are 2−232−1 and 2−264−1, respectively. The data types provides all the basic
arithmetic operations and relations as C++ standard data types do. Such computation
functionality is provided by the GMP library, an open source project that consists of
C-types and many mathematical functions developed to work with high precision num-
bers. The GMP library is optimized for many modern processors using assembler code
blocks [24], but GMP does not provide its types with the opportunity to send/receive
its objects over communication networks in a distributed computing environment, e.g.,
a cluster. The library “Exact Computation 2.0” provides such functionality.

Internal form of the integer numbers inside the overlong object is a numerical
notation with base equal to 232. This base requires some overhead to input/output
numbers to/from inner notation, but inner calculations may be well optimized using
standard C++ tools. Memory operations are optimized too, since there is no automatic
garbage collector in the C++ runtime environment: frequent memory reallocations
may lead to its fragmentation and to decreased application performance.

A brief review of the current version of the overlong classes and rational is
given in [3]. Technical details of all the memory operations are encapsulated in special
memory handle class MemHandle. On the other hand, all the basic arithmetic operations
are encapsulated in the class ArifRealization (see Listing 1).

class overlong {

private: static ArifRealization realization;

private: MemHandle mhandle;

. . .

public: inline int32 size() const {return leng;}//length

public: inline int32 sign() const {return sgn;} //sign

. . .

//addition

template<typename Type>friend const overlong operator+

(const overlong &num,Type v)

{overlong rez(num); return (rez+=v);}

friend const overlong operator+

(const overlong&,const overlong&);

. . .

}

Listing 1: Fragment of the overlong class

An overlong object contains a MemHandle object for memory handling and static

ArifRealization, a link to basic arithmetic operation realization. All the basic arith-
metic operation are implemented as corresponding methods of the ArifRealization

class. A sample code for the addition operation is demonstrated in the listing, see
Figure 2. These techniques abstract the actual storage locations of the numbers and
the number presentation notation by using the interface of MemHandle for memory
handling calls and the interface of ArifRealization for arithmetic operations calls.

4.1 Necessary Productivity Supply

The decomposition “interface–memory–arithmetic” described above allows flexible us-
age of the computer system resources. Productivity of the simplex-method algorithm
is based on the efficiency of the exact calculations. The basic class overlong has the
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void overlong::add(const overlong &alpha, const overlong& beta){

d_t carry;

const overlong& a=(alpha.size()>=beta.size())? alpha:beta;

const overlong& b=(alpha.size()>=beta.size())? beta:alpha;

int32 LA=a.size(),LB=b.size(),sg=alpha.sgn,newleng;//LA>=LB

ArifRealization::add(a.mhandle.getptr(), LA,

b.mhandle.getptr(), LB,

mhandle.providetmpptr(LA,1), newleng, carry);

mhandle.settmpasptr();

if(carry) mhandle.safesetvalue(LA, carry);

leng=newleng;

sgn=sg;

}

Listing 2: Addition operation

ability to use modern parallel accelerators such as Nvidia(R) GPUs using CUDA C [23]
or other accelerators including AMD GPUs, Intel Xeon Phi using OpenCL [26].

Algorithms for parallel execution of the basic arithmetic operations and their im-
plementation in heterogeneous computer environment is described e.g., [3, 12]. Stor-
age optimization depends on the device where calculation are performed. For CPU
calculations, operating memory of the compute node is the best choice, while GPU
calculations use global memory (see [26] for an explanation of the term) of the device.

If a computer system contains an Nvidia(R) GPU, then all the data corresponding
to digits of the numbers are stored in the global memory of the device which performs
calculations with it, leading to substantial reduction of data transfer over the PCI bus.

4.2 Fine-grained Parallelism

Parallel computations on the GPU require a revision of the basic arithmetic operations
in accordance to the device architecture. In the rest of the paper, we assume an
Nvidia(R) GPU accelerator as one of the most popular GPGPU devices. A discussion
of some operations in CUDA C follows.

