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Abstract

This paper compares various implementations of the parameter par-
titioning methods (PPS-methods) for optimal outer estimation of the so-
lution sets to interval linear systems. Special attention is focused on the
analysis of the modification based on Rohn’s technique, which is the most
complex, laborious, but the most efficient one. We present results of nu-
merical experiments with several computational schemes as well as their
analysis, and we formulate practical recommendations on how to optimize
the computational schemes of the parameter partitioning methods.
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1 Introduction

We consider the problem of computing the tightest (optimal) component-wise bounds
on the solution set to an interval linear system of the form

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

...
...

. . .
...

...

an1x1 + an2x2 + . . . + annxn = bn,

(1)
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or, briefly,

Ax = b, (2)

with an interval n × n-matrix A and an interval n-vector b. The interval linear
system (1)–(2) is understood as a family of point linear systems of the same structure,
with matrices and right-hand side vectors within the interval matrix A and the interval
vector b, respectively.

The united solution set of the interval linear system is the set

Ξ(A, b) =
{
x ∈ Rn | (∃A ∈ A)(∃ b ∈ b)(Ax = b )

}
,

formed by solutions to all the point systems Ax = b with A ∈ A and b ∈ b. There are
many other definitions for solution sets to interval systems of equations, but in this
paper, we confine ourselves to the united solution set Ξ(A, b). Hence, we call it just
the solution set.

We suppose that the interval matrix A is regular (nonsingular) in the system (1)–
(2), that is, A contains only regular point matrices. Hence, the solution set Ξ(A, b)
of the interval linear system Ax = b is bounded.

The problem of optimal outer estimation of the solution set to the interval linear
systems (1)–(2) can be formulated as follows:

find an interval box U that has the smallest possible width and
contains the solution set Ξ(A, b) of the interval linear system

, (3)

or, in component-wise form,

find min {xν | x ∈ Ξ(A, b)} and max {xν | x ∈ Ξ(A, b)},
ν = 1, 2, . . . , n, or their most precise estimates from below

and from above, respectively
. (4)

In our paper, we adhere to the second formulation and confine ourselves to computing
only min{xν | x ∈ Ξ(A, b)}, since the following equality holds for any fixed ν:

max{xν | x ∈ Ξ(A, b)} = −min{xν | x ∈ Ξ(A,−b)}.

Note that the problem of interval estimation of the solution set to interval linear
systems is NP-hard [9].

We consider a class of efficient numerical algorithms for the solution of the outer
estimation problem (3) which is called the class of “parameter partitioning meth-
ods”, or PPS-methods, developed in [20, 23]. PPS-methods sequentially refine outer
component-wise estimates of the solution set to the interval linear system Ax = b by
subdividing interval elements in the matrix A and right-hand side vector b.

The subdivision of the interval system can be simplified crucially by applying
the Beeck-Nickel Theorem [2, 12]: if an interval matrix A is regular, then for any
ν ∈ {1, 2, . . . , n}, exact component-wise estimates of the points from the solution
set are attained at the endpoint matrices and right hand-side vectors, made up of
endpoints of the interval elements of A and b.

Beeck-Nickel Theorem has been strengthened by J. Rohn [16] who revealed that,
if the matrix A is regular, then both minimal and maximal component-wise values of
the points from the solution set are attained at the set of no more than 2n extreme
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solutions to the equation |(mid A)x−mid b| = A·|x|+rad b. This fact can be used for
further modification of the subdivision process in the parameter partitioning methods.

The purpose of the present work is to test and compare various implementations
of PPS-methods that use

1) Rohn’s technique for eliminating unpromising endpoint combinations;

2) a monotonicity test with respect to the elements of the matrix and
right-hand side vector of the system;

3) various enclosure methods for interval linear systems;

4) various ways of processing the results of the partition of the initial
interval linear system are stored.

Results of the numerical experiments with several computational schemes as well
as their analysis and conclusions are presented below.

2 PPS-method for Interval Linear Systems
and its Modifications

The parameter partitioning methods consist of sequential refinement of the estimate
min{xν | x ∈ Ξ(A, b)} by subdividing the initial system Ax = b into “systems-
descendants”, through breaking up an interval element of either the matrix A or the
vector b to its endpoints. Below, we give a short survey of PPS-methods. Their
thorough consideration can be found in [20, 22, 23].

We will use the following notation:

A′, A′′ are matrices obtained from A by replacing a certain interval
element by its lower and upper endpoints, respectively;

b′, b′′ are vectors obtained from b by replacing a certain interval
component by its lower and upper endpoints, respectively;

Encl is a fixed method that computes an enclosure of the solution set
(we shall call it a basic enclosure method);

Encl (Q, r) ∈ IRn is an interval enclosure of the solution set Ξ(Q, r)
produced by the method Encl, so that Encl (A, b) ⊇ Ξ(A, b);

Υ(A, b) = (Encl (A, b))ν is the lower endpoint of the ν-th component,
ν ∈ {1, 2, . . . , n}, of the interval enclosure Encl (A, b).

