
An Interval Approach to

Pattern Recognition of Numerical Matrices∗

Alexander V. Prolubnikov

Omsk State University, Omsk, Russia

a.v.prolubnikov@mail.ru

Abstract

We present an interval approach for pattern recognition of numerical
matrices. We construct systems of interval linear equations that are as-
sociated with given numerical pattern matrices. Considering a system of
interval linear equations as a family of systems of real linear equations,
we use a measure of variation of these systems solutions as a measure of
distance between matrices. As an application, we use our technique for
the recognition of raster images that are distorted in the course of noising.
The results of computational experiments are presented.

Keywords: pattern recognition, interval analysis
AMS subject classifications: 68T10

1 Introduction

Registration of any data by technical means often is complicated by noise (e.g., mea-
surement errors) that interferes with the registration process. A common problem is
the recognition of patterns under specified constraints on the noise. Considering the
data presented in a matrix form, we are given a set of pattern matrices and a ma-
trix obtained from some pattern matrix in the course of noising. We need to identify
this pattern matrix. One commercially significant application is registration of raster
images, for example, in medical applications.

Currently existing recognition methods for such problems may be divided into two
classes: those using a preliminary learning stage, and those that do not. Learning
implies that a processing unit is capable of changing its input/output behavior as a
result of changes on the input. Algorithms based on the theory of morphological anal-
ysis, Kora-type algorithms, and neural network-based algorithms are some examples
of methods with a learning stage. Examples of the second class of methods include
the nearest neighbor method, the k nearest neighbor method, the potential function
method, and the Parzen window method.

∗Submitted: December 30, 2012; Revised: October 10, 2013; Accepted: November 14,
2013.

107

a.v.prolubnikov@mail.ru

108 A.V. Prolubnikov, An Interval Approach to Recognition . . .

We propose an original measure of closeness (distance) between matrices and a
pattern recognition algorithm with no learning stage. For given input matrices, the
algorithm constructs special systems of interval linear equations. Considering an inter-
val system of equations as a set of point systems of equations, we perform recognition
by minimizing a measure of the variation of the solutions to point systems. To evaluate
the variation, we use the Lebesgue measure of an enclosure of the solution set to the
interval linear system.

2 Preliminaries

Throughout the paper, we use the following notation and definitions.
Boldface font is used for intervals, interval vectors and interval matrices. A special

font is used for input data matrices: we denote the k-th pattern matrix as A(k) and
the matrix to be recognized as A, a

(k)
ij , and let aij denote elements of these matrices.

For A ∈ Rm×n, A = (aij), we use the p-norm ‖A‖p:

‖A‖p =

(m∑
i=1

n∑
j=1

|aij |p
)1/p

,

p ∈ R, p ≥ 1. Also, we use the vector norm ‖x‖∞ for x ∈ Rn:

‖x‖∞ = max
1≤i≤n

|xi|.

For A ∈ Rm×n, the matrix norm induced by ‖ · ‖∞ is denoted by

‖A‖∞ = max
1≤i≤m

(n∑
j=1

|aij |
)
.

Definition 1. Let Ax = b be an interval linear system of equations, A ∈ IRn×n,
b ∈ IRn. Then the solution set of this system is the set

Ξ(A, b) =
{
x ∈ Rn

∣∣ (∃A ∈ A)(∃b ∈ b) (Ax = b)
}
.

The solution set to interval systems of equations can be defined in a variety of
ways, and Definition 1 is only one of them [2]. However, we do not use these solution
sets in our work, and the abbreviated term “solution set” should not confuse readers.

Definition 2. A comparison matrix of a matrix A ∈ Rn×n is a matrix 〈A〉 ∈ Rn×n
with the elements

〈A〉ij =

{
|aij |, if i = j,

−|aij |, if i 6= j.

Definition 3. An M-matrix is a matrix A ∈ Rn×n representable as A = sI − P , for
a non-negative matrix P with spectral radius ρ(P) < s. A matrix A ∈ IRn×n is an
interval M-matrix if every real matrix A ∈ A is an M -matrix.

