
Algorithm for Sparse Approximate

Inverse Preconditioners

in the Conjugate Gradient Method∗

Ilya B. Labutin

A.A. Trofimuk Institute of Petroleum Geology
and Geophysics SB RAS, 3, acad. Koptyug Ave.,

Novosibirsk 630090, Russia

ilya.labutin@gmail.com

Irina V. Surodina

Institute of Computational Mathematics and
Mathematical Geophysics SB RAS, 6, acad.
Lavrentiev Ave., Novosibirsk 630090, Russia

sur@ommfao1.sscc.ru

Abstract

We propose a method for preconditioner construction and parallel im-
plementations of the Preconditioned Conjugate Gradient algorithm on
GPU platforms. The preconditioning matrix is an approximate inverse
derived from an algorithm for the iterative improvement of a solution to
linear equations. Using a sparse matrix-vector product, our precondi-
tioner is well suited for massively parallel GPU architecture. We present
numerical experiments and comparisons with CPU implementations.

Keywords: sparse approximate inverse, preconditioned conjugate gradient, GPU
AMS subject classifications: 68W10

1 Introduction

Our work is motivated by, but not limited to, finite-difference methods applied to 2D
and 3D potential field problems arising in mathematical geophysics from well resistivity
logging applications. A numerical solution of the potential field problem leads to large
sparse linear systems usually solved by iterative methods instead of direct ones.

∗Submitted: February 15, 2013; Revised: November 29, 2013; Accepted: December 6,
2013.

120

ilya.labutin@gmail.com
sur@ommfao1.sscc.ru


Reliable Computing 19, 2013 121

The Conjugate Gradient (CG) algorithm is one of the best known iterative methods
for solving linear systems with a symmetric positive definite matrix [1]. The perfor-
mance of the CG can be increased dramatically with the suitable preconditioner. The
concept of the preconditioning in iterative methods is to transform the original system
into an equivalent system with the same solution, but with better properties. A good
preconditioner allows an iterative solution to be computed more quickly for the trans-
formed system than for the original problem [9]. However, the computational overhead
of applying the preconditioner must not cancel out the benefit of fewer iterations (see,
e.g., [3, 6]).

Modern parallel implementations of the preconditioned conjugate gradient (PCG)
on the graphical processing units (GPUs) use sparse approximate inverse (AINV) pre-
conditioners due to their attractive features. First, the columns or rows of the approx-
imate inverse matrix can be generated in parallel. Second, the preconditioner matrix
is used in PCG through matrix-vector multiplications, which are easy to parallelize [6].

In this work, we present an algorithm for building a series of AINV preconditioners
with (potentially) arbitrary high approximation accuracy. The algorithm presented
derives from the Schulz-Hotelling algorithm for the iterative improvement of inverse
matrices and solutions to linear equations (see, e.g., [5, 8]). We propose parallel
implementations for the preconditioners obtained for the first, third, and seventh order
approximations of the inverse matrix.

2 Preconditioned Conjugate Gradient Algorithm

The potential field problem is solved using a finite difference method with the standard
five and seven point stencils for 2D and 3D equations, respectively. The approximation
leads to a system of linear equations

Ax = b,

where A is a symmetric positive-definite matrix of order N containing at most five
(for 2D) and seven (for 3D) nonzero elements per row. N is the number of potential
unknowns, and b is a finite difference approximation of the right-hand side of the
equation.

A commonly used and well examined iterative algorithm for solving sparse sym-
metric positive definite linear systems is the conjugate gradient (CG) method. The
convergence rate of the CG method depends not only on the matrix size, but also on
the condition number of the matrix

cond (A) = λmax/λmin

where λmax and λmin are maximum and minimum eigenvalues of A, respectively [7]. A
matrix is called well conditioned if it is not too far from the identity matrix, which has
cond (A) = 1. A matrix A having smaller condition number leads to faster convergence
of the CG method applied to the system Ax = b. In typical well resistivity logging
applications, the matrix A has a large condition number, i.e. cond (A)� 1.

The effectiveness of the CG method can be increased by applying a preconditioning
technique that improves the properties of the matrix of a system. Suppose that M is
a symmetric, positive definite matrix that approximates A, but is easier to invert. We
can solve Ax = b indirectly by solving

M−1Ax = M−1b. (1)



122 Labutin and Surodina, Sparse Preconditioners for Conjugate Gradient

If cond (M−1A) � cond (A) or if the eigenvalues of M−1A are better clustered than
those of A, we can iteratively solve equation (1) more quickly than the original prob-
lem [9].

The iteration scheme of the preconditioned CG (PCG) algorithm is

Initialization: x0, r0 = b−Ax0,Mz0 = r0, p0 = z0 ;

1. qi = Api, αi =
zTi ri
pTi qi

;

2. xi+1 = xi + αipi, ri+1 = ri − αiqi ;

3. Mzi+1 = ri+1 ;

4. βi =
zTi+1ri+1

zTi ri
, pi+1 = ri+1 + βipi.