If the estimate Υ(A, b) is inclusion monotone with respect to A and b, then having
solved the interval “systems-descendants” A′x = b′ and A′′x = b′′ obtained from
Ax = b, we can get a better estimate for min{xν | x ∈ Ξ(A, b)} from below in the
form of

min{Υ(A′, b′),Υ(A′′, b′′)}.
Then we can repeat the procedure with respect to the “systems-descendants” A′x = b′

and A′′x = b′′, which results in further improvement of the estimate. Then it makes
sense to repeat such recalculation again and again . . .

Overall, we arrange an iterative procedure for refining the estimate for min{xν |
x ∈ Ξ(A, b)} in accordance with the well-known “branch-and-bound” method (see
the details in [20, 22, 23]). For the natural stopping of the algorithm, it is required
to reach the complete deintervalization of the initial interval system or the estimates
with the accuracy lower than a small positive tolerance ε.
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During the execution of the algorithm, we maintain a working list of records in
which the information about the systems-descendants is stored. This information is
used substantially at further steps of the algorithm, and the algorithm is essentially
adaptive. A special feature of the PPS-methods is that they generate a sequence
of estimates for minimal and maximal values of the components of the solution set
from below and from above, respectively. Hence, when terminated at any time, the
algorithm still produces a correct solution to the outer estimation problem (3)–(4).

At every step of the algorithm, we use the basic enclosure method Encl that
computes an enclosure of the solution set to the systems descendants. We implemented
the following basic enclosure methods:

• Krawczyk method [8],

• modified Krawczyk method with epsilon inflation (see e.g. [19]),

• interval Gauss method (see e.g., [10, 22]),

• interval Gauss-Seidel method (see e.g., [10, 22]),

• Hansen-Bliek-Rohn procedure (described e.g., in [4] or Neumaier’s paper [11]).

As a basic enclosure method, we also have tested the procedure verifylss from
the popular package INTLAB [18] (see its description e.g., in [7]). The procedure has
two stages. The first stage is based on the modified Krawczyk method with epsilon
inflation, while the second stage uses the Hansen-Bliek-Rohn procedure. If a desired
enclosure of the solution set is not found after seven iterations in the first stage, then
the second stage starts.

2.1 Rohn Modification

In [16], J. Rohn proposed an approach to optimal outer estimation of the solution
sets to interval linear systems based on examination of extreme solutions. He proved
that, in the case of a square regular matrix A, minimal and maximal values of the
components of the points from the solution set Ξ(A, b) are attained at the set of no
more than 2n solutions to point systems∣∣(mid A)x−mid b

∣∣ = rad A · |x|+ rad b

obtained from the well-known Oettli-Prager inequality [14] by equating its left-hand
and right-hand sides. Such solutions are called extreme solutions for the interval
system Ax = b. It turns out that the convex hull of all the extreme solutions coincides
with that of the entire solution set Ξ(A, b).

Let us denote the set of n-vectors with the components ±1 by E . The set E has 2n

elements. For fixed vectors σ and τ ∈ E , we define the matrices Tσ and Aστ = {aστij }
and the vector bσ = {bσi } as follows:

Tσ = diag {σ1, . . . , σn},

aστij =

{
aij , if σiτj = −1,

aij , if σiτj = 1,
bσi =

{
bi, if σi = 1,

bi, if σi = −1.

The matrix Aστ and the vector bσ are made up of collections of endpoints of the
elements of A and b, respectively, so that the system Aστx = bσ is actually an “extreme
point” for the given interval system Ax = b.
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Rohn’s Theorem on Extreme Solutions [16]. Let an n× n-matrix A be regular
and b be an interval n-vector. Then, for every σ ∈ E , the equation

mid A · x− Tσ · rad A · |x| = bσ

has a unique solution xσ within Ξ(A, b) and

conv Ξ(A, b) = conv {xσ | σ ∈ E}

holds, where conv denotes convex hull.

In other words, the solution set Ξ(A, b) contains a finite and uniquely defined
family of extreme solutions that determines the convex hull of the solution set as
well as its interval hull. Then, computing all the extreme solutions and comparing
them with each other, we can get optimal estimates of the solution set after a finite
number of steps. An important point is that the number 2n of the extreme solutions is

significantly less than the number 2n
2+n of the solutions to all the point systems with

matrices and right-hand side vectors formed by the endpoints of the interval entries
from A and b, respectively. To put it differently, Rohn’s result significantly reduces the
complexity of the exhaustive search among the “endpoint” linear systems suggested
by the Beeck-Nickel Theorem.