Definition 4. An H-matrix is a matrix A ∈ Rn×n such that its comparison matrix
is an M -matrix. An interval H-matrix is a matrix A ∈ IRn×n such that every real
matrix A ∈ A is an H-matrix.

Reliable Computing 19, 2013 109

3 Recognition of Numerical Matrices Using
Lebesgue Measure of the Solution Sets

3.1 General Idea

The problem under study is formulated as follows. We are given a set of N n × n-
matrices A(1), . . . ,A(N) ∈ Rn×n. The matrix A = (aij) is obtained from some matrix

A(p) = (a
(p)
ij) in the course of noising, p ∈ {1, . . . , N}. It is known that values of

elements of A(p) may vary within the intervals [a
(p)
ij −∆, a

(p)
ij + ∆], ∆ ≥ 0 (i, j = 1, n).

We need to identify p.
Without loss of generality, we may assume that the matrices A(1), . . . ,A(N),A are

square. In the other cases, if the matrices are m× n-matrices and m < n, we append
n−m zero rows to every input matrix. If n < m, we append m− n zero columns.

To solve the recognition problem, we need a special measure of closeness (distance)
between matrices. Suppose we have two matrices A and B ∈ Rn×n, A = (aij), and
B = (bij). Let us construct an interval matrix C from A and B so that the elements
(C)ij of the matrix C are the intervals

(C)ij = [min{aij , bij},max{aij , bij}] . (1)

These intervals specify the variations of the matrix B elements that are needed to
obtain the matrix A by modifying elements of B.

Assuming that A is obtained from B by adding noise, we measure aggregate vari-
ation of the matrix B elements by using the Lebesgue measure of the solution set
Ξ(C, b) for some right-hand side vector b ∈ Rn. The Lebesgue measure of this set
depends on a mutual disposition of the matrix elements, and it depends continuously
on their changes. We use the Lebesgue measure µ(Ξ(C, b)) as a measure of closeness
δΞ(A,B) between the matrices A and B:

δΞ(A,B) = µ
(
Ξ(C, b)

)
.

The smaller the value of δΞ(A,B), the closer A is to B.
If A is the matrix that was obtained from the pattern matrix A(p) by adding noise,

and if elements of the matrix A(p) have been varied in some restricted intervals during
the process, then the value of the measure may be small enough to recognize A(p) from
the other candidates. Assuming this, we use the heuristic

p = arg min
k
δΞ
(
A,A(k)

)
(2)

for pattern recognition.
The set Ξ = Ξ(C, b) is a union of not more than 2n polyhedrons formed by

intersections of the set Ξ with the orthants of Rn [1]. The problem of describing
this set has an exponential computational complexity by itself, so the computation of
the Lebesgue measure of Ξ has an exponential complexity, too. Therefore, we just
estimate the Lebesgue measure of Ξ. We do this by computing the Lebesgue measure
of some approximation of the interval hull �Ξ of the solution set. An interval hull �Ξ
is the smallest, by inclusion, interval box that contains Ξ, i. e. �Ξ ⊆W for every box
W such that Ξ ⊆W .

Let X = ([x1, x1], . . . , [xn, xn])> be an outer approximation (enclosure) of �Ξ
obtained using some interval algorithm Encl. X is such a box that �Ξ ⊆ X. The

110 A.V. Prolubnikov, An Interval Approach to Recognition . . .

Lebesgue measure µ of X is computed as

µ(X) = (x1 − x1) · . . . · (xn − xn).

For every k ∈ {1, . . . , N}, we construct the matrices C(k) according to (1) and
take A as A and A(k) as B. The following natural suggestion is a basis for our novel
pattern recognition algorithm: for a fixed right-hand side vector b ∈ Rn, the smaller
the variation of solutions of the real systems that give C(k)x = b, the more likely it is
that A was obtained from the pattern matrix A(k).