(2)

Each iteration requires one matrix-vector product, two inner products, three vector
updates, and the solution of the linear system at Step 3. For the NVIDIA GPU
implementation, all the required operations can be found in the standard CUBLAS
library. Matrix-vector product can be implemented efficiently on a GPU for sparse
matrices (see, e.g., [6, 2]).

3 Approximate Inverse Preconditioner

To eliminate linear system solving at Step 3, M−1 can be computed as an approx-
imation to the inverse of A. In this case, Step 3 is replaced with a matrix-vector
product. We derive our algorithm for constructing AINV preconditioners from the
procedure developed by Schulz [8] and Hotelling [5] for the iterative improvement of
inverse matrices and solutions to linear equations.

Let us assume that D0 is an initial approximation of A−1 and satisfies the condition

‖R0‖ ≤ k < 1, R0 = I −AD0, (3)

where the matrix norm is any norm which is easy to compute. Next, consider the
formal manipulation

A−1 = (D0D
−1
0 )A−1 = D0(D−1

0 A−1)

= D0(AD0)−1 = D0(I −R0)−1

= D0(I +R0 +R2
0 +R3

0 + . . . ).

We can define the sequence of matrices Dn by Dn+1 = Dn(I + Rn), where Rn =
I −ADn. What is more that

Rn = I −ADn−1(I +Rn−1) = I − (I −Rn−1)(I +Rn−1)

= R2
n−1 = R4

n−2 = . . . = R2n

0 .

Hence, we have

Dn = A−1(I −R2n

0 ). (4)

With (3) and (4) we can build an iterative process which converges to A−1 [4], and
the error is

‖Dn −A−1‖ ≤ ‖D0‖
k2

n

1− k . (5)



Reliable Computing 19, 2013 123

In addition, the algorithm preserves the symmetry of the approximation to A−1 if the
initial approximation is a symmetric matrix. Assuming AT = A and DT

n−1 = Dn−1,

DT
n = 2DT

n−1 − (Dn−1ADn−1)T

= 2DT
n−1 −DT

n−1A
TDT

n−1

= 2Dn−1 −Dn−1ADn−1

= Dn.

With a reasonable initial approximation D0, we can use Dn as the preconditioning
matrix M−1 at Step 3 of the PCG algorithm (2).

4 Numerical Experiments

For the numerical experiments, we use well-known Jacobi preconditioner D0 = J =
diag {a−1

11 , a
−1
22 , . . . , a

−1
nn} as an initial approximation to A−1. In this case, the matrix

D1 has the form

D1 = J + J(I −AJ).

According to (5), the matrix D1 has better properties than D0 = J . Also, we can
see that D1 has the same structure as the matrix A, so that the same matrix-vector
product implementation can be used for iterations (Step 1) and for preconditioning
(Step 3) in PCG algorithm (2). Next, the matrices D2 and D3 can be expressed in
factorized form via D1:

D2 = D1 +D1(I −AD1) = 2D1 −D1AD1,

D3 = D2 +D2(I −AD2),

= (2D1 −D1AD1)(2I −A(2D1 −D1AD1))

= 2(2D1 −D1AD1)− (2D1 −D1AD1)A(2D1 −D1AD1).

(6)

Such factorized form is eminently suitable for computations, because we know the
structure of the matrices A and D1. It is hard to use the explicit form of the matrix
Di with the indexes 2 and higher, because the number of fill-ins increases accordingly.
For example, the matrix D1 contains 5 diagonals for a 2D finite difference grid. D2

contains 25 diagonals, and D3 contains113 diagonals. On the other hand, D1, D2 and
D3, can be expressed as

D1 = D0(I +R0),

D2 = D1(I +R2
0) = D0(I +R0)(I +R2

0)

= D0(I +R0 +R2
0 +R3

0),

D3 = D2(I +R2) = D2(I +R4
0)

= D0(I +R0 +R2
0 +R3

0)(I +R4
0)

= D0(I +R0 +R2
0 +R3

0 +R4
0 +R5

0 +R6
0 +R7

0).

We can see that D1, D2 and D3 are the first, third, and seventh order approximations
of A−1, respectively.

We first investigate the behaviour of our AINV preconditioners on a matrix aris-
ing from a 2D potential field problem discretized by a finite difference method on a



124 Labutin and Surodina, Sparse Preconditioners for Conjugate Gradient

nonuniform grid. The resulting matrix has n = 17, 139. Table 1 shows the condition
number of the initial matrix and preconditioned matrices. We notice that the D3(J)
preconditioner is significantly better than the Jacobi preconditioner.

Next, we compare the generated preconditioners with the sequential Jacobi pre-
conditioned CG implementation on the same finite difference grids produced for 2D
and 3D potential field problems. For the numerical experiments, we used processors

CPU: Intel Xeon X5670 2.93 GHz (using Intel Fortran 11.0),

GPU: NVIDIA Tesla M2090, 512 Core, 4 GB RAM (using CUDA).