It makes sense to use Rohn’s Theorem in PPS-methods. The corresponding com-
putational scheme has been elaborated in [22, 23]. Here, we give a brief description.
Given a regular matrix A, the extreme component-wise values for the points from the
solution set Ξ(A, b) can be reached only at the set of 4n matrices Aστ and associated
vectors bσ

min{xν | x ∈ Ξ(A, b)} = min
σ,τ∈E

(
(Aστ )−1bσ

)
ν
, ν = 1, 2, . . . , n.

As the result, when partitioning the parameters of the interval system, we can look at
the endpoints of the interval elements of the matrix and of the right-hand side vector
to be subdivided and determine whether the endpoint combination is allowed by Rohn
theorem. In doing this, we connect with every interval system Qx = r, produced at
every step of the algorithm, an auxiliary integer n × n-matrix W = {wij} with the
elements ±1 or 0 and auxiliary integer n-vectors s = {si} and t = {tj} with the
elements ±1 or 0, such that

wij =


−1, if qij = aij ,

0, if qij = aij ,

1, if qij = aij ,

si =


−1, if ri = bi,

0, if ri = bi,

1, if ri = bi,

and
wij = sitj , i, j = 1, 2, . . . , n.

The values of tj are determined through the matrix W and the vector s. The
matrix W is called the check matrix, and the vectors s, t are called check vectors. At
the start of the algorithm, we set W , s, and t to all zeros. Then, after partition of the
interval system during the algorithm execution, they are recalculated at every step.

Taking into account the values of the check matrix W and vector s, we perform,
at each step of the algorithm, subdivision of an interval element in the leading system
Qx = r that provides the smallest current estimate for {xν | x ∈ Ξ(A, b)}. When
subdividing an element qkl of the matrix Q that corresponds to wkl = 0, we generate
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two systems descendants Q′x = r′ and Q′′x = r′′. If wkl = ±1, we generate only
one descendant, depending on the sign of wkl. Similarly, we perform subdivision of an
element in the right-hand side vector r, depending on the values of the vector s.

After having partitioned the leading system, the check matrices and vectors for the
systems descendants are calculated anew. If at least one object of the triple (W ′, s′, t′)
is changed, the two remaining ones are recalculated according to the equalities wij =
sitj , i, j = 1, 2, . . . , n (see [22, 23]).

2.2 Monotonicity Test

Use of a monotonicity test within the solution of interval linear systems has been first
proposed in [6], but in PPS-methods, combined with the subdivision technique, it
becomes especially powerful.

Let the interval linear system Qx = r be given. We can find the interval extensions
of the derivatives

∂xν(Q, r)

∂qij
,

∂xν(Q, r)

∂ri

of the ν-th component of the solution x(Q, r) to the point system Qx = r with respect
to ij-th element of the matrix Q and the i-th component of the vector r by

∂xν(Q, r)

∂qij
= −yνixj ,

∂xν(Q, r)

∂ri
= yνi,

where Y = (yij) is “inverse interval matrix” for Q, i. e. Y ⊇ {Q−1 | Q ∈ Q } (see
details e.g. in [6]).

If the interval n×n-matrix Q̃ and the interval n-vector b̃ are formed of the elements

q̃ij =



[
q
ij
, q
ij

]
, if

∂xν(Q, r)

∂qij
≥ 0,

[
qij , qij

]
, if

∂xν(Q, r)

∂qij
≤ 0,

qij , if int
∂xν(Q, r)

∂qij
3 0,

r̃i =



[
ri, ri

]
, if

∂xν(Q, r)

∂ri
≥ 0,

[
ri, ri

]
, if

∂xν(Q, r)

∂ri
≤ 0,

ri, if int
∂xν(Q, r)

∂ri
3 0,

where “int” means interior of intervals, then the following equality is evidently true

min{xν | x ∈ Ξ(Q̃, r̃)} = min{xν | x ∈ Ξ(Q, r)}.

Since the number of interval elements with nonzero width in Q̃ and r̃ can be
substantially less than that in Q and r, reducing the interval system Qx = r to the
system Q̃x = r̃ simplifies the computation of the desired min {xν | x ∈ Ξ(Q, r)}.

To summarize, the monotonicity test [20, 22] is useful when applied before parti-
tioning of the leading interval system, which results in deintervalization of some interval
elements of its matrix. Then only such elements of the matrix Q have non-zero widths
that the interval extensions of their derivatives contain zero.

2.3 Structure of the Working List and its Processing

We also analysed implementations of PPS-methods that use various structures and
ways of processing the working list L where the results of the partitioning of the
initial interval linear system are stored. We considered the following options:
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1. L is an unordered list of records (a heap);

2. the records of L are in ascending order by the estimate Υ(Q, r);

3. within L, an ordered sublist Ll of the active records is organized that has a fixed
maximal length, and the remaining records are stored as a heap;

4. Pankov’s method [15], in which a threshold constant γ is defined and
an ordered sublist Lγ of the active records is separated, for which Υ(Q, r) < γ;
the complement L\Lγ is stored as a heap.

