
Efficient Angle Summation Algorithm for

Point Inclusion Test and Its Robustness∗

Stepan Yu.Gatilov
A.P. Ershov Institute of Informatics Systems,

Novosibirsk, Russia
Ledas Ltd., Novosibirsk, Russia

stgatilov@gmail.com

Abstract

A winding angle summation approach to the point-in-polygon problem
is considered. The winding angle summation is backward stable and resis-
tant to possible gaps between subsequent edges. A precomputed bounding
volume hierarchy can be used to accelerate point queries for winding an-
gle summation. The main theorem states that a BVH-accelerated point
query takes no longer than O

(
K log n

K

)
time if all the bounding boxes

are tight. Here, n is the number of edges in the polygon, and K is the
scaled absolute winding angle (called the condition number). It is proved
that the absolute winding angle never exceeds the absolute turning angle
for a closed piecewise smooth regular curve. Hence, there is a non-trivial
bound on query time complexity, independent of the point being tested.

Keywords: point-in-polygon, winding angle, bounding volume hierarchy

AMS subject classifications: 65D17, 65D18

1 Introduction

The point-in-polygon (PIP) problem is a basic problem of computational geometry. It
asks whether a given point in the plane lies inside a given simple polygon. Sometimes,
one of the three answers must be chosen: inside, outside, or on the boundary. In
a classical setting, the polygon is defined by a sequence of its vertices, all the edges
being line segments. In a generalized setting, the polygon is defined by a sequence of
its edges, and some of the edges can be curvilinear.

The PIP problem and more general point location problems often arise in GIS and
CAD applications. In CAD applications, the data usually is imprecise. Edges can be
slightly offset, and there can be small gaps between subsequent edges of the polygon.

A good survey of simple solutions of the classical PIP is presented in [2]. The
reliability of existing floating point implementations is studied in [12]. Perhaps the
most popular approach is a ray intersection method. It states that any ray cast from

∗Submitted: December 23, 2012; Revised: July 22, 2013; Accepted: August 17, 2013.

1

stgatilov@gmail.com

2 S.Gatilov, Efficient Winding Angle Summation

the point intersects the polygon in an odd number of points if and only if the point
lies inside. This rule does not work properly in case the ray passes through a vertex1.

A floating point implementation can produce incorrect results when the ray passes
close to the point. For the classical PIP, this problem can be avoided by choosing axis-
aligned directions and handling all the cases correctly. However, this solution does not
work in a generalized setting. The second idea is to check several rays with random
directions and use voting to determine the final result. This decreases dramatically
the probability of incorrect result, but the possibility is never eliminated completely.

If several points are tested against a single polygon, the queries can be accelerated
by precomputation. Bounding volume hierarchy (BVH) allows quick pruning of sets
of edges known certainly not to intersect the ray. This speeds up the queries greatly,
although upper bounds on the time complexity are not known2.

Another well-known approach to the PIP problem is winding angle calculation.
Here is the general idea. Put one end point of the vector onto the point being tested
and trace the other end point along the polygon. After a single lap, count how many
revolutions the vector performed. The winding number is zero if and only if the point
lies outside the polygon.

The curse of the winding angle summation is its heavy use of inverse trigonometric
functions. This is why winding angle summation is ofter considered to be the slowest
and the worst solution to the PIP problem. As a compensation, the trivial winding
angle summation test is backward stable. The stability of the winding angle summation
algorithm is studied in the current paper.

An attempt to calculate the winding number without inverse trigonometric func-
tions was made in [4], which suggests casting four axis-aligned rays and handling the
intersection points cleverly. Hence, this modification looses the stability of winding
angle summation and is very similar to the ray intersection method.

The current paper shows that the winding angle summation queries can be accel-
erated by a precomputed BVH. The idea is to replace a subsequence of edges with a
single line segment on a proper condition. This allows quick pruning of subsequences
of edges. The query takes no more than O

(
K log n

K

)
time, where K is the condition

number of the problem. This bound is true only if all the bounding boxes in the BVH
are tight.

Note that the classical point-in-polygon problem can be solved in optimal O(logN)
time. Several optimal solutions to a more general point location problem have been
proposed (see [1, 7, 11]). These algorithms are significantly more complex than the
simple ones described above. Some of them can be generalized to curvilinear cases.
Their stability analysis is not the purpose of the current paper. However, it is quite
likely that they raise more stability concerns than the simple algorithms.

The paper is organized as follows. Section 2 contains general definitions and a
trivial angle summation algorithm. Section 3 shows how to calculate winding angle
along line segments and circular arcs. The error bounds due to floating point arithmetic
are given for the line segment. Section 4 is dedicated to various stability questions.
The condition number K is introduced. It is shown how edge perturbations affect the
winding angle. The overall goal is to show backward stability of the algorithm. The
BVH-accelerated algorithm with the complexity theorem is presented in Section 5.
The application of the algorithm to NURBS curves3 is described in Section 6.

1or touches a curvilinear edge
2more precisely, the author is not aware of such bounds
3NURBS curves is a class of spline curves widely used in computed-aided design software.

Reliable Computing 19, 2013 3

2 Angle Summation

A piecewise smooth regular simple contour γ defined on [0, 1] and a point P (P /∈ γ)
are given as inputs to the algorithm. The contour is given as a sequence of individual
edges γ0, γ1, . . . , γn−1 (γi : [si, ei] → R2). Each edge is smooth and belongs to some
class of supported edges such as line segments, circular arcs, Bezier curves, etc.

We define the polar angle function ϕ : [0, 1]→ R as follows: for any t ∈ [0, 1], the
value ϕ(t) is equal to the polar angle of the vector (γ(t)−P). Since the polar angle is
a multivalued function, we require the function ϕ(t) to be continuous.

This function can also be defined nicely on a complex plane (points are treated as
complex numbers):

ϕ(t) = Im ln (γ(t)− P) . (1)

The difference of the polar angle ϕ along the curve γ is defined as

Dγ [ϕ] = ϕ(1)− ϕ(0) =

∫ 1

0

ϕ̇(t) dt =

∫ 1

0

(γ(t)− P)× γ̇(t)

‖γ(t)− P‖‖γ̇(t)‖ dt.

This value is called winding angle along the curve γ.

We also will use the variation of polar angle along the curve γ, which is defined
similarly to the difference,

V γ [ϕ] =

∫ 1

0

|ϕ̇(t)| dt,

which also can be called the absolute winding angle for obvious reasons.

The winding number is

W =
1

2π
Dγ [ϕ].

The winding number is an integer even if the contour is not simple. It follows from
the argument principle that for a simple contour, the winding number must be either
zero or one (or minus one for a clockwise contour orientation). Moreover, the winding
number is zero if and only if the point lies outside the contour.

Hence, it is possible to use Algorithm 1.