4.2.1 Addition

Addition on the GPU is performed in several stages: parallel bitwise addition, syn-
chronization, and parallel carry propagation from all digit positions. A feature of the
GPUs groups all parallel threads into blocks. Threads of the block are fully concur-
rent, but there are no tools to synchronize threads from different blocks. Hence, it is
necessary to store “border” carries into a temporary array (see Listing 3), and prop-
agate them later (see Listing 4). The average length of the carry chains is not more
than two digits, but in the worst case, the carry length is equal to the maximum length
of the summands.

The code for setup of the kernel parameters and initiation of the kernel execution
are given in the Listing 5. This code is executed on the CPU, also called host side of
the heterogeneous CPU+GPU computer system.
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__global__ void DNumAdd_part1 (d_t *A,int32 LA, d_t *B, int32 LB,

d_t *C, d_t *bGCarry, int32 *f) {

int32 gId=blockDim.x*blockIdx.x + threadIdx.x;

int64 tmp=0;

if(gId >= LA) return; // bound check

if(gId >= LB) C[gId]=A[gId];

else {

tmp=(int64)A[gId]+(int64)B[gId];

C[gId]=tmp&MAX_DIGIT;

}

__syncthreads(); // carry propagation in the block

int32 lId=threadIdx.x+1,i=gId+1, gS=blockDim.x;

for(tmp>>=BIT_IN_DIGIT; tmp && i<LA; lId++, i++) {

if(lId == gS) {

bGCarry[blockIdx.x]=tmp; *f=1;

return;

}

tmp+=(int64)C[i];

C[i]=tmp&MAX_DIGIT;

tmp>>=BIT_IN_DIGIT;

}

if(i==LA && tmp) bGCarry[Lcarry]=1;

}

Listing 3: Bitwise addition

__global__ void DNumAdd_part2

(d_t *C, d_t *bGCarry, int32 gS, uint32 Lcarry, uint32 LA) {

// carry propagation between blocks

int gId = blockDim.x*blockIdx.x + threadIdx.x,i=(gId+1)*gS;

if (gId >= Lcarry) return;

uint64 tmp=(uint64)bGCarry[gId];

for(; tmp && i<LA; i++) {

tmp+=(uint64)C[i];

C[i]=tmp&MAX_DIGIT;

tmp>>=BIT_IN_DIGIT;

}

if (i==LA && tmp) bGCarry[Lcarry]=1;

}

Listing 4: Parallel carry propagation
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void ArifRealization::add(const d_t *A,int32 LA,const d_t *B,int32 LB,

d_t *C, int32 &NL,d_t &Carry) {

int tPerBlock = 128,bPerGrid = (LA + tPerBlock - 1) / tPerBlock;

d_t *bGCarry_d=NULL,*ansCarry_h=new d_t[1];

int32 *F_d=NULL,*F_h=new int32[1];

cudaMalloc((void**)&bGCarry_d, sizeof(d_t)*(bPerGrid+1));

cudaMemset((void*)bGCarry_d, 0, sizeof(d_t)*(bPerGrid+1));

cudaMalloc((void**)&F_d, sizeof(int32));

cudaMemset((void*)cF_d, 0, sizeof(int32));

DNumAdd_part1 <<< bPerGrid, tPerBlock >>>

(const_cast<d_t*>(A), LA, const_cast<d_t*>(B), LB,

C, bGCarry_d, CF_d);

cudaMemcpy(cF_h, cF_d, sizeof(int32), cudaMemcpyDeviceToHost);

if(*cF_h) {

int gS = tPerBlock, LCarry = bPerGrid;

bPerGrid = (bPerGrid + tPerBlock - 1) / tPerBlock;

DNumAdd_part2 <<< bPerGrid, tPerBlock>>>

(d_buffC, bGC_d, gS, LCarry, LA);

}

cudaMemcpy(ansCarry_h, &bGCarry_d[bPerGrid],

sizeof(d_t), cudaMemcpyDeviceToHost);

NL= (carry = *ansCarry_h)? LA+1: LA;

delete[] ansCarry_h; cudaFree(bGCarry_d); cudaFree(cF_d);

}

Listing 5: Kernel call at the GPU

4.2.2 Multiplication

The multiplication is one of the most time-consuming operations. The multiplication
algorithm uses fast on-chip memory shared between threads inside the block of threads
to accelerate temporary calculations. Its implementation essentially uses an Nvidia(R)
GPU architecture feature that all the instructions inside one warp of the threads
(16/32 threads) are performed simultaneously, freeing threads inside a warp from extra
synchronization. The source code of the device side (GPU) is given in the Listing 6.
The final result is formed sequentially by transforming 64-bit integers rez[j] to 32-bit
digits and a further 32-bit carry digit.