Matrix Condition number

A 4.5377 ∗ 107
AJ 3.0542 ∗ 105
AD1(J) 7.6542 ∗ 104
AD2(J) 3.8271 ∗ 104
AD3(J) 1.9135 ∗ 104

Table 1: Condition number of AM−1

Method
n=17,139 n=37,846 n=76,136

iter.
count

time,
sec

speed
up

iter.
count

time,
sec

speed
up

iter.
count

time,
sec

speed
up

CG(J) 2835 1.21 - 4523 3.75 - 7204 14.34 -
D0 = J 2684 0.26 5 4073 0.41 9 5731 0.73 20
D1(J) 1325 0.16 8 2038 0.27 14 2866 0.52 26
D2(D1) 942 0.12 10 1451 0.22 17 2055 0.46 31
D3(D1) 668 0.11 11 1038 0.19 20 1458 0.40 36

Table 2: Performances of the PCG algorithm and speed-up.
2D potential field problem.

Method
n=1,458,600 n=4,111,848

iter. count time, sec ratio iter. count time, sec ratio

CG(J) 4769 190 - 7445 673 -
D0 = J 4981 6.98 27 7754 28.43 24
D1(J) 2495 4.35 44 3666 17.50 38
D2(D1) 1885 5.56 34 2692 21.85 30

Table 3: Performances of the PCG algorithm and speed-up.
3D potential field problem.

In Table 2, we compare GPU implementations of D0, D1, D2, and D3 precondition-
ers with CPU implementation of CG with Jacobi preconditioner for the 2D potential
field problem. We use three finite difference grids of different sizes typical for well



Reliable Computing 19, 2013 125

resistivity logging applications. As expected, the lower the condition number of the
matrix, the smaller the number of iterations. The speed-up increases accordingly. For
the largest problem, the GPU implementation of D3 is 36 times faster than the CG
algorithm on the CPU. However, the speed-up of D2 is relatively the same as the
speed-up of D3, despite of significant difference in the number of iterations. This
fact is expected, because an application of the D2 preconditioner requires only three
matrix-vector products (see (6)), while D3 requires seven matrix-vector products.

In Table 3, we compare GPU implementations of D0, D1, and D2 preconditioners
with a CPU implementation of CG with the Jacobi preconditioner for the 3D potential
field problem. For the largest problem, the GPU implementation of D1 is 38 times
faster than the CG algorithm on the CPU. For the large matrices, the number of
matrix-vector products in the preconditioning application becomes important. D1 is
faster than D2 for the 3D grid because it requires only one matrix-vector product.
However for the 2D grid, D2 is faster than D1, see Table 2.

In summary, the higher the index of the preconditioner obtained in the iteration
(4), the higher the number of fill-ins in the resulting matrix. The choice of the precon-
ditioner in this case is a trade-off between the quality of the resulting matrix in terms
of (5) and performance of the preconditioning procedure, which depends on sparsity
pattern and number of matrix-vector products in factorized form of the preconditioner.

5 Conclusion

We have presented an algorithm for generating preconditioners and parallel GPU
implementations of the preconditioned conjugate gradient algorithm for linear sys-
tems with symmetric positive definite matrices. Our preconditioners, derived from
the Schulz-Hotelling algorithm for the iterative improvement of inverse matrices and
solutions to linear equations, is an approximate inverse and therefore can be used in
the PCG algorithm through a sparse matrix-vector product. In the future, we plan to
investigate other preconditioners generated by the algorithm presented here, but with
different initial approximations of A−1.

References

[1] R. Barrett, M.W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Tem-
plates for the Solution of Linear Systems: Building Blocks for Iterative Methods,
Society for Industrial and Applied Mathematics, Philadelphia, 1993,
URL: http://www.netlib.org/templates/templates.pdf

[2] N. Bell and M. Garland, Efficient Sparse Matrix-Vector Multiplication on
CUDA, Technical Report, NVIDIA, 2008.

[3] J. Dongarra, I. Duff, D. Sorensen, H. Van der Vorst, Numerical Lin-
ear Algebra for High-Performance Computers, Society for Industrial and Applied
Mathematics, Philadelphia, 1998.

[4] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra,
Fizmatgiz, Moscow, 1963. (in Russian)

[5] H. Hotelling, Analysis of a complex of statistical variables into principal com-
ponents, Journal of Educational Psychology, 1933, pp. 417–441.

http://www.netlib.org/templates/templates.pdf


126 Labutin and Surodina, Sparse Preconditioners for Conjugate Gradient

[6] R. Li and Y. Saad, GPU-Accelerated Preconditioned Iterative Linear Solvers,
Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, 2010,

[7] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, Society for
Industrial and Applied Mathematics, Philadelphia, 2003.

[8] G. Schulz, Iterative Berechnung der reziproken Matrix, Zeitschrift für Ange-
wandte Mathematik und Mechanik (ZAMM), 1933, pp. 57–59.

[9] J.R. Shewchuk, An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain, School of Computer Science, Carnegie Mellon University,
Pittsburgh, 1994.


	Introduction
	Preconditioned Conjugate Gradient Algorithm
	Approximate Inverse Preconditioner
	Numerical Experiments
	Conclusion