During the algorithm run, we delete unpromising records from the working list L
or the active records sublist, Ll or Lγ . This procedure [20, 22] has no effect on the
result of the algorithm, but it intensifies the processing of the working list.

If the active records sublist, either Ll or Lγ , becomes empty, then a new ordered
sublist is formed from the working list L. The threshold constant γ is recalculated for
the new sublist Lγ .

3 Test Interval Systems

We have implemented the algorithms described in the preceding sections in the Mat-
lab based interval toolbox INTLAB. Various modifications of PPS-methods have been
tested on the following interval systems.

Example 1. Neumaier interval linear system [10]:
θ [0, 2] · · · [0, 2]

[0, 2] θ · · · [0, 2]

...
...

. . .
...

[0, 2] [0, 2] . . . θ

 x =


[−1, 1]

[−1, 1]

...

[−1, 1]

 ,

where θ is a nonnegative real parameter. The matrix of the Neumaier system of
even order n is regular for θ > n, while the matrix of odd order n is regular for
θ >
√
n2 − 1 [10]. As θ approaches the boundary of singularity, the size of the solution

set increases infinitely. Varying θ, we can get a collection of model test problems for
numerical experiments with interval linear systems.

Figure 1 shows the solution set to a particular case of the Neumaier system with
dimension 3 and θ = 4; 4 [0, 2] [0, 2]

[0, 2] 4 [0, 2]

[0, 2] [0, 2] 4

 x =

[−1, 1]

[−1, 1]

[−1, 1]

 , (5)

Example 2. Shary interval linear system [21, 22]:
[n− 1, N ] [α− 1, 1− β] · · · [α− 1, 1− β]

[α− 1, 1− β] [n− 1, N ] · · · [α− 1, 1− β]

...
...

. . .
...

[α− 1, 1− β] [α− 1, 1− β] . . . [n− 1, N ]

 x =


[1− n, n− 1]

[1− n, n− 1]

...

[1− n, n− 1]

 ,
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Figure 1: Solution set of the Neumaier interval system (5).

where n is the dimension of the system (n ≥ 2), α and β are parameters satisfying
0 < α ≤ β ≤ 1, and N is such a real number that N ≥ n − 1. As β decreases and
approaches zero, the matrix of the system tends to a singular one, and its solution
set Ξ̃ infinitely grows in size. Varying the ratio between α and β, we can modify the
shape of the solution set. The tightest component-wise estimates of the solution set
Ξ̃ are independent of N :

min {xi | x ∈ Ξ̃ } = −1/α,

max {xi | x ∈ Ξ̃ } = 1/α, i = 1, 2, . . . , n .

Figure 2 shows the solution set to the particular case of the Shary interval system
corresponding to n = 3, N = 4, α = 0.15, β = 0.2:


[2, 4] [−0.85, 0.8] [−0.85, 0.8]

[−0.85, 0.8] [2, 4] [−0.85, 0.8]

[−0.85, 0.8] [−0.85, 0.8] [2, 4]

 x =


[−2, 2]

[−2, 2]

[−2, 2]

 . (6)
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Figure 2: Solution set of the Shary interval system (6).

Example 3. The interval linear system from Toft’s paper [24], with the matrix

A =



[1− r, 1 + r] 0 · · · [1− r, 1 + r]

0 [1− r, 1 + r] · · · [2− r, 2 + r]

...
...

. . .
...

0 0 · · · [n− 1− r, n− 1 + r]

[1− r, 1 + r] [2− r, 2 + r] · · · [n− r, n+ r]


and the right-hand side vector

b =


[1−R, 1 +R]

[1−R, 1 +R]

...

[1−R, 1 +R]

 ,

where r and R are positive real numbers. It is an “intervalization” of a test system
from the handbook [5].

Figure 3 shows the solution set to the 3-dimensional Toft interval linear system [24]
that corresponds to r = 0.1 and R = 0.2:[0.9, 1.1] 0 [0.9, 1.1]

0 [0.9, 1.1] [1.9, 2.1]

[0.9, 1.1] [1.9, 2.1] [2.9, 3.1]

 x =

[0.8, 1.2]

[0.8, 1.2]

[0.8, 1.2]

 (7)
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Figure 3: Solution set of the interval system (7).

4 Results of Numerical Experiments

4.1 Influence of the Basic Enclosure Methods

We have carried out a series of numerical experiments with the Neumaier interval
linear systems (Example 1) changing the dimension n, the parameter θ, and the basic
enclosure method Encl. In Table 1, we present the experimental results, namely the
CPU run time in seconds (rounded to three digits after the decimal comma) spent for
the estimation of the first component of the solution set.

All numerical tests have been carried out on a laptop with CPU Intel Core 2 Duo at
1.6 GGz, 800 MGz bus, and 1 Gb RAM (that is, with relatively modest capabilities).

