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Abstract

We consider the smallest eigenvalue problem for symmetric or Hermi-
tian matrices by properties of semidefinite matrices. The work is based on
a floating-point Cholesky decomposition and takes into account all possi-
ble computational and rounding errors. A computational test is given to
verify that a given symmetric or Hermitian matrix is not positive semidef-
inite, so it has at least one negative eigenvalue. This criterion helps us to
find the smallest eigenvalue and singular value. Computational examples
show that these results can be quite accurate.
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1 Introduction
If A is symmetric or Hermitian and positive semidefinite (xtAx ≥ 0 for all x) then
a Cholesky factorization exists, but the theory and computation are more subtle than
for positive definite A. In this paper we use a standard Cholesky decomposition to
verify that a symmetric (Hermitian) matrix is not positive semidefinite, i.e. has at
least one negative eigenvalue. For this work we make small changes in an algorithm
that professor Rump applied in his paper “Verification of Positive Definiteness” [6]
and also added to INTLAB [5]. Our method is based on standard IEEE 754 floating
point arithmetic with rounding to nearest.

Denote by F (F+ iF) the set of real (complex) floating-point numbers with relative
rounding error unit epsand underflow unit eta. In case of IEEE 754 double precision,

eps = 2−53, eta = 2−1074 and γk =
keps

1− keps
for k ≥ 0

most of the properties are proved in [4, 7].
The main computational effort is one floating-point Cholesky decomposition. Using
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standard rounding error analysis, we find a rigorous bound on the smallest eigenvalue
of a symmetric or Hermitian matrix. Also we obtain the smallest singular value for a
lower triangular matrix L with diag(L) ≡ 1.

2 Notation

Let AT = A ∈ Mn(F) or A? = A ∈ Mn(F + iF). The following algorithm computes
the Cholesky factorization (A = RTR).

for j = 1 : n

for i = 1 : j − 1

rij =

(
aij −

i−1∑
k=1

r?kirkj

)/
rii

end

rjj =

(
ajj −

j−1∑
k=1

r?kjrkj

)1/2

end

Note that R is upper triangular. In [6] is said the decomposition “runs to completion”
if all square roots are real; for analysis see [2, 4]. Now let real AT = A ∈ Mn(F) or
complex A? = A ∈ Mn(F + iF) be given, and suppose the Cholesky decomposition
executed in floating-point arithmetic runs to completion. This implies ajj ≥ 0 and
r̃jj ≥ 0. Note that we do not assume A to be positive semidefinite – underflow
may occur. Then we can derive the following improved lower bound for the smallest
eigenvalue of A. Rump [6] has proved:

Theorem 2.1 Let AT = A ∈ Mn(F) or A? = A ∈ Mn(F + iF) be given. Denote the
symbolic Cholesky factor of A by R̂. For 1 ≤ i, j ≤ n define

s(i, j) := |{k ∈ N : 1 ≤ k < min(i, j) and r̂kir̂kj 6= 0}|, (1)

and denote

αij :=

{
γs(i,j)+2 s(i, j) 6= 0

0 otherwise

Suppose αjj < 1 for all j. With

dj := ((1− αjj)−1ajj)
1/2 and M := 3(2n+ max aνν),

define

0 ≤ ∆(A) ∈Mn(~R) by ∆(A)ij := αijdidj +Meta,

Then if the floating-point Cholesky decomposition of A runs to completion, the smallest
eigenvalue λmin(A) of A satisfies

λmin(A) > −‖∆(A)‖2.
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3 Arithmetical Issues

In Theorem 2.1, if the floating-point Cholesky decomposition of A is assumed to run
to completion then a lower bound for λmin is obtained. In [6], with this theorem and
Corollary (2.4), an algorithm for testing positive definiteness is developed.

In this section, an upper bound for λmin and Theorem 3.1 (floating-point Cholesky
decomposition ends prematurely) are used to present an algorithm for testing not
positive semidefiniteness. This algorithm is then used to find the smallest singular
value of a matrix.