4.2.3 Division

The fully sequential nature of the standard long division algorithm makes it a poor
choice for parallel GPU architecture. We use more efficient iterative methods, e.g., [12].

5 Coarse-Grained Parallelism

Details of the parallel implementation techniques for the simplex method can be found
in [11]. Threads on the CPU may be produced by any available tool, for example, by
MPI, OpenMP, or std::threads of C++ 0x11.
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__global__ void DNumMult(d_t *A, int32 LA, d_t *B, int32 LB, d_t *rez) {

int32 lId=threadIdx.x,gId=blockDim.x*blockIdx.x + lId;

if(gId >= LB) return;

int32 cBS=(LA+blockDim.x-1) / blockDim.x;

__shared__ uint64 sha[],shrez[];

for(int i=lId*cBS; i<(lId+1)*cBS && i<LA; i++) {

sha[i]=A[i]; shrez[i]=0;

}

shrez[LA+lId]=0;

uint64 digit=(uint64)B[gId], t=0UL;

for(int i=0; i<LA; i++) {

t+=sha[i]*digit;

shrez[i+lId]+=t&MAX_DIGIT;

t>>=BIT_IN_DIGIT;

}

shrez[LA+lId]+=t&MAX_DIGIT;

cBS = (LA+blockDim.x+blockDim.x-1) / blockDim.x;

for(int i=lId*cBS; i<(lId+1)*cBS && i<LA+blockDim.x; i++) {

AtomicAdd(rez[i+gId],shrez[i]);

}

}

Listing 6: Multiplication on the GPU

5.1 A Computational Experiment

A computational test has been performed on a computer with an Intel(R) Core(R)
i7-950 processor at 3.06GHz with 6 GB RAM and an Nvidia(R) GTX-460 with 1Gb
GDDR5. The code was compiled with the Visual C++ 2011 compiler. The test prob-
lem was to solve a system of interval linear equations Ax = b with an “intervalized”
Hilbert matrix A = (aij) and point (non-interval) right-hand side b such that

aij =

[
i(1− δ)
i+ j − 1

,
i(1 + δ)

i+ j − 1

]
,

b = (1, 1/2, . . . , 1/(n− 1), 1/n)> .

The minimal extension z∗ of the right-hand side corresponding to the pseudo-
solution depending on the parameter δ with fixed n = 20 is given in Table 1. Table 2
contains the results for various sizes of the model problem with fixed parameter δ.

Table 1: Minimal values of the right-hand side extension parameter

δ 10−1 10−2 10−3 10−4 10−5 10−6

z∗ 0.81 0.389 0.1 0.025 0.0062 0.0017
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Table 2: Computation time

Matrix (n) 10 20 50 100
Time 0.46 s 7.73 s 7.39 m 15.1 h

6 Conclusion

The paper presents the concept of a pseudo-solution to an interval linear algebraic
system of equations, a new and promising regularization approach for sensitive and ill-
conditioned problems. We prove that pseudo-solutions exist and develop a numerical
approach for their computation based on the solution of a related linear programming
problem. Since the new approach may produce linear programming problems that are
very close to degenerate ones, we require special means for their numerical solution
since the standard data types cannot cope with the accuracy losses.

Software that implements the new approach is developed for CUDA C. It is based
on errorless rational-fractional computations and small-grained parallelism, which en-
ables sufficiently high performance. The simplex method, coupled with errorless
rational-fractional computation, gives an effective solution to the linear programming
problem that arises in the new approach. Coarse-grained parallelism for distributed
computer systems with MPI is the suitable instrument for their implementation.
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