The basic enclosure methods are denoted in the following way: K means the
Krawczyk method, MK is the modified Krawczyk method with epsilon inflation, G is
the interval Gauss method, GS is the interval Gauss-Seidel method, HBR is the Hansen-
Bliek-Rohn procedure, and V is the procedure verifylss from INTLAB.

Our experimental results show that the Krawczyk method is the least effective
among the basic enclosure methods. The programs based on the modified Krawczyk
method, interval Gauss, and Gauss-Seidel methods work more quickly. However, the
use of these methods as the basic enclosure methods cannot be recommended in the
general case. Hansen-Bliek-Rohn procedure is the most effective as a basic enclosure
method. The results of the procedure verifylss from INTLAB/MATLAB are worse,
because the enclosure of the solution set is typically not found on the first stage; after
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Table 1: Comparison of the basic enclosure methods (Example 1).

Parameter Run time of the programs with different basic enclosure methods
θ K MK G GS HBR V

n = 5

10 3.314 2.847 2.814 2.818 1.046 2.009

14 0.386 0.326 0.700 0.714 0.284 0.338

22 0.210 0.229 0.500 0.571 0.195 0.238

26 0.212 0.199 0.499 0.539 0.189 0.207

30 0.214 0.197 0.499 0.547 0.188 0.204

n = 8

16 390.255 103.098 303.903 289.908 65.099 89.632

24 3.811 2.604 6.305 6.544 2.004 1.881

32 1.384 1.357 3.479 3.578 1.104 1.038

40 0.894 0.962 2.265 2.283 0.688 0.649

48 0.743 0.763 1.948 1.971 0.589 0.557

n = 10

22 3282.707 610.170 1142.017 1028.602 166.874 520.371

26 100.611 30.148 84.395 82.148 25.425 26.211

34 11.968 6.359 18.369 18.371 5.392 4.956

50 2.836 2.595 8.459 8.408 2.474 2.290

58 2.286 2.311 5.813 5.750 1.704 1.573

n = 20

100 488.995 512.055 1104.751 1280.220 260.016 487.732

150 60.295 83.299 183.915 190.815 42.264 104.440

250 13.138 26.014 56.132 59.772 12.938 33.273

n = 50

2000 261.104 1940.441 1104.713 1205.662 125.200 2155.334

7000 95.613 1240.579 325.509 350.331 64.227 1577.862

seven iterations of the Krawczyk method the Hansen-Bliek-Rohn procedure starts, so
it is preferable to use the Hansen-Bliek-Rohn procedure as the basic enclosure method.

Changing the value of the parameter θ, one can analyze dependence of the run time
on the properties of the interval matrix, i.e., its nearness to the singularity boundary.
In Table 1, we present the run times of our numerical tests with the Neumaier interval
linear system (Example 1) for various parameter values θ (we present only those values
of θ for which the run time of the program is not too large). For near-zero ρ and suf-
ficiently large ∆σ, the run time of the program is small, but it increases exponentially
for the matrices near the boundary of singularity, i.e., if ρ→ 1 and ∆σ → 0.

We characterized the properties of the interval matrix of the test system by the
following quantities: the spectral radius ρ of the matrix |(mid A)−1| · rad A and
the difference ∆σ between the least and the largest singular values of the matrices
mid A and rad A, respectively. The choice of these characteristics is motivated by the
following well-known results.

Ris-Beeck criterion (see [17]). If, for an interval n × n-matrix A, the midpoint
matrix mid A is regular and ρ

(
|(mid A)−1| · rad A

)
< 1, then A is also regular.

Rump criterion (see [17]). If an interval n × n-matrix A satisfies the inequality
σmax(rad A) < σmin(mid A), then A is regular.
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Table 2: Characteristics ρ and ∆σ of the Neumaier system.

Parameter Characteristics ρ and ∆σ
θ ρ

(
|(mid A)−1| · rad A

)
σmin(mid A)− σmax(rad A)

n = 5

10 0.5397 5

14 0.3590 9

18 0.2674 13

22 0.2125 17

26 0.1760 21

30 0.1501 25

n = 8

16 0.5884 8

20 0.4503 12

24 0.3633 16

28 0.3037 20

32 0.2605 24

36 0.2279 28

40 0.2024 32

44 0.1819 36

48 0.1652 40

n = 10

24 0.5392 14

28 0.4423 18

32 0.3740 22

36 0.3235 26

40 0.2846 30

44 0.2539 34

48 0.2291 38

52 0.2086 42

56 0.1914 46

60 0.1767 50

In Table 2, the values of the characteristics ρ and ∆σ for the Neumaier interval
linear system are displayed for the various values of its diagonal parameter θ and the
system dimension n. We present these values to the fourth decimal digit.

Figures 4 and 5 show the run time dependencies on the characteristics ρ and ∆σ
for the Neumaier 5× 5-system with various basic enclosure methods.