Algorithm 1: Trivial winding angle summation
Input: A sequence of edges: γ0, γ1, . . . , γn−1
for i ∈ 0, . . . , n− 1 do Calculate Dγi [ϕ]
Sum all the winding angles and scale by 2π to get W
if W = 0 then return Outside else return Inside

Since the precise winding number of the contour is known to be an integer, the cal-
culated winding number can be rounded to the nearest integer before comparison. Note
that the winding number can be calculated even for contours with self-intersections.

3 Edge Winding Angle Calculation

We assume that it is easy enough to calculate the winding angle for an edge. A line
segment and a circular arc will be considered as examples.

4 S.Gatilov, Efficient Winding Angle Summation

3.1 Line Segment

Let γ be a directed line segment represented by coordinates of its endpoints. Then
the winding angle can be calculated numerically by Algorithm 2.

Algorithm 2: LineSegmentAngle

Input: segment endpoints S,E ∈ R2, a point P ∈ R2

U := S − P, V := E − P
return atan2 (U × V, U · V)

Algorithm 2 uses the inverse trigonometric function atan2(y, x), which returns
the polar angle in the range [−π, π] for a nonzero vector with coordinates (x, y).
Inverse trigonometric functions are very slow, explaining why the trivial winding angle
calculation is considered to be the slowest point-in-polygon method. Another drawback
is that the function atan2(y, x) is not present in the IEEE 754 floating point standard.

We assume that there is a guaranteed upper bound Cε on the relative error of the
function atan2. Of course, the error is defined modulo 2π, meaning that jumps near
±π are possible. For instance, the Pentium architecture ensures that the error does
not exceed 1 ulp (= 2ε) in round-to-nearest mode [5]. For more information about
transcendental function evaluation, see [13].

Assuming that the input data is exact, it is rather easy to derive an upper bound
on the error of Algorithm 2. It is well known that the error of dot and cross products
does not exceed 2ε(1 + O(ε)) multiplied by the product of vector norms. Combine
that with subtraction of P , and the errors of atan2 arguments are4

xerr =
(U · V)err
‖U‖‖V ‖ ≤ 4ε (1 +O(ε)) , yerr =

(U × V)err
‖U‖‖V ‖ ≤ 4ε (1 +O(ε)) .

The exact values of these two numbers are x = cos4ϕ and y = sin4ϕ. Then
the maximal deviation of angle 4ϕ due to imprecise arguments does not exceed
4
√

2ε (1 +O(ε)). The atan2 function itself adds up to Cπε error. Hence, the overall
error of the angle is

4ϕerr ≤
(

4
√

2 + Cπ
)
ε ≤ qang ε,

where the constant qang is introduced for brevity. However, this error is modulo 2π. If
any jump near ±π occurs, the winding number also jumps by one (which destroys the
point-in-polygon test). Therefore, it is necessary to bound the true angle away from
±π by at least the error of computation. To achieve this, the distance from the point
P to the line segment [SE] should be bounded from below (L = |SE|) by

dist(P, [SE]) >
qang

4
εL. (2)

The proved error bound shows that the winding angle calculation for line segment
is very precise unless the point is very close to the segment. It is quite interesting that
the error bound does not depend on the distance from the point to the end points.
When the distance is very small (e.g., O(ε)), even 1 ulp perturbation in any input
number can yield large error (e.g., O(1)).

Sometimes the function acos is used instead of atan2 for angle calculation. This
is a bad idea because the error for very small angles can be of the order of

√
ε.

4Dot and cross products are denoted as u · v and u × v. Verr denotes the computational
error of the value V .

Reliable Computing 19, 2013 5

3.2 Circular Arc

Let γ be a directed circular arc represented by the coordinates of its center C, its
radius r, and the polar angles α and β of its start and end points. The sign of β − α
determines the orientation of the arc (clockwise or counterclockwise), and its absolute
value determines the length of the arc (less than 2π).

Algorithm 3: Winding angle calculation for a circular arc

Input: center C ∈ R2, radius r ∈ R, angles α, β ∈ R, a point P ∈ R2

S := (Cx + r cosα;Cy + r sinα)
E := (Cx + r cosβ;Cy + r sinβ)
θ := LineSegmentAngle(S,E, P)
if ‖C − P‖ < r then

if β > α then NormalizePeriodic(θ → [0, 2π])
else NormalizePeriodic(θ → [−2π, 0])

end
return θ

Algorithm 3 uses the function LineSegmentAngle, which is implemented by Algo-
rithm 2. The function NormalizePeriodic returns the angle, which is equivalent to its
argument θ modulo 2π, but belonging to a specified interval. It is possible to perform
error analysis of this algorithm, but it is too tedious to consider all the cases. One
point is that the error depends on the distance from the point to the arc endpoints.

4 Stability

4.1 Condition Number

Definition 4.1. Given a piecewise smooth regular contour γ and a point P not on it,
the condition number of the winding angle summation problem (K) is defined as5

K = K(γ, P) =
1

2π
V γ [ϕ].

The condition number is important for both winding angle summation and ray
intersection approaches to the point-in-polygon problem.

The following proposition defines K in terms of ray intersection.

Proposition 4.1. Suppose that the derivative ϕ̇(t) of the polar angle function has a
finite number of zeros. Let ξ be a uniform random variable with values in [0, 2π). Cast
a ray from the point P into the direction with polar angle ξ. Then the average number
of points where it intersects the contour γ is equal to K.

Proof. Since the number of zeros and breaks of ϕ̇(t) is finite, and the total variation of
ϕ(t) is finite, the curve γ can be divided into a finite number of pieces pi : [ai, bi]→ R2

such that:
1. Each piece is continuously differentiable (no breaks).

5see Section 2 for the definition of ϕ

6 S.Gatilov, Efficient Winding Angle Summation

2. The polar angle function ϕ(t) is strictly monotonic on each piece.
3. The total variation of ϕ(t) on each piece is less than 2π.
The mathematical expectation is an integral of the number of intersection points

over angles [0, 2π) divided by 2π. The condition number is an integral of |ϕ̇(t)| over
the parameter t ∈ [0, 1] divided by 2π. Both integrals are additive, so it is sufficient
to prove the required equality for all the pieces.

The ray intersects a piece pi at exactly one point for ξ ∈ [ϕ(ai), ϕ(bi)]
6 and does

not intersect it for other values of ξ. Hence, the average number of intersection points
is 1

2π
|ϕ(ai)− ϕ(bi)|. On the other hand, the variation of ϕ is equal to the absolute

value of the difference, so K has exactly the same value for the piece.

Clearly, the proposition is also true for piecewise-analytical regular contours. Each
analytical piece either has constant ϕ(t) or has a finite number of points with ϕ̇(t) = 0.
The pieces with constant ϕ(t) do not affect both integrals (there is a finite number of
them).