Theorem 3.1 Let AT = A ∈ Mn(F) or A? = A ∈ Mn(F + iF) be given. Assume
that the floating-point Cholesky decomposition of A ends prematurely. Then with the
notation of Theorem 2.1,

λmin < ‖∆(A)‖2. (2)

For a proof see [6].

With this result, we can establish the following test in pure floating-point arith-
metic. In [6], floating-point subtraction with rounding downwards is used, but round-
ing upwards can also be used.

We use standard notation for rounding error analysis [4, 6].

Lemma 3.1 Let a, b ∈ F and c = fl(a ◦ b) for ◦ ∈ {+,−}, and define ϕ = eps(1 +
2eps) ∈ F. Then

fl(c− ϕ|c|) ≤ a ◦ b ≤ fl(c+ ϕ|c|),

We know that 1
2

eps−1eta is the smallest positive normalized floating-point number.
Proof: We use the fact that fl(a± b) = a± b for |a± b| < 1

2
eps−1eta and

fl(a± b) = a± b(1 + ε1) |ε1| ≤ eps

otherwise.
If directed rounding is available, we can define Ã = fl∆(A + cI). Otherwise we can
avoid directed rounding by using Lemma 3.1 and defining Ã ∈ Fn×n by

ãij :=

{
fl(d+ ϕ|d|) with d := fl(aii + c) if i = j
aij otherwise

where again ϕ := eps(1 + 2eps) ∈ F.

Theorem 3.2 With the notation of Theorem 2.1, assume that c ∈ F is given with
‖∆(Ã)‖2 ≤ c, where Ã ∈ Fn×n satisfies ãij = aij for i 6= j and ãii ≥ aii + c for all i.
If the floating-point Cholesky decomposition applied to Ã ends prematurely, then A is
not positive semidefinite, i.e. has at least one negative eigenvalue.

See [6] for a proof of Theorem 3.2.

Better upper bounds for ‖∆(A)‖2 are obtained by the fact that the nonzero ele-
ments of R must be inside the envelope of A. In [6], various bounds with different
properties are computed.
For a matrix A with nonzero diagonal, define

tj = j −min{i|aij 6= 0}. (3)
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This is the number of nonzero elements above the diagonal in the j-th column of A.
We have 0 ≤ tj ≤ n− 1 for all j, and the Cholesky decomposition implies

s(i, j) ≤ min(ti, tj) for all i, j.

Defining
δi = ((1− βi)−1βiaii)

1/2 with βi := γti+2,

we have αijdidj ≤ δiδj , and δ = (δ1, . . . , δn) ∈ Rn, and using Theorem 2.1 yields

‖∆(A)‖2 ≤ δT δ + nMeta.

This bound requires only o(n) operations. The quality of the bound can be improved
by reordering and scaling according to the Van der Sluis Theorem in [4]. With this
bound and the theorem in next section, we can computationally verify a symmetric
(Hermitian) is not positive semidefinite.

4 Applied Results

In this section we use the next theorem to change algorithm in [6] to another algorithm
that returns either “matrix is proved to be not positive semidefinite”, or no conclusion.
In summary, the algorithm is:

1. A ← A+ c ∗ speye(n), where speye is the sparse identity matrix, and the com-
putations are done with upward rounding.

2. [R, p] = chol(A), floating-point Cholesky Decomposition, with appropriate round-
ing mode.

3. p 6= 0, Matrix A is not proved to be positive semidefinite.

4. p = 0, positive semidefiniteness could not be verified.

This process helps us to find the smallest eigenvalue of a symmetric(Hermitian) matrix
and the smallest singular value of a lower triangular matrix L with diag(L) ≡ 1.