In Table 3, we present the values of the characteristics ρ and ∆σ for the Shary
interval linear system (Example 2) for various values of its parameters α, β, N , and the
dimension n. For our test interval systems, we have carried out a number of numerical
experiments with various basic enclosure methods. Table 3 displays the run time of
the estimation of the first component of the solution sets.

Having analysed the experimental results, we draw conclusions that are quite sim-
ilar to those for Example 1. The Krawczyk method and its modification are the least
efficient as the basic enclosure method (we do not even present the corresponding re-
sults in Table 3). The program which uses the Hansen-Bliek-Rohn procedure has the
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Table 3: Comparison of the basic enclosure methods (Example 2).

Parameter N Characteristic Run time of the programs
of the interval of the matrix with different basic enclosure methods

matrix ρ ∆σ G GS HBR V

α = 0.4, β = 0.6, n = 10
15 0.6757 3.6 11.225 9.054 2.356 3.578
20 0.7353 3.6 10.823 9.322 2.341 3.853
25 0.7764 3.6 10.811 9.211 2.322 3.855

α = 0.4, β = 0.6, n = 20
25 0.6219 7.6 105.509 93.826 21.935 39.846
30 0.6637 7.6 105.558 97.270 21.959 25.755
35 0.6972 7.6 105.554 95.336 21.880 77.288

α = 0.4, β = 0.6, n = 30
35 0.6014 11.6 386.129 407.671 91.435 456.992
40 0.6329 11.6 386.522 426.977 91.432 358.437
45 0.6598 11.6 385.823 430.413 92.363 676.331

α = 0.6, β = 0.8, n = 10
15 0.5150 5.4 3.659 3.582 1.081 2.313
20 0.6029 5.4 7.915 6.450 1.622 1.876
25 0.6646 5.4 7.904 6.377 1.626 1.919

α = 0.6, β = 0.8, n = 20
25 0.4328 11.4 23.631 21.467 5.309 17.544
30 0.4956 11.4 23.892 21.540 5.310 47.364
35 0.5458 11.4 27.784 24.573 6.299 97.143

α = 0.6, β = 0.8, n = 30
35 0.4021 17.4 74.710 68.064 16.188 216.368
40 0.4494 17.4 74.648 67.998 16.192 441.926
45 0.4897 17.4 74.671 67.643 16.188 1616.238

α = 0.3, β = 0.7, n = 10
15 0.7353 2.7 13.542 12.483 3.373 5.410
20 0.7874 2.7 13.435 12.864 3.259 4.170
25 0.8224 2.7 13.457 12.525 3.360 4.186

α = 0.3, β = 0.7, n = 20
25 0.6868 5.7 157.602 151.104 34.394 34.016
30 0.7246 5.7 159.019 144.843 34.416 34.065
35 0.7543 5.7 161.887 141.492 34.346 37.167

α = 0.3, β = 0.7, n = 30
35 0.6679 8.7 712.694 656.571 149.929 145.106
40 0.6969 8.7 704.724 670.453 150.615 146.732
45 0.7212 8.7 712.297 647.965 151.154 147.519
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Figure 4: Run time dependence on the characteristic ρ for the Neumaier system.
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Figure 5: Run time dependence on the characteristic ∆σ for the Neumaier system.

best efficiency.

Notice that the efficiency of the program based on the procedure verifylss from
INTLAB/MATLAB decreases significantly for systems of large dimension because of
growing the run time of the Krawczyk iterations performed at its first stage. The pro-
grams using the interval Gauss and Gauss-Seidel methods demonstrated quite similar
results. Table 3 shows that, for fixed values of the dimension n and parameters α and
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Table 4: Comparison of the basic enclosure methods (Example 3).

Parameters Characteristic Run time of the programs
r = R ρ with different basic enclosure methods

G GS HBR V

n = 5

0.1 0.2281 0.480 0.311 0.221 0.378

0.2 0.4562 0.422 0.375 0.116 0.199

0.3 0.6844 1.161 1.151 0.307 0.688

n = 10

0.1 0.2028 0.813 0.810 0.200 0.216

0.2 0.4056 2.185 1.921 0.475 0.435

0.3 0.6083 4.083 5.345 0.820 1.399

n = 15

0.1 0.1998 1.771 1.769 0.419 0.410

0.2 0.3997 5.861 5.101 1.154 0.838

0.3 0.5995 13.834 16.335 2.594 4.690

n = 20

0.1 0.1991 3.107 3.094 0.696 0.678

0.2 0.3983 9.126 7.789 1.571 1.728

0.3 0.5974 41.162 43.119 7.576 11.403

n = 25

0.1 0.199 4.863 4.805 1.062 1.592

0.2 0.3979 14.129 12.084 1.694 2.016

0.3 0.5969 90.467 104.553 16.273 27.129

n = 30

0.1 0.1989 10.969 10.546 1.557 2.238

0.2 0.3979 22.807 19.828 3.450 4.110

0.3 0.5968 216.787 231.572 39.057 60.433

β, increasing the parameter N does not result in change of the characteristic ∆σ of
the Shary test system, while the characteristic ρ varies insignificantly. Hence, the run
times of the programs based on the interval Gauss method, the interval Gauss-Seidel
method, and the Hansen-Bliek-Rohn procedure differ insignificantly, but the program
modification using the procedure verifylss is sensitive to the change of the parameter
N of the interval matrix A (see Table 3) because the interval enclosure of the solution
set is found usually on the first stage of verifylss, i.e., by the modified Krawczyk
method, and the accuracy of the enclosure significantly depends on the parameter N .