4.2 Summation Error

Algorithm 1 computes the sum of many real numbers. When computing the sum of n
real numbers ai by the trivial algorithm, the error bound is (see [3] for details)

Serr ≤ nε
n−1∑
i=0

|ai|+O
(
ε2
)
. (3)

The condition number of the summation problem, which shows sensitivity to input
perturbations, is

cond =

∑
|ai|

|
∑
ai|
.

In the case of winding angle summation, ai = Dγi [ϕ]. The condition number cond
described above is useless in this context because the true sum is often zero. Moreover,
the calculated sum is rounded to the nearest multiple of 2π because the true sum is
known to be such a multiple. That is why it is more beneficial to consider a number

K1 =
1

2π

∑
i

|ai| .

This number shows how much relative perturbations in ai affect the winding number,

|4W | ≤ K1 max
i

|4ai|
|ai|

.

Proposition 4.2. The numbers K1 and K are related:
1. K1 ≤ K.
2. As long as the contour γ is tesselated into smaller and smaller edges, the number
K1 converges to K.

Proof. The first part follows from triangle inequality:

2πK1 =
∑
i

|Dγi [ϕ]| =
∑
i

∣∣∣∣∫
γi

ϕ̇(t) dt

∣∣∣∣
≤
∑
i

∫
γi

|ϕ̇(t)| dt =
∑
i

V γi [ϕ] = V γ [ϕ] = 2πK.

6interval endpoints may be reversed

Reliable Computing 19, 2013 7

Since ϕ̇(t) is continuous on every edge γi, according to the Mean Value Theorem,

|Dγi [ϕ]| =
∣∣∣∣∫
γi

ϕ̇(t) dt

∣∣∣∣ = |ϕ̇(t∗i)| (ei − si),

where [si, ei] is the domain of edge γi, and t∗i ∈ (si, ei) is some parameter inside it.
Now it is easy to see that 2πK1 is a Riemann sum of the integral

∫
γ
|ϕ̇(t)| dt. Hence,

if max(ei − si)→ 0, then K1 → K due to definition of Riemann integral.

Also, if all the edges are line segments, then K1 = K.

4.3 Edge Perturbation Error

The algorithm is stable under edge perturbations. To show this, we prove that small
perturbation in an edge results in a small perturbation in its winding angle.

Definition 4.2. Consider a piecewise smooth regular curve γ : [s, e] → R2. A piece-
wise smooth regular curve γδ is its δ-perturbation if

∀t ∈ [s; e] ‖γδ(t)− γ(t)‖ < δ.

Proposition 4.3. Let γδ be a δ-perturbation of a curve γ with δ < dist(P, γ) = d.
Then

|Dγδ [ϕ]−Dγ [ϕ]| ≤ 2 arcsin
δ

d
.

Proof. We denote the curve γ thickened by δ as G:

G = B(γ, δ) =
{
Q ∈ R2 | dist(Q, γ) < δ

}
.

The curves γ and γδ are inside G, and the point P is outside (with positive distance).
Due to (1), the winding angle can be defined as a complex integral

Dγ [ϕ] =

e∫
s

ϕ̇(t) dt = Im

e∫
s

γ̇(t) dt

γ(t)− P = Im

∫
γ

dz

z − P .

The curves γ and γδ are homotophic in G by the trivial linear homotopy Γ(θ, t) =
(1 − θ)γ(t) + θγδ(t). Let γ(s) = A, γ(e) = B, γδ(s) = C, and γδ(e) = D. Construct
a curve γ̂δ = γAC ∪ γδ ∪ γDB , where γAC and γDB are line segments [AC] and [DB],
respectively. These line segments are homotopic to the endpoints of the curve γ (which
are A and B). Hence, the curves γ̂δ and γ are homotopic and have same endpoints.

The function 1/(z−P) is holomorphic in G. By the Cauchy theorem, its integrals
along the curves γ and γ̂δ are equal,

Im

∫
γ̂δ

dz

z − P = Im

∫
γ

dz

z − P .

Then it is easy to see that

|Dγ [ϕ]−Dγδ [ϕ]| = |DγAC [ϕ] +DγDB [ϕ]|

≤ arcsin
δ

‖P −A‖ + arcsin
δ

‖P −B‖

≤ 2 arcsin
δ

dist(P, γ)
,

where the last inequalities are obvious by geometric means.

8 S.Gatilov, Efficient Winding Angle Summation

Note that the edge perturbation can change the endpoints of the edge. Hence, the
winding angle summation algorithm is resistant to gaps between subsequent edges as
long as these gaps are small enough. Figure 1 shows how winding angle summation
and ray intersection behave on a perturbed contour.

(a) winding angle summation (b) ray intersection

Figure 1: Behavior of the methods on a perturbed contour. Perturbed edges are drawn in
black; misclassified points are indicated in red.

4.4 Backward Stability

Suppose that the error of the calculated winding angle along an edge is small enough
if the point lies far enough from it,

dist(P, γi) = d > θMε =⇒ Dγi [ϕ]err < αε+ β
Mε

d
. (4)

Let us call such a class of edges “precise”. Here M is the scale of the contour (e.g.,
maximal absolute coordinate). For instance, the class of line segments is “precise”
with α = qang, β = 0, θ = 1

4
qang (see Section 3.1).

Theorem 4.1. Assume that the class of edges is “precise”. Suppose that the edges
are perturbed with magnitude not greater than δ prior to the winding angle calculation.
Then Algorithm 1 produces correct result provided that

nε <
1

3
and dist(P, γ) = d > max

{
2δ, δ + θMε, n

4δ + 3βMε

π − nε(2πK + 2α)

}
,

where the denominator of the last fraction is required to be positive.

Reliable Computing 19, 2013 9

Proof. The error in winding angle comes from three sources. First of all, the edges
are perturbed. The error due to perturbation does not exceed (see Proposition 4.3)

A = n · 2 arcsin
δ

d
.

After the edges are perturbed, the winding angle is calculated for them. As the edges
are still in the “precise” class (see (4)), the error does not exceed7

B = n ·
(
αε+ β

Mε

d− δ

)
.

Finally, the winding angles for individual edges are summed altogether. The summa-
tion error is bounded by (see (3))8

C = nε (2πK + (A+B)) .

The algorithm works correctly if the overall error is less than π, i.e.

2πKnε+ (A+B)(1 + nε) < π.

Using arcsin(δ
d
) < 3

2
δ
d

and 1
d−δ <

2
d
, the condition can be strengthened:

2πKnε+

(
3n
δ

d
+ αnε+ 2nβ

Mε

d

)
(1 + nε) < π.

Since 1 + nε < 4
3
, the stronger condition is

4nδ

d
+

3nβMε

d
< π − 2πKnε− 2αnε.

If the right hand side is positive, then it is equivalent to

d >
4nδ + 3nβMε

π − 2πKnε− 2αnε
,

which is exactly the condition from the theorem statement.