Theorem 4.1 Let symmetric A ∈ Mn(F) or Hermitian A ∈ Mn(F + iF) be given.
With tj as in (3), define

βi := γti+2, β
′
i := βi(1− βi)−1 and β

′′
i := β

′
i(1 + eps),

for i ∈ {1, . . . , n}, assume
∑n
i=1 β

′′
i < 1, and let c ∈ F be such that

c ≥
(

1−
n∑
i=1

β
′′
i

)−1( n∑
i=1

β
′′
i aii + nMeta

)
. (4)

Let Ã := fl∆(A+cI) be the floating-point computation of A+cI with rounding upwards.
If the floating-point Cholesky decomposition of Ã ends prematurely, then the matrix A
has at least one negative eigenvalue.

Proof:
δi = ((1− βi)−1βiaii)

1/2 with βi := γti+2,

β
′
i = βi(1− βi)−1

Then
‖∆(A)‖2 ≤ δT δ + nMeta
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=

n∑
i=1

[((1− βi)−1βiaii)
1/2]2 + nMeta =

n∑
i=1

β
′
iaii + nMeta. (5)

Since Ã = fl∆(A+ cI), we have ãii = (aii + c)(1 + εi) with 0 ≤ εi ≤ eps for all i, and

n∑
i=1

β
′
i(aii + c)(1 + εi) + nMeta =

n∑
i=1

β
′
i ãii + nMeta.

Then, by a little computation and using (5), we have:

β
′′
i := β

′
i(1 + eps),

n∑
i=1

β
′′
i < 1,

so

c ≥
∑n
i=1 β

′′
i aii + nMeta

1−
∑n
i=1 β

′′
i

=

∑n
i=1 β

′
i(1 + eps)aii + nMeta

1−
∑n
i=1 β

′′
i

=

∑n
i=1 β

′
iaii + nMeta + eps

∑n
i=1 β

′
aii

1−
∑n
i=1 β

′′
i

≥ ‖∆(A)‖2,

and

‖∆(Ã)‖2 ≤
n∑
i=1

β
′
i(aii + c)(1 + eps) + nMeta ≤ c. (6)

Now suppose the floating-point Cholesky decomposition of Ã ends prematurely. Then
Ã = A+ cI +D with diagonal D ≥ 0, and Theorems 3.1 and 3.2 imply

λmin(A) = λmin(Ã−D)− c ≤ λmin(Ã)− c < ‖∆(Ã)‖2 − c ≤ 0.

Now we want to find the smallest eigenvalue of a symmetric or Hermitian matrix
based on Theorem 4.1. For s = ‖A‖1, the matrix A−sI has only nonpositive eigenval-
ues and A+ sI is positive semidefinite. We bisect the interval [−s, s] to find a narrow
interval [s1, s2] such that Theorem 4.1 verifies existence of at least one negative eigen-
value of A− s2I.
We have s1 < λmin(A) < s2 so λmin ≈ 1

2
(s1 + s2) and

ãij :=


s2 − s1

|s1 + s2|
if s1, s2 6= 0,

s2 − s1 otherwise.

For the following, Table 1 shows results on various matrices out of the Harwell-Boeing
matrix market. We display the name of the matrix, dimension (n), the total number
of nonzero elements (nnz), the smallest eigenvalue λmin(A) and accuracy.
All matrices are normed to ‖A‖1 ≈ 1 by a suitable power of 2 to have comparable
results for different matrices. For some matrices (like “bcsstk24” and “bcsstk25”) the
smallest eigenvalue is enclosed to almost maximum accuracy, and for some matrices
(such as “bcsstk19”, “s3rmq4m1” and “s3rmt3m1”) the smallest eigenvalue is enclosed
to almost minimum accuracy.
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Table 1: Accuracy of determination of λmin(A)
Matrix n nnz(A) λmin(A) accuracy

nos1 237 1017 7.179912× 10−9 4.131036× 10−5

nos2 957 4137 1.374003× 10−11 2.125679× 10