Next, we carried out numerical tests with the interval system from Example 3 and
examined the efficiency of the algorithms based on various basic enclosure methods
(see Table 4 and Figure 6). Having analysed the experimental results, we can make
conclusions that are analogous to the previous ones.

We have investigated various versions of PPS-methods, using basic enclosure meth-
ods: the Krawczyk method, the modified Krawczyk method with epsilon inflation, the
interval Gauss method, the interval Gauss-Seidel iteration, the Hansen-Bliek-Rohn
procedure, and the verifylss procedure from the toolbox INTLAB. Experimental re-
sults demonstrated that, amongst these techniques, the Hansen-Bliek-Rohn procedure
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Figure 6: The run time of the estimation for the first component of the solution set
to the Toft interval linear system (Example 3) for various values of n, r, and R.

with preliminary preconditioning is the best basic enclosure method for PPS-methods.
The run times of the program depend on the properties of the interval matrix of the sys-
tem, i.e., the nearness to the boundary of singularity and the dimension of the interval
matrix. Recall that we characterized the properties of the interval matrix of the system
by the quantities ρ = ρ

(
|(mid A)−1| · rad A

)
and ∆σ = σmin(mid A)− σmax(rad A).

4.2 Influence of Structure of the Working lList
and its Processing

In Section 2.3, we described four modes of processing of the working list L, in which
the results of the partitioning of the interval linear system are stored:

1) the list L is an unordered list of records (a heap);

2) the records of the list L are in ascending ordered by the estimate Υ(Q, r);
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3) in the list L, an ordered sublist Ll of the active records is separated, having
a fixed maximal length, and the remaining records are stored as a heap;

4) Pankov’s mode [15].

We have experimentally investigated the modifications of the algorithm for optimal
outer estimation of the solution set to the interval linear system, which implemented
the above modes of the working list processing, and tested them on the interval systems
from Examples 1–3. We used the Hansen-Bliek-Rohn procedure as the basic enclosure
method. The run times (seconds) for estimating the first component of the solution
set are presented in Table 5.

Table 5: The efficiency of the algorithms for processing the working list.

Parameters and dimension Run time of the programs
of the interval system 1 2 3 4

Neumaier interval linear system from Example 1

n = 6 θ = 12 4.347 3.013 2.082 2.943
θ = 16 1.000 0.677 0.667 0.670
θ = 20 0.596 0.404 0.399 0.400

n = 8 θ = 16 119.767 73.602 65.039 72.844
θ = 20 10.241 5.452 5.432 5.427
θ = 24 3.859 2.036 2.004 2.031

n = 10 θ = 20 5815.058 2323.042 1407.043 2235.154
θ = 22 336.505 185.925 166.874 184.065
θ = 24 67.605 41.349 40.886 41.154

n = 12 θ = 28 853.403 461.624 420.766 460.146
θ = 30 301.189 178.815 175.215 176.626
θ = 35 84.595 48.643 48.003 48.689

Shary interval linear system from Example 2

n = 6 N = 20, n = 10 5.739 3.428 3.259 3.275
N = 30, n = 20 67.014 35.038 34.416 35.523
N = 40, n = 30 297.970 151.301 150.615 151.303

Toft interval linear system from Example 3

n = 8 n = 10 1.340 0.856 0.820 0.857
n = 20 13.358 7.772 7.576 7.784
n = 30 71.625 39.921 39.057 39.930

The processing of the working list formed as a heap is the least effective (mode 1)
because looking through the whole list to find the leading record with the minimal
estimate Υ(Q, r) takes some time. List processing speed considerably increases if the
records are in ascending order with respect to the estimate Υ(Q, r) (mode 2).

Sorting the list, adding, and deleting the records from it take some time, so ordering
and cleaning up the entire list L may prove of no use. It is advisable to handle only a
part of it, namely the sublist Ll or Lγ of the active records (modes 3 and 4). Comparing
modes 3 and 4, one can notice that mode 3 is preferable because the maximal length of
the active records sublist is fixed. In Pankov’s mode [15], the length of the sublist of the
active records is defined by a threshold constant γ. This constant may be sufficiently
large on some steps of the algorithm, which leads to reduction of its efficiency especially
in case the matrix of the interval system is near the singularity boundary.
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Note that if the working list is arranged according to Pankov’s mode, the leading
record has the smallest estimate Υ(Q, r). This property may be violated for the
active records sublist with a fixed maximal length (mode 3) that results in increasing
the number of the algorithm steps.