Our algorithm can be classified as a “nearest neighbor” algorithm that uses mea-
sure of closeness δΞ as a distance between the matrices. Denoting an approximation
(enclosure) of �Ξ(k) as X(k), we can formulate our pattern recognition algorithm:

Algorithm for recognition of numerical matrices

Input: pattern matrices A(1), . . . ,A(N) and a matrix A obtained
from a pattern matrix by addition of noise.

Output: an index p of one of the pattern matrices, as a result
of recognition.

1. For A(k) and A, compute C(k) according to (1), k = 1, N .

2. Using an enclosure method Encl, compute X(k), k = 1, N .

3. Find p such that p = arg min
k
µ
(
X(k)

)
.

3.2 Modification of the Matrices C(k)

To perform efficient patter recognition, we preprocess the input matrices.
In the first modification, we increase every element of every input matrix by the

same value υ (υ > 0):

aij := aij + υ, a
(k)
ij := a

(k)
ij + υ, for k = 1, N. (3)

The transformations (3) preserve the distance between elements in different positions
from a single matrix and preserve the distance between elements in the same positions
from two different matrices. Thus, the transformations (3) preserve all of the input
information that we may use for recognition purposes.

As the result of the transformations (3), we decrease the ratio ∆/
∣∣∣a(k)ij

∣∣∣ for elements

of the matrices. Namely, the ratio

∆/
∣∣∣a(k)ij + υ

∣∣∣
decreases with the growth of υ. Such a decrease is necessary for the following reasons.
If the value ∆ is greater than or equal to the absolute values of the elements of the
pattern matrices, then for C ∈ C(k), the vectors x = C−1e may differ so much that we
cannot arrive at any definite decision analysing the distances between them. However,
if the radius ∆ is small enough with respect to moduli of the pattern matrices elements,
we often are able to make such a decision.

Reliable Computing 19, 2013 111

For example, for matrices of black-and-white images, white pixels are encoded as
1’s, and black pixels are encoded as 0’s. If some pixels of the pattern image are inverted
by the addition of noise, then ∆ is greater or equal than every element of the input
matrices, and we cannot perform recognition using our heuristic. However, if we modify
the input matrices according to (3) using υ = 10, which results in ∆/|a(k)ij + υ| ≤ 0.1,
we achieve an efficient recognition.

The transformations (3) of the input matrices are equivalent to the transformations
of the interval matrices C(k),

C(k) := C(k) + υE, (4)

where E is a matrix with the elements (E)ij = [1, 1], i, j = 1, n.
In the second modification, we achieve the diagonal dominance in the matrices

C(k). The property of diagonal dominance is known to be necessary for the successful
execution of many interval methods that compute enclosures of the solution sets to
interval linear systems, i. e. for high quality of the boxes X(k) in our case. In particular,
the interval Gauss-Seidel iteration works efficiently for interval linear systems with
diagonally dominant matrices.

Let D ∈ IRn×n be a diagonal matrix with elements (D)ii = [d, d], i = 1, n, where

d = 2 max

{
max
i=1,n

(∑
j 6=i

|aij |
)
, max
i=1,n

(∑
j 6=i

|a(1)ij |
)
, . . . , max

i=1,n

(∑
j 6=i

|a(N)
ij |

)}
.

Taking such d, we modify the matrices C(k):

C(k) := C(k) + D. (5)

3.3 Choosing Right-hand Side Vectors
in the Interval Linear Systems

For the interval system of equations Cx = b, the right-hand side b is a vector that
defines the set Ξ(C, b) for a given matrix C. The choice of b is quite important for
the overall efficiency of the algorithm developed.

As the right-hand side vector b, we choose a point (non-interval) real vector, since
it does not bear any uncertainty in the practical applications of our problem. Such a
selection of b allows us to obtain more precise enclosures of the solution sets, because
it decreases the distance between Ξ(C, b) and �Ξ(C, b) [2].

If the right-hand side b is a point vector b, then

Ξ(C, b) =
{
x ∈ Rn

∣∣ (∃C ∈ C) (Cx = b)
}
.

The transformation (5) leads to the matrices C(k) being regular, i.e., every C ∈ C(k)

is a regular (invertible) matrix. For a regular matrix C, we have

Ξ(C, b) =
{
C−1b

∣∣ (C ∈ C)
}
.

The set Ξ(C, b) ⊂ Rn can be considered as the image of the set of real matrices
C ⊂ Rn×n. More precisely, Ξ(C, b) is the image of C under such mapping Lb that

Lb : Rn×n → Rn,

Lb(C) = C−1b for every C ∈ C.

112 A.V. Prolubnikov, An Interval Approach to Recognition . . .

If we denote the elements of C−1 by σij , for the i-th component of any x ∈ Ξ(C, b),

xi =

n∑
j=1

σijbj =

n∑
j=1

(
Cji

detC

)
bj ,

where C ∈ C satisfies x = C−1b, and Cji are cofactors of the elements of C. Thus, the
components of the vector b are weights of the columns of C−1 that we use to obtain
the components of x.

The above reasoning gives yet another condition on the right-hand side of the
interval linear systems to be constructed: all the components of the right-hand side
must be equal to each other. If we use the vector e = (1, . . . , 1)> as the right-hand
side vector, then the components of x are equally dependent on all of the cofactors of
C, i.e., these components are equally dependent on every element of the matrix.

This is not valid if we choose a vector with non-equal components as the right-hand
side vector. For example, if the unit vector ei = (0, . . . , 1, . . . , 0)> of the standard basis
in Rn (having 1 at the i-th place only) is chosen for this purpose, then

x =
1

detC
·
(
C1i, . . . , Cni

)
for x ∈ Ξ(C, ei), x = Lei(C). In this case, elements of the i-th column of C do not
affect the values C1i, . . . , Cni. As the result, the components of x are not equally
dependent on every element of the matrix C.

The elements of C are specified by elements of the input matrices. We proceed
from the presupposition that all the elements of the input matrices should be equally
taken into account in the process of pattern recognition. This is why we consider the
systems of interval linear equations of the form C(k)x = e.

3.4 Estimation of the Solution Sets

For the matrix C(k) obtained from (1) and subject to transformations (4) and (5),
the comparison matrix 〈C(k)〉 is an M -matrix, i. e., C(k) itself is an H-matrix. If we
use the interval Gauss-Seidel method to compute X(k), then every sufficiently large
box is improved by iteration [3]. Thus, taking a sufficiently large box as an initial
approximation, we may compute the enclosures X(k) of the sets Ξ(k) with reasonably
good quality. For this purpose, we take the box W = ([−w,w], . . . , [−w,w])> ∈ IRn
which contains all of the solutions sets Ξ(k) for some w > 0.

Without loss of generality, we may assume that all elements of every matrix C ∈
C(k) are positive. Otherwise, we may perform the preliminary transformations (4)
with υ0 > 0 such that υ0 is greater than the modulus of every negative element of
A and A(k) for k = 1, n. From (5), every C ∈ C(k) is diagonally dominant. For
C ∈ C(k), let

Ri(C) = cii −
∑
j 6=i

cij , R∗(C) = min
1≤i≤n

Ri(C).

We have from [4]

‖C−1‖∞ ≤
1

R∗(C)
.

By virtue of (4) and (5), we have R∗(C) ≥ (n− 1)υ, so

‖C−1‖∞ ≤
1

(n− 1)υ
.

Reliable Computing 19, 2013 113

If x = C−1e ∈ Ξ(k), then

‖x‖∞ ≤ ‖C−1‖∞‖e‖∞,

i.e.,

‖x‖∞ ≤
1

(n− 1)υ
. (6)

The right-hand side of inequality (6) suggests how to construct an initial enclosure W
for the solution set. Specifically, we take w = 1/((n− 1)υ) for the starting box W of
the interval Gauss-Seidel iteration.

As it follows from (6), a large growth of υ may lead to an inappropriate decrease
of values ‖x‖∞ for x ∈ Ξ(k). As the result of such decrease, we may have a situation
in which the Lebesgue measures of the enclosures X(k) do not reflect any specificity
of the pattern matrices. As the diagonal dominance becomes excessively large, the
values of µ(Ξ(k)) may become too small. If this happens, the comparison of the values
X(k) will not lead to successful recognition. Such decrease is not admissible due to
computational errors of the enclosure methods we may use. For efficient recognition, we
need a rather large deviation of the value µ(X(p)) from the other values µ(X(k)). When

we perform our computational experiments, we take υ = 10 a, where a = max |a(k)ij |,
i, j = 1, n, k = 1, N .

3.5 Computational Complexity

The complexity of our algorithm depends crucially on the enclosure method used. It
is equal to

O(N · cmpl(Encl, n)),

where cmpl(Encl, n) is a computational complexity of the algorithm Encl, which we
use to obtain the enclosures X(k). If cmpl(Encl, n) = O(n2), then the algorithm has
the least complexity order among the algorithms that may be designed for the solution
of the problem under consideration. More precisely, the computational complexity
of any algorithm for the solution of the problem is not less than O(n2), since every
procedure that involves processesing elements of an n×n-matrix has overall complexity
not less than O(n2).

An important particular case is the use the interval Gauss-Seidel method, which
we denote as GS. Then the computational complexity of the recognition algorithm is

O
(
N · cmpl(GS, n)

)
= O(N ·NGS · n2),

where NGS is a number of the interval Gauss-Seidel iterations we perform. We take
NGS = 20 for our computational experiments considered in the next section.

4 Computational Experiments

In the first two computational experiments considered below, we investigate the heuris-
tic efficiency in an application to recognize images of digits. The images we use are
presented in black-and-white and grayscale modes with resolutions of 20×20, 35×35,
50× 50, and 100× 100 pixels. We have done our experiments for Times New Roman,
Arial, and Courier New fonts and for the font presented in Figure 1. As the experi-
ments show, the last font is the most difficult for recognition (see below). We use it
in the first and in the second experiment we have performed.

114 A.V. Prolubnikov, An Interval Approach to Recognition . . .

The element a
(k)
ij of a pattern image matrix A(k) may take one of the two values:

a
(k)
ij =

{
c1, if pixel at ij position is white,
c2, if pixel at ij position is black.

If the images are black-and-white, then c1 = 1 and c2 = 0. If they are grayscale, then
c1 and c2 may take any two values in the range of 0 to 255.

Figure 1: Pattern images of digits.

Suppose we have black-and-white images. Let us take some Q ∈ [0, 100] as a noise
level, i.e., the value of Q specifies a percentage of the pixels subject to noise. We
add noise to the pattern image by the following modification of its pixels. For every
pixel, we generate a random integer value q ∈ [0, 100] using a uniform distribution. If
q ∈ [0, Q], then we invert pixel, otherwise, the pixel stays the same. If we add noise
to the image in such a manner for Q = 0, then we have the initial image. If Q = 50,
then on average, 50% of the image pixels are inverted. If Q = 100%, then every
pixel is inverted in the course of adding noise. For every ordered pair of the pattern
matrices (A(i),A(j)), we get A by adding noise to A(i), and then we try to recognize
it. During the experiment, we perform 100 trials for every such pair of the matrices.
The recognition efficiency P is a percentage of right choices that we make,

P =
the number of right choices

the number of trials
× 100.

If the images are presented in a grayscale mode, we change the value of any pixel in a
predefined interval instead of inverting it.

For the algorithm presented above, results of the computational experiments are
shown in Tables 1 and 2 and are illustrated by the graphs in Figure 2. Table 1 shows
the results of the computations for Q ∈ [31, 50]. Table 2 shows the results of the
computations for Q = 45% and n = 50. If Q ≤ 30%, then the recognition efficiency is
not less than 99.9%. Graphs in Figure 2 show that the recognition efficiency grows as
the image resolution grows.

The pattern recognition efficiency of our algorithm is not worse than that for
the other well-known algorithms. For the Kora, R-method, TEMP, and CORAL
algorithms, P = 80% whenQ = 43%, the algorithm based on monochrome morphology
has P = 80% when Q = 45% [5, 6]. For neural network algorithms, the recognition
efficiency P is not greater than 90% when Q ≥ 46% for a similar experiment with
letter images [7] that we also have performed. If we use an appropriate resolution, our
heuristic gives equal or greater recognition efficiency.

We have compared the recognition efficiency of the heuristic (2) with two natural
heuristics frequently used for pattern recognition of numerical matrices,

p = arg min
k
ρ1
(
A,A(k)

)
(7)

and
p = arg min

k
ρ2
(
A,A(k)

)
, (8)

where ρ1 = ‖A− A(k)‖1, and ρ2 = ‖A− A(k)‖2. First, consider the heuristic (8).

Reliable Computing 19, 2013 115

Table 1: The recognition efficiency P for the test images (Q ∈ [31, 50]).

n\Q 31 32 33 34 35 36 37 38 39 40
20 99.6 99.6 99.4 99.2 99 98.6 98 97.3 96 95
35 99.9 100 100 99.8 99.8 99.7 99.5 99.4 99 98.3
50 100 100 100 100 100 100 99.9 99.9 99.8 99.7
100 100 100 100 100 100 100 100 100 100 100

n\Q 41 42 43 44 45 46 47 48 49 50
20 93.3 90.7 88.1 84.1 79.9 75.3 69.2 63.1 57 49.7
35 97.5 96.6 94.5 91 87.2 82.2 76.2 67.9 60.1 49.4
50 99.5 99.3 98.4 97.3 95.2 90.6 84 74.6 62.7 49.9
100 100 100 100 99.9 99.7 99.1 97.2 99.1 75.1 50.7

Figure 2: The growth of recognition efficiency for growing image resolution.

Let S be a percentage of the recognition problems for which the heuristic (8) does
not give the right solution, while it can be obtained by using the heuristic (2). It may
be seen that if the values c1 and c2 become closer to each other and the radius ∆
grows, then the value of S grows.

In the experiments, we use the same set of the pattern images for the evaluation of
S as we have used previously, but the images are presented now in a grayscale mode
with the values c1 = 110 and c2 = 120. Table 3 shows the values of S we obtained
for various values of ∆. Table 4 shows a growth of S for c1 = 119 and c2 = 120.
The percentage S has a tendency to grow as the radius ∆ grows, if only the value of
|c1 − c2| is rather small comparing to ∆.

Note that the algorithm we have presented is not applicable for recognition of
raster images subjected to spatial displacements, i.e., rotations or shifts.

In the third computational experiment, we compare the recognition efficiency of
heuristics (2) and (7) for recognition problems that we construct in the following way.

Let A be some numerical matrix. Let us construct two matrices, both of which are
obtained from A. We shall consider these matrices as pattern matrices denoted by A(1)

116 A.V. Prolubnikov, An Interval Approach to Recognition . . .

Table 2: The results of the recognition tests for the noise level Q = 45%,
n = 50. The ij-th entry of the table is equal to the recognition efficiency

for the experiment with the ordered pair (A(i),A(j)), where A(i) is
the numerical matrix that corresponds to the digit i (i, j = 0, 9).

i \ j 0 1 2 3 4 5 6 7 8 9
0 — 97 92 100 91 86 96 94 85 97
1 98 — 98 98 98 98 94 92 98 99
2 94 94 — 94 99 97 100 96 98 89
3 99 96 96 — 97 96 97 91 100 95
4 100 93 99 96 — 92 99 99 93 95
5 94 97 95 97 93 — 94 99 90 96
6 96 93 100 95 97 94 — 95 99 98
7 99 99 99 91 98 96 96 — 99 99
8 76 92 93 96 89 84 92 97 — 94
9 96 97 93 89 94 95 98 97 96 –

Table 3: The percentage S for the noise level Q = 44%, c1 = 110, c2 = 120.

∆ 10 25 50 75 100
S,% 0 5.4 7.4 16.2 23.5
P,% 100 99.93 99.79 99.72 99.81

and A(2). As we derive A(1) from A, we change a rather small number of the matrix A
elements. but the changes are large. As we derive A(2), we change a majority of the
matrix A elements, but the changes are relatively small.

Denote by MP the percentage of elements of A that we change obtaining A(2).
100 − MP is the percentage of elements of A that we change obtaining A(1). Let
A(1) := A, and A(2) := A. Construct the matrices A

(1)
M and A

(2)
M using randomness

in such a manner that MP percent of their elements are 0’s and 100 −MP percent
of them are 1’s. Fill these matrices independently. Then, let η1 and η2 be random
variables that take the values −1 and 1 with equal probabilities, and let ξ1 and ξ2 be
independent random variables which have uniform distribution on the interval [0, 1].
For matrices A(1) and A(2), let ∆1 and ∆2, respectively, be some predefined radii of
the intervals in which elements of the matrices are changing. Let ∆1 > ∆2.

Using elements of A
(1)
M , we change 100 −MP percent of the elements of A(1) in

accordance with the elements (A
(1)
M)ij . If (A

(1)
M)ij = 0, then we do not change the value

of a
(1)
ij . Otherwise,

a
(1)
ij := a

(1)
ij + bη1ξ1∆1c ,

where b · c denotes the operation of taking an integer part of a real number. Also, let
us change MP percent of the elements of A(2). The positions of these elements are

Reliable Computing 19, 2013 117

Table 4: The percentage S for the noise level Q = 44%, c1 = 119, c2 = 120.

∆ 10 25 50 75 100
S,% 22.8 37.5 47.3 46.4 46.4
P,% 99.71 99.6 99.8 99.72 99.82

specified by elements of (A
(2)
M)ij . If (A

(2)
M)ij = 0, then

a
(2)
ij := a

(2)
ij + bη2ξ2∆2c ;

otherwise, the value of a
(2)
ij stays the same.

Assuming now that the matrix A is the matrix to be recognized and that A(1)

and A(2) are the pattern matrices. For large values of MP , since the majority of the
elements of the matrix A are equal to the corresponding elements of A(1), it is natural
to suggest that the correct recognition is the recognition that gives A(1) as a result.
We can construct such matrices A, A(1), and A(2) that

ρ1(A,A(1)) > ρ1(A,A(2)), (9)

when

δΞ(A,A(1)) < δΞ(A,A(2)). (10)

The following matrices give us such an example:

A=


0 0 4 1
1 3 1 0
1 2 0 2
0 4 0 1

, A(1) =


0 0 4 57
1 3 1 0
1 2 0 2
0 4 0 47

, A(2) =


−3 0 14 1
5 −3 −3 8
8 0 6 −1
−2 −6 0 −7

.
Here the values of elements of A are randomly and uniformly chosen from the interval
[0, 5], MP = 90, ∆1 = 60, ∆2 = 10, υ = 10. For these matrices, we have

ρ1(A,A(1)) = 102 > 73 = ρ1(A,A(2)),

while

δΞ(A,A(1)) ≈ 0.312 < 2.359 ≈ δΞ(A,A(2)).

For an experiment, let A be a 10×10-matrix with elements that are randomly and
uniformly chosen integers from the interval [110, 120]. Taking MP = 90% and taking
the same as above values of ∆1 and ∆2, we generate matrices A(1) and A(2) such that
(9) holds. For more than 95% of the recognition trials, we have (10), and so we have
A(1) as a result of recognition. It is appropriate to accept these results as correct since
90% of corresponding elements of A and A(1) are equal to each other, while 90% of the
corresponding elements of A and A(2) differ.

As the MP percentage decreases, the results of the recognition become worse for
the same values of ∆1 and ∆2. The results for some other values of MP and ∆1

are shown in Table 5. These results demonstrate that, using the developed heuristic,
we take into account aggregate variation of the matrix elements rather than large
variations of a small number of the elements.

118 A.V. Prolubnikov, An Interval Approach to Recognition . . .

Table 5: The recognition efficiency P for various MP and ∆2

for the experiment with such matrices A, A(1), and A(2) that
ρ1(A,A(1)) > ρ1(A,A(2)) (∆1 = 10 for all the instances).

∆2 MP,% ∆1 P,% MP,% ∆1 P,%
10 85 35 88 80 25 76
10 85 40 79.8 80 30 67
10 85 45 71.8 80 35 52.8

∆2 MP,% ∆1 P,% MP,% ∆1 P,%
10 75 20 63 70 15 53
10 75 25 47.1 70 20 36
10 75 30 29.4 70 25 16

5 Conclusions

We have presented an interval approach to pattern recognition of numerical matrices.
The heuristic used in the recognition is a minimization of a measure of closeness
between two matrices. For computing the measure, we construct an interval linear
system associated with the matrices. We take the Lebesgue measure of its solution set
as the measure of closeness. Using the heuristic, we construct a recognition algorithm.
The recognition algorithm has the best possible quadratic computational complexity
if we take interval Gauss-Seidel iteration for computing enclosures of the solution sets.

The computational experiments show that our heuristic produces good results for
recognition of raster images and that its recognition efficiency grows as the resolution
of the images grows. The experiments also demonstrate that the heuristic takes into
account some aggregate variation of matrix elements rather than large variations of a
small number of the elements.

Acknowledgements

The author is grateful to Sergey P. Shary for his attention and comments.

References

[1] Oettli, W. On the solution set of a linear system with inaccurate coefficients,
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical
Analysis. 1965. Vol. 2, No. 1. P. 115–118.

[2] Shary, S.P. Finite-dimensional interval analysis. (In Russian) URL: http://www.
nsc.ru/interval/Library/InteBooks/SharyBook.pdf. Accessed 18.11.2013.

[3] Neumaier, A. Interval Methods for Systems of Equations. Cambridge: Cambridge
University Press, 1990.

[4] Ahlberg, J.H., Nilson, E.N. Convergence properties of the spline fit. Journal of
the Society for Industrial and Applied Mathematics. 1963. Vol. 11, No. 1. P. 95–104.

http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf
http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf

Reliable Computing 19, 2013 119

[5] Kirnos, E.A. A comparative analysis of morphological methods of image interpre-
tations: An abstract of dissertation of the candidate of physics and mathematics
(the speciality 05.13.18 “mathematical modeling, numerical methods and program
complexes”). Moscow, 2004. RGB OD, 61:05-1/118.

[6] Kirnos, E.A., Pytèv, Yu.P., Djukova, E.V. Training the Kora-Type Algo-
rithms. Pattern Recognition and Image Analysis. 2002. Vol. 12, No. 1. P. 19–24.

[7] Demuth, H., Beale, M. Neural Network Toolbox for Use with MATLAB. User’s
Guide. Version 4. URL: http://cs.mipt.ru/docs/comp/eng/develop/software/
matlab/nnet/main.pdf. Accessed 18.11.2013.

http://cs.mipt.ru/docs/comp/eng/develop/software/matlab/nnet/main.pdf
http://cs.mipt.ru/docs/comp/eng/develop/software/matlab/nnet/main.pdf

	Introduction
	Preliminaries
	Recognition of Numerical Matrices Using Lebesgue Measure of the Solution Sets
	General Idea
	Modification of the Matrices C(k)
	Choosing Right-hand Side Vectors in the Interval Linear Systems
	Estimation of the Solution Sets
	Computational Complexity

	Computational Experiments
	Conclusions