Theorem 4.1 gives some idea about how bad the contour can be so that the winding
angle algorithm still works correctly. Also, it shows that the algorithm is backward
stable in the usual sense. The calculated result is always exact for a slightly modified
input; the point may be moved by at most D∗ (where D∗ is the lower bound on the
distance from the theorem).

5 Acceleration

The acceleration of the winding angle summation requires precomputation of the
bounding volume hierarchy (otherwise O(n) is the complexity of the fastest algorithm
possible). A rooted ordered tree T is built during the precomputation phase. The set
of its nodes is denoted by V (T) and the set of its leaves by L(T).

Each leaf of the tree T corresponds to a single edge of the contour; a leaf v ∈ L(T)
corresponds to the edge γv. For an internal node v ∈ V (T) \ L(T), the sequence of

7The distance d may have decreased by at most δ.
8The true sum of absolute values is 2πK, but it may have increased by A+B.

10 S.Gatilov, Efficient Winding Angle Summation

curves corresponding to the leaves in a v-subtree is denoted by γv. For the algorithm
to be correct, the curve γv must be a continuous part of the whole contour γ, i.e.

γv = γ|[sαv ,eβv] ,

where αv and βv are the leftmost and the rightmost leaves in the v-subtree. Later, we
will use the notation sv = sαv , ev = eβv .

An axis-aligned bounding box Bv of the curve γv is stored in each node v ∈ V (T),

γv ⊆ Bv.

Bounding boxes Bv are not required to be minimal, but the algorithm runs faster for
tighter boxes. Strictly speaking, the boxes are considered to be closed sets in all the
proofs.

The algorithm works correctly for any structure of the tree T . However, a balanced
binary tree is a great choice for both its efficiency and simplicity. Hence, all other
variants are ignored; from this point, T is assumed to be a balanced binary tree. The
left and the right sons of a node v are denoted by L(v) and R(v), respectively.

5.1 Precomputation

Algorithm 4: Precompute

Input: A sequence of edges: γ0, γ1, . . . , γn−1
Output: A tree T with precomputed values Bv, αv, βv for all v ∈ V (T)

Build a balanced binary tree T with n leaves.
Put the edges γ0, . . . , γn−1 into correspondence with the leaves of T
(in correct order).
for v ∈ L(T) do

Bv := EdgeBoundingBox(γv)
αv, βv := v

end
for v ∈ V (T) \ L(T) ordered by height decreasing do

Bv := SupBox(BL(v), BR(v))
αv := αL(v), βv := βR(v)

end

Algorithm 4 builds a tree T with all the desired values. The function EdgeBoundingBox

calculates some enclosing axis-aligned box for a given input edge, and the function
SupBox finds the minimal enclosing box for a pair of boxes.

5.2 Query

A query is handled by recursive traversal of the tree T with the following pruning. If
the point P lies outside of the box Bv, then the winding angle along the curve γv is
computed immediately. This angle is equal to the winding angle of the line segment
with the same end points.

Reliable Computing 19, 2013 11

Algorithm 5: NodeAngle

Input: A node v ∈ V (T), a point P /∈ γv
Output: Winding angle along the curve γv around P

if P /∈ Bv then1

return LineSegmentAngle (γv(sv), γv(ev), P)
end
if v ∈ L(T) then2

return EdgeAngle (γv[sv . . . ev], P)
end
return NodeAngle (L(v), P) + NodeAngle (R(v), P)3

Algorithm 6: Query

Input: A point P /∈ γ
Output: Winding angle around P along the curve γ
// Launch traversal of the tree T from its root r
return NodeAngle (r, P)

Proposition 5.1. Algorithm 5 returns Dγv [ϕ] for an arbitrary node v ∈ V (T)9.

Proof. Proved by induction over the tree T .
Three cases are possible for a node v ∈ V (T) as labeled on the left of the algorithm

pseudocode. In case 2, the function EdgeAngle explicitly calculates the winding angle
along the curve γv. In case 3, induction hypothesis and continuity of the curve γv are
used. If l = R(v) and r = L(v) are the sons of the internal node v,

Dγl [ϕ] +Dγr [ϕ] = Dγv [ϕ],

The only nontrivial case is 1 (see Figure 2).

Figure 2: Curve γv is equivalent to segment [SE].

To prove it, we express the winding angle in terms of a complex integral10. The
integrand 1/(z−P) is holomorphic in Bv because P /∈ Bv (and dist(P,Bv) > 0). The
curve γv is trivially homotopic to the line segment [SE] in the domain Bv (S is the

9when executed in exact arithmetic
10as in the proof of Proposition 4.3

12 S.Gatilov, Efficient Winding Angle Summation

starting point of γv, and E is its end point). Both curves are piecewise smooth regular,
so by the Cauchy theorem, the winding angles of γv and [SE] are equal. Obviously,
P /∈ [SE], so the function LineSegmentAngle precisely calculates the winding angle of
[SE].

By setting v = r (root), the following is proved:

Corollary 5.1. Algorithm 6 returns Dγ [ϕ].

It should be noted that, unlike the trivial angle summation, the accelerated algo-
rithm contains a minor instability. Checking P /∈ Bv in the case 1 of Algorithm 5 is
not sufficient. The point P can be arbitrarily close to the line segment [SE], which can
lead to a failure of the LineSegmentAngle function due to finite precision arithmetic.

To solve the problem, a practical implementation must slightly enlarge the box
Bv prior to the check. An acceptable tolerance value can be derived from (2). Alter-
natively, one can use interval arithmetic inside the function LineSegmentAngle and
check afterwards that the width of the returned interval is less than π.

5.3 Complexity Theorem

The algorithm uses several basic functions which are implemented differently depend-
ing on the class of edges. We introduce time complexities Tea and Tbb, such that

1. The function EdgeAngle takes O(Tea) time, and
2. The function EdgeBoundingBox takes O(Tbb) time.

It is assumed that these functions are not free (i.e., they take at least constant time).

Proposition 5.2. The precomputation of Algorithm 4 requires O(n) additional mem-
ory and takes O(nTbb) time.

Proof. T is a binary tree, so |V (T)| = 2|L(T)| − 1 = O(n). The rest is obvious.

Theorem 5.1.

1. Assume that the function EdgeBoundingBox computes a tight (i.e., inclusion
minimal) bounding box for all the edges.

2. Define K̂ as11

K̂ = min(4K,n).

Then the time complexity of the query (Algorithm 6) is{
O(K̂ log n

K̂
+ K̂Tea), K̂ ≥ 1

O(1), K̂ < 1.

Several lemmas are necessary for the proof.

Lemma 5.1. Let Bv be a tight bounding box for a curve γv (v ∈ V (T)). Then if
P ∈ Bv, the total variation of the polar angle along γv can be bounded from below:

V γv [ϕ] ≥ π

2
.

11see Definition 4.1 for the condition number K

Reliable Computing 19, 2013 13

Proof. Since the bounding box Bv is minimal by inclusion, each of its sides contains
at least one point of γv. Denote four such points (one on each side) by Ai and the
vertices of the box by Qi (i = 1 . . . 4). The points can be ordered cyclically by polar
angle around the center of the box: Q1, A1, Q2, A2, Q3, A3, Q4, A4. None of the points
Ai coincides with P because P /∈ γv.

To prove the lemma, it is enough to show that there are points Ai and Aj such
that

∠AiPAj ≥
π

2
. (5)

Figure 3: The curve γv and its point on the box boundary.

First, we consider a singular case: the point P coincides with a vertex Qi. Then
the points Ai−1 and Ai on the adjacent sides can be chosen: so that ∠Ai−1PAi = π

2
,

and the inequality (5) is true.
It is easy to see that for P ∈ Bv and arbitrary i, the following is true:

∠Qi−1PQi + ∠QiPQi+1 ≥
π

2
. (6)

In the general case, the existence of the sought pair of points is proved by con-
tradiction. Suppose that the converse is true for each i and j: ∠AiPAj < π

2
. Then

all the four points A1, A2, A3, A4 are seen from P under an angle less than π
2

. The
vertices Qk separate the consecutive points Ak−1 and Ak. Hence, for some k, we have
three vertices Qk−1, Qk, Qk+1 which are seen from P under an angle less than π

2
. But

this contradicts the proved inequality (6).
Thus the inequality (5) must be true for some i and j.

It is worth noting that if the function EdgeBoundingBox returns only tight axis-
aligned bounding boxes, then Bv is also a tight bounding box of the curve γv for each
node v.

Lemma 5.2. Consider a balanced binary rooted tree T with n leaves and X ⊆ V (T),
which is an arbitrary subset of size k ≥ 1 of its nodes. Denote the set of nodes on the
path from the root to a node v by P (v). Then∣∣∣∣∣ ⋃

v∈X

P (v)

∣∣∣∣∣ = O
(
k log

n

k
+ k
)
.

14 S.Gatilov, Efficient Winding Angle Summation

This lemma was stated and briefly proved in [6].
Now we return to the proof of Theorem 5.1.

Proof. Consider all the nodes v of the tree T for which the function NodeAngle is
called. Denote the subtree consisting of these nodes by T0. For any node v ∈ V (T0),
it is clear from the definition of Algorithm 5 that

1. v is an internal node of T0 (i.e. v ∈ V (T0) \ L(T0)) ⇐⇒ case 3 works for v.
2. v is a leaf of T0 (i.e., v ∈ L(T0)) ⇐⇒ case 1 or case 2 works for v.
3. v is a leaf of T (i.e., v ∈ L(T)) ⇐= case 2 works for v (i.e., v ∈ Vea).

The cases are marked in Algorithm 5. Vea is the set of vertices for which case 2 works.

Figure 4: Example of the trees T , T0, T1 in the proof of Theorem 5.1.

We obtain the tree T1 by removing all the leaves from the tree T0. In other words,
T1 is a subtree of all the internal nodes of T0. For internal nodes of T0, case 3 of the
algorithm works. Hence P ∈ Bv, and due to the Lemma 5.1

V γv [ϕ] ≥ π

2
.

For any two incomparable nodes u and v of T , the corresponding curves γu and
γv (parts of γ) do not overlap. In particular, the leaves of T1 are incomparable, so the
upper bound holds:

2πK = V γ [ϕ] ≥
∑

v∈L(T1)

V γv [ϕ] ≥ π

2
|L(T1)|.

Then the number of leaves of the tree T1 is bounded by

m = |L(T1)| ≤ 4K.

Also, |L(T1)| ≤ |L(T)| = n, since T1 is a subtree of T . Hence, we have

m ≤ min(4K,n) = K̂. (7)

If K̂ < 1, then |L(T1)| = m = 0, meaning that the tree T1 is empty, and the tree
T0 consists only of the root node. Case 1 of the algorithm works for the root node

Reliable Computing 19, 2013 15

and takes O(1) time. That proves the theorem for the case K̂ < 1. Hence, it can be
assumed for the rest of the proof that T1 is nonempty.

It is easy to see that the paths from all the leaves of T1 to its root cover the whole
tree T1, i.e., ⋃

v∈L(T1)

P (v) = V (T1).

Hence, Lemma 5.2 can be applied to bound the size of T1,

|V (T1)| = O
(
m log

n

m
+m

)
.

The node sets V (T0) and V (T1) differ exactly by the set L(T0). Each leaf v ∈ L(T0)
has exactly one father f ∈ V (T1). At the same time, each node f ∈ V (T1) can have
no more than two sons v ∈ L(T0), so

|L(T0)| ≤ 2|V (T1)| =⇒ |V (T0)| = |V (T1)|+ |L(T0)|

≤ 3|V (T1)| = O
(
m log

n

m
+m

)
.

(8)

The overall time complexity consists of the time to handle all the nodes v ∈ V (T0).
It takes O(Tea) time to handle a node in case 2 of the algorithm and O(1) in the other
cases. The overall number of nodes of T0 is already bounded. Denote the set of nodes
for which the case 2 works as Vea. To complete the proof, the size of this set has to
be bounded.

Consider a node v ∈ Vea ⊆ (L(T) ∩L(T0)). Its father f belongs to V (T1). Denote
the set of all such fathers by F . Clearly,

|Vea| ≤ 2|F |.

If H is the height of the tree T , then the height of v is either H or H − 1 (recall that
T is balanced). Then the height of f is either H−1 or H−2. Since the height of T1 is
H−1, the node f ∈ F is either its leaf or a father of two its leaves. In the second case,
one of the sons cannot belong to F itself (because f is a father of some v ∈ L(T)).
This means that an injection from F to L(T1) can be constructed, so |F | ≤ |L(T1)|.
Finally, the bound is established,

|Vea| ≤ 2|F | ≤ 2|L(T1)| = O(m). (9)

Merge the bounds (8), (9), and (7) together. The overall time complexity of
Algorithm 6 does not exceed

|V (T0)|+ |Vea|Tea = O
(
m log

n

m
+m+mTea

)
= O

(
K̂ log

n

K̂
+ K̂Tea

)
.

5.4 Complexity Corollaries

The complexity theorem just proved has some nice corollaries. We assume in this
section that all the bounding boxes are tight.

Corollary 5.2. The time complexity of Algorithm 6 does not exceed O(nTea). Thus,
the accelerated algorithm is not slower asymptotically that the trivial angle summation.

16 S.Gatilov, Efficient Winding Angle Summation

Proof. Follows from K̂ ≤ n and from the theorem.

Corollary 5.3. Let D be a star-shaped domain (around the point P) bounded by
contour γ. Then Algorithm 6 works in O(Tea + logn) time.

Proof. Since the curve γ bounds some domain,

Dγ [ϕ] = ±2π.

The domain is star-shaped around P , so the polar angle function ϕ(t) is monotonic.
Then its variation is equal to the absolute value of its difference:

K =
1

2π
V γ [ϕ] =

1

2π
|Dγ [ϕ]| = 1.

Hence, K̂ = O(1), and the theorem proves the rest.

Corollary 5.4. Let the curve γ bound a convex domain D. Then the time complexity
of Algorithm 6 does not exceed O(Tea + logn).

Proof. If the point P belongs to the domain D, then D is star-shaped around it, and
this corollary follows from Corollary 5.3.

If the point lies outside, then the curve γ can be broken into two parts so that the
polar angle function ϕ(t) is monotonic on each of the parts. Due to the convexity of
D and P lying outside of it, the curve γ is seen from P under angle less than π.

Then the total variation is less than 2π, hence K < 1. The proof is finished by
applying the theorem.

The time complexity bound in Theorem 5.1 greatly depends on the condition
number K. As the condition number decreases, the time complexity also decreases.
Intuitively, the condition number K can be often small in practice. Several upper
bounds on the condition number (proved below) confirm that.

Proposition 5.3. Let D = dist(P, γ) and L be the length of γ. Then,

K ≤ 1

2π

∫
γ

dl

|z − P | ≤
L

2πD
,

where z is the point moving through the curve γ, and dl is the length of the curve
element.

Proof. Recall that polar angle function can be expressed in terms of a complex function
(see (1)). Then its derivative is (points are treated as complex numbers)

ϕ̇(t) = Im

(
γ̇(t)

γ(t)− P

)
.

This representation trivially yields the bound

|ϕ̇(t)| dt ≤ |γ̇(t)| dt
|γ(t)− P | =

dl

|z − P | ≤
dl

D
.

Integrate over the curve γ to get the necessary inequality on K.

Reliable Computing 19, 2013 17

The curve γ is assumed to be piecewise smooth regular from the very beginning.
Define a direction angle function α(t) equal to the polar angle of the tangent vector

γ̇(t) for any t ∈ [0, 1]. The polar angle is defined modulo 2π. To resolve the ambiguity
in α(t), choose it in such a way that it is continuous on each individual edge, and its
jumps between edges are minimal (±π jumps can be resolved either way). For any
such choice of α(t), the total variation is the same.

It is also possible to express the total variation of α(t) as

2πQ = V γ [α] =

n−1∑
i=0

V γv [α] +

n−1∑
i=0

(γ̇(si + 0) ∧ γ̇(ei−1 − 0)),

where (u ∧ v) denotes the smallest angle between arbitrary vectors u and v. Strictly
speaking, Q can even be infinite.

The value Q is remarkable because 1) it depends only on the curve γ (i.e., it does
not depend on the point P), 2) intuitively, it should be small, especially for smooth
curves, and 3) it is an upper bound for the condition number for closed curves (see
below).

Theorem 5.2. Let γ be a piecewise smooth regular closed curve. Then

2πV γ [ϕ] = K ≤ Q = 2πV γ [α].

See Appendix A for the proof.

5.5 Results

The accelerated algorithm described here was applied to several artificial point-in-
polygon problems. The summary is presented in Table 1.

test name n Q K E τ τ
E

τ
K

CircleUniform:Center 65536 1.00 1.00 56.00 7 0.125 1.750

CircleUniform:Border 65536 1.00 1.00 56.00 33 0.589 8.250

CircleSkewed:Center 65536 1.00 1.00 56.00 63 1.125 15.750

Star:Center 256 71.73 1.00 24.00 7 0.292 1.750

Star:Worst 256 71.73 6.53 85.99 35 0.407 1.341

Koch:Center 49152 10923.00 4.97 224.18 10 0.045 0.503

Koch:Border 49152 10923.00 8.32 350.30 33 0.094 0.992

HandDrawn:Corner 179 22.44 3.10 47.79 12 0.251 0.967

HandDrawn:Center 179 22.44 4.67 60.94 28 0.459 1.498

HandDrawn:Worst 179 22.44 4.75 61.46 40 0.651 2.106

Table 1: Accelerated algorithm: some numbers

Here, τ = V (T0) is the number of times the function NodeAngle was called (which
is proportional to overall time complexity). E = K log2

n
K

denotes the upper bound
on the number of NodeAngle calls according to Theorem 5.112. K is the condition
number (see Definition 4.1), Q is the scaled absolute turning angle (see Theorem 5.2).

12up to a constant factor

18 S.Gatilov, Efficient Winding Angle Summation

The number of edges is denoted by n. The last two columns show the estimation for
constant factors in the asymptotic complexities O

(
K log n

K

)
(from the theorem) and

O(K) (supposed).
Five different polygons are used. “CircleUniform” is a circle uniformly tesselated

into edges. “CircleSkewed” is also a circle, but tesselated in a special way: two edges
are so large that their bounding boxes contain the center. “Star” is a star-shaped
polygon, “Koch” is a finite generation of the Koch snowflake fractal. “HandDrawn” is
some average sized contour drawn by hand. The second part of the test name indicates
the point being tested. “Worst” is a point with maximal time complexity, “Border” is
a point very close to the polygon edges, “Corner” is a point near the upper-left corner
of the polygon, and “Center” is obvious.

Figures 5, 6, and 7 show how the time complexity and condition number depend
on the point being tested. The contours used are the same as in Table 1, although the
number of edges is sometimes smaller.

(a) time complexity τ (b) condition number K

Figure 5: “Koch” polygon (n = 1024)

6 Application to NURBS Curves

NURBS curves form a class of parametric curves which includes arbitrary piecewise-
polynomial splines and also some rational ones. For an introduction to NURBS curves,
see the classical book [10].

NURBS curves have several properties which permit easy application of the accel-
erated algorithm:

1. The bounding box can be efficiently (over)estimated from control points of the
curve (due to the convex hull property).

2. A curve can be efficiently split into two curves at any given parameter value (by
a knot insertion algorithm).

3. Its endpoints are equal to the first and the last of the control points13.

13true only for clamped NURBS curves

Reliable Computing 19, 2013 19

(a) time complexity τ (b) condition number K

Figure 6: “Star” polygon (n = 256)

(a) time complexity τ (b) condition number K

Figure 7: “HandDrawn” polygon (n = 179)

20 S.Gatilov, Efficient Winding Angle Summation

Suppose that a NURBS curve γ is implicitly divided into 2H pieces uniformly
by a parameter, where H is some large number. The accelerated algorithm can be
launched by treating each piece as a separate edge of the contour. However, it requires
expensive precomputation and much additional memory to construct a BVH tree from
the bottom up. Instead of precomputing the BVH tree, it can be calculated on the fly
during its traversal from top to bottom.

Since there is no reliable implementation of the EdgeAngle function, we remove the
case 2 from Algorithm 6 and subdivide the pieces until case 1 works for all of them.
As a result, the algorithm sets H = ∞. Some other stopping criteria can be added,
for instance, terminate the algorithm with an error, if the size of Bv is too small.

Algorithm 7: NURBSAngle

Input: NURBS curve γ : [s, e]→ R2, a point P /∈ γ
Output: winding angle Dγ [ϕ]
B := NURBSBoundingBox(γ)
if P /∈ B then

return LineSegmentAngle (γ(s), γ(e), P)
end
if |B| < δ then

terminate(“Distance smaller than δ”)
end
γL, γR := SplitNURBSCurve (γ, s+e2)
return NURBSAngle (γL, P) + NURBSAngle (γR, P)

The function SplitNURBSCurve splits a curve at a given parameter into two pieces.
The function LineSegmentAngle was implemented by Algorithm 2. Algorithm 7 is
not new; Klein [8] contains exactly the same algorithm. A method based on NURBS
subdivision for ray intersection approach appeared earlier in [9].

7 Conclusion

The winding angle summation method has been studied in detail. It appears that
backward stability is its strongest attribute. The key property that makes backward
stability possible is the stability under edge perturbations. Some error and correctness
bounds for the trivial algorithm are given.

The introduced condition number K is important for the winding angle method.
This number is not dependent on the tesselation of the contour and also is invari-
ant under rotations. It is understood to be important also for the randomized ray
intersection method.

The winding angle calculation can be accelerated easily by precomputing a bound-
ing volume hierarchy. Unlike the trivial algorithm, the accelerated algorithm requires
choosing a single tolerance value for a practical implementation. It is explained how
this value can be chosen.

The main result of the paper is the complexity theorem for the BVH-accelerated
algorithm, which bounds the time complexity asymptotically depending on the con-
dition number K. This theorem is true only if all the bounding boxes are tight14. In

14and, strictly speaking, only in exact arithmetic

Reliable Computing 19, 2013 21

some simple cases, the optimal O(logn) time complexity is achieved. In particular,
this it true if the polygon is star-shaped around the point being tested or convex.

It is interesting to compare time complexity of the BVH-accelerated winding angle
summation with that of the ray intersection algorithm. Suppose that ray intersection
shoots a ray in random direction which intersects a contour in k points. Then it is
necessary to trace paths from the root to at least k leaves in the BVH. These paths
consist of O(k log N

k
) nodes in the worst case (although this number can be smaller

for some sets of leaves). Now recall that condition number K is exactly the average
of the number of intersection points k. This non-strict reasoning suggests that BVH-
accelerated ray intersection algorithm has similar or higher asymptotic complexity.
However, it does not mean that winding angle summation is really faster than ray
intersection in the BVH-accelerated setting. It is still very likely that the inverse
trigonometric functions take most of the time in the angle summation.

Several upper bounds on the condition number K have been proved. The most
fascinating one is related to the scaled absolute turning angle. Just like the condition
number K, it does not depend on the tesselation, but additionally it does not depend
on the point being tested.

The winding angle summation approach is still very easy to implement, like ray
intersection. An additional desirable feature is the ability to check that the calculated
winding number is close to an integer. If the winding number is relatively far from
integer, it is possible to print a diagnostic message saying that the contour may be
incorrect. The winding angle approach is used in the Russian Geometric Kernel, which
is being developed15.

There are several directions for future work. First of all, the BVH-accelerated
algorithm seems to often work in O(K) time without the logarithmic factor (see Ta-
ble 1). Perhaps this holds when the tesselation of the contour into edges is uniform,
in some sense. Second, the winding angle summation is resistant to errors in winding
angle calculation if they are not too high. Then it is possible to construct a valid PIP
algorithm that calculates winding angles for curvilinear edges by adaptive numerical
integration. Of course, the integration error must be kept under control, so the curves
cannot be pure black-boxes. There must be some way to extract information about
global behavior of the curve (interval analysis should be helpful here).

A Absolute Turning Angle Inequality

The purpose of this appendix is to prove Theorem 5.2. The polar angle function
ϕ(t) and the direction angle function were defined in Section 2 and Section 5.4. It is
assumed for simplicity that the point P is located at the origin O.

Define the function d(t) as

d(t) =
α(t)− ϕ(t)

π
.

Lemma A.1. Let γ be a smooth regular curve, P /∈ γ. Then
1. ϕ̇(t) = 0 ⇐⇒ d(t) ∈ Z,
2. ϕ̇(t) > 0 ⇐⇒ ∃z ∈ Z (2z < d(t) < 2z + 1), and

15Russian Geometric Kernel is a geometric modeling kernel being developed in Russia ac-
cording to the governmental program “National Technological Base”: “Developing Russian
Licensable Software – a Mathematical Kernel for 3D-Modeling as a Basis of Computer Systems
for Computer-Aided Design of Complex Engineering Products”.

22 S.Gatilov, Efficient Winding Angle Summation

3. ϕ̇(t) < 0 ⇐⇒ ∃z ∈ Z (2z + 1 < d(t) < 2z + 2).

Proof. Consider how transformation to polar coordinates affects derivatives (P = O):(
ẋ
ẏ

)
=

(
cosϕ −r sinϕ
sinϕ r cosϕ

)(
ṙ
ϕ̇

)
(
ṙ
ϕ̇

)
=

(
cosϕ sinϕ
− 1
r

sinϕ 1
r

cosϕ

)(
ẋ
ẏ

)
.

Simplifying ϕ̇(t), we get

ϕ̇ =
1

r
(ẏ cosϕ− ẋ sinϕ)

=
‖γ̇‖
r

(sinα cosϕ− cosα sinϕ)

=
‖γ̇‖
r

sin(α− ϕ) =
‖γ̇‖
r

sin(πd).

The curve γ is regular, so the sign of ϕ̇ is equal to the sign of sin(πd). This is precisely
what the statement says.

First, the theorem is proved for a subset of smooth curves. Let us call t ∈ [0, 1] a
critical point if and only if ϕ̇(t) = 0.

Theorem A.1. Let γ be a smooth curve, P /∈ γ. Assume that γ has finite number of
critical points. Then K ≤ Q.

Proof. Without loss of generality, we assume that

1. critical point parameters are 0 = τ0 < τ1 < τ2 < . . . < τk−1 < τk = 1;
2. ϕ(0) = α(0) = 0, ϕ(1) = 2πWϕ, α(1) = 2πWα (Wϕ,Wα ∈ Z).

It is always possible to transform the curve γ into such a curve by rotations and by
shifting and reversing the parameter space. The only exceptional case when it is not
possible is when γ has no critical points (k = 0), which will be handled later.

Figure 8: An example of a contour with its critical points and the function d(t).

Reliable Computing 19, 2013 23

Lemma A.1 helps us understand the behavior of the function d(t). Let qi = d(τi).
The lemma implies that qi ∈ Z. Hence, at any critical point t = τi, the angles ϕ(t) and
α(t) differ by a multiple of π. This means that the position vector and the tangent
vector lie on a common line. In the case of even d(τi), the vectors are codirectional,
and otherwise they have opposite directions.

The lemma shows how d(t) changes on the interval of monotonicity (τi, τi+1). The
function d(t) cannot take integer values on this interval because ϕ̇(t) 6= 0. Hence,
either d(t) ∈ (qi − 1, qi) or d(t) ∈ (qi, qi + 1), for all t ∈ (τi, τi+1). Hence, qi+1 − qi is
one of −1, 0, 1.

Now it is possible to compare the total variations of the functions ϕ(t) and α(t)
over (τi, τi+1). Since ϕ is monotonic, its total variation is simple to calculate exactly:

V
τi+1
τi [ϕ] =

∫ τi+1

τi

|ϕ̇(t)| dt =

∣∣∣∣∫ τi+1

τi

ϕ̇(t) dt

∣∣∣∣ = |ϕ(τi+1)− ϕ(τi)| = δϕi.

It suffices to bound the total variation of α(t) from below,

V
τi+1
τi [α] ≥ |α(τi+1)− α(τi)| = δαi.

Then we express α(t) in terms of ϕ(t) and d(t),

δαi = |ϕ(τi+1)− ϕ(τi) + π(qi+1 − qi)|. (10)

It is necessary to classify all the monotonicity intervals into three types:

1. Assume qi = qi+1.

It immediately implies
δαi = δϕi.

2. Assume qi 6= qi+1, and qi is even.

We want to show that qi+1 − qi and ϕ(τi+1)− ϕ(τi) have the same sign.

Consider the case of ϕ(t) increasing on (τi, τi+1). Then ϕ̇(t) > 0 on the interval;
hence, d(t) ∈ (2z, 2z + 1) due to Lemma A.1. Since qi is even and qi+1 is odd,
qi must be less than qi+1: qi+1 = qi + 1.

The case of decreasing ϕ(t) is similar: ϕ̇(t) < 0, so d(t) ∈ (2z+ 1, 2z+ 2). Since
qi is even, it must be greater than qi+1: qi+1 = qi − 1.

The absolute value can be transformed because the signs are the same,

δαi = |ϕ(τi+1)− ϕ(τi)|+ π|qi+1 − qi| = δϕi + π.

3. Assume qi 6= qi+1 and qi is odd.

It is possible to show that qi+1 − qi and ϕ(τi+1)− ϕ(τi) have opposite signs in
such a case, though it is not necessary. The triangle inequality yields

δαi ≥ |ϕ(τi+1)− ϕ(τi)| − π|qi+1 − qi| = δϕi − π.

The inequality for the overall variations is

V [α] =

k−1∑
i=0

V
τi+1
τi [α] ≥

k−1∑
i=0

δαi

≥
k−1∑
i=0

δϕi + π(#even −#odd)

=

k−1∑
i=0

δϕi =

k−1∑
i=0

V
τi+1
τi [ϕ] = V [ϕ],

24 S.Gatilov, Efficient Winding Angle Summation

where #even and #odd are the numbers of intervals of the types 2 and 3, respectively.
It is easy to see that these two types alternate with each other because the parity of
qi changes after any of them. Also, the overall number of intervals of these two types
must be even because qk−q0 = d(1)−d(0) = 2(Wα−Wϕ) is even. Hence, the numbers
#even and #odd must be equal.

This finishes the proof for the general case k ≥ 1.
Now we consider the case k = 0 (no critical points). In this case, ϕ̇(t) 6= 0

everywhere, so d(t) is not integer-valued everywhere due to Lemma A.1. Then d(1) =
d(0) because the curve γ is closed. The formulas similar to (10) can be produced:

V [α] ≥ |α(1)− α(0)| = |(ϕ(1)− ϕ(0)) + π(d(1)− d(0))| = V [ϕ].

It is possible to approximate an arbitrary smooth regular contour with a series of
piecewise-polynomial smooth contours, each with finite number of critical points. If
done correctly, the theorem is generalized to the smooth regular case.

If the contour is smooth regular everywhere except for one break with the angle
different from π, then it can be approximated by a series of smooth regular contours
by substituting an elliptic arc of diminishing size for the neighbourhood of the break.
After such simple break is handled, the theorem can be extended to breaks with angle
π and to any finite number of breaks.

Strict proofs of these steps are highly technical, and it is not worth to include them
in this paper.

Acknowledgements

The author wishes to thank the referee for comments, which helped to improve read-
ability of this paper.

References

[1] Herbert Edelsbrunner, Lionidas J Guibas, and Jorge Stolfi. Optimal point loca-
tion in a monotone subdivision. SIAM J. Comput., 15(2):317–340, 1986.

[2] Eric Haines. Point in polygon strategies. In Graphics gems IV, pages 24–46.
Academic Press Professional, Inc., San Diego, CA, USA, 1994.

[3] Nicholas J. Higham. The accuracy of floating point summation. SIAM J. Sci.
Comput, 14:783–799, 1993.

[4] Kai Hormann and Alexander Agathos. The point in polygon problem for arbitrary
polygons. Comput. Geom. Theory Appl., 20(3):131–144, 2001.

[5] Pentium Family Users Manual, 1994. Appendix G.

[6] Witold Lipski Jr. and Franco P. Preparata. Finding the contour of a union of
iso-oriented rectangles. J. Algorithms, 1(3):235–246, 1980.

[7] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12:28–35, 1983.

[8] Fritz Klein. A new approach to point membership classification in B-rep solids. In
Proceedings of the 13th IMA International Conference on Mathematics of Surfaces
XIII, pages 235–250, Berlin, Heidelberg, 2009. Springer-Verlag.

Reliable Computing 19, 2013 25

[9] Tomoyuki Nishita, Thomas W. Sederberg, and Masanori Kakimoto. Ray tracing
trimmed rational surface patches. SIGGRAPH Comput. Graph., 24(4):337–345,
1990.

[10] Les Piegl and Wayne Tiller. The NURBS Book (2nd ed.). Springer-Verlag, New
York, NY, USA, 1997.

[11] Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search
trees. Commun. ACM, 29(7):669–679, 1986.

[12] Stefan Schirra. How reliable are practical point-in-polygon strategies? In Pro-
ceedings of the 16th Annual European Symposium on Algorithms, ESA ’08, pages
744–755, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] Shane Story, Ping Tak, and Peter Tang. New algorithms for improved transcen-
dental functions on IA-64. In IEEE Symposium on Computer Arithmetic, pages
4–11, 1999.

	Introduction
	Angle Summation
	Edge Winding Angle Calculation
	Line Segment
	Circular Arc

	Stability
	Condition Number
	Summation Error
	Edge Perturbation Error
	Backward Stability

	Acceleration
	Precomputation
	Query
	Complexity Theorem
	Complexity Corollaries
	Results

	Application to NURBS Curves
	Conclusion
	Absolute Turning Angle Inequality