4.3 Comparison of the Codes for Optimal
Outer Estimation of the Solution Set

We have developed a free MATLAB/INTLAB code linppsr [25] implementing the
PPS-method with Rohn’s modification in which

• the Hansen-Bliek-Rohn procedure is used as the basic enclosure method,

• in the working list, an ordered sublist of active records having a fixed maximal
length is separated, while the remaining records are unordered, forming a heap.

We compare linppsr with the algorithm verintervalhull, a procedure from the
toolbox VERSOFT [26] based on Rohn’s method. The results of our numerical ex-
periments for Examples 1–3 with various dimensions and parameters are presented in
Table 6. Figure 7 presents the results of numerical experiments with the Neumaier
system (Example 1) and the Toft interval system (Example 3).

Table 6: The efficiency of the algorithms verintervalhull and linppsr.

Parameters and dimension Run time of the algorithms
of the interval system linppsr verintervalhull

Neumaier interval linear system from Example 1

n = 5 θ = 10 8.012 3.017

θ = 20 1.642 3.019

θ = 30 1.641 3.025

n = 10 θ = 25 617.238 144.113

θ = 30 197.024 144.226

θ = 45 51.422 144.815

θ = 60 31.065 145.012

n = 12 θ = 30 2943.612 1084.556

θ = 50 246.804 1084.476

θ = 70 99.308 1085.555

θ = 90 57.049 1084.001

Shary interval linear system from Example 2

α = 0.4, β = 0.6 n = 10, N = 15 42.528 144.717

n = 20, N = 25 882.344 more than 8 hours

n = 30, N = 35 5483.106 more than 8 hours

α = 0.6, β = 0.8 n = 10, N = 15 17.477 142.084

n = 20, N = 25 209.250 more than 8 hours

n = 30, N = 35 969.280 more than 8 hours

Toft interval linear system from Example 3

r = 0.2 n = 10 5.750 9.115

n = 20 56.524 1321.249

n = 30 161.393 more than 8 hours
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Having analysed the experimental results, we can draw the following conclusions:

• The run time of both algorithms grows exponentially with the system dimension.

• The run time of the procedure verintervalhull does not depend on the prop-
erties of the interval matrix A and nearly constant for different interval systems
of the same size.

• The speed of the algorithm linppsr slows down as the matrix A approaches the
boundary of singularity.

• For large dimensions n, the procedure linppsr is definitely more efficient than
verintervalhull.
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Figure 7: Comparison of the algorithms linppsr and verintervalhull

for the optimal outer estimation of the solution set.

Since the desired estimates min{xν | x ∈ Ξ(A, b)} and max{xν | x ∈ Ξ(A, b)},
ν = 1, 2, . . . , n, are reached at the set of at most 2n extreme solutions, the upper bound
of the computational complexity of Rohn’s method is 2n. The computational complex-

ity of the PPS-methods without the Rohn modification is proportional to 2n
2

at worst,
but PPS-methods are less laborious on the average, because they flexibly adjust their
execution to the problem under solution, while their modifications (monotonicity test,
etc.) prevent them from realizing the worst computational scenario. Every step of the
PPS-methods essentially uses information obtained from the previous steps, so these
methods are “execution-driven”. In formal terms, one can say that PPS-methods have
adaptive computational schemes.

Yet another remarkable feature of PPS-methods is that they provide a sequential
guarantee of the results produced during their execution [3, 21]. This means that PPS-
methods generate a sequence of approximate estimates for min{xν | x ∈ Ξ(A, b)} and
max{xν | x ∈ Ξ(A, b)}, ν = 1, 2, . . . , n, from below and from above, respectively,
that is, from the “necessary sides” prescribed by the problem statement. Then, if
the dimension of the system is large or its matrix is near the boundary of singularity,
and the problem under solution is laborious and there are not enough computational
resources for its completion, we can stop the algorithm before its natural completion
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and report a correct answer to the problem. We get estimates which may be not
optimal, but they provide us with (more or less exact) outer approximations of the
required min{xν | x ∈ Ξ(A, b)} and max{xν | x ∈ Ξ(A, b)}, ν = 1, 2, . . . , n. Artificial
intelligence researchers call such algorithms anytime algorithms (see e.g. [1]).

The program verintervalhull provides merely a final guarantee of the result it
produces. That is, verintervalhull computes a correct enclosure of the solution set
only after its natural completion, which may require enormous time for large problems.
As a consequence, verintervalhull and the algorithm it implements are impractical
for the solution of interval linear systems with the dimension greater than 20–30.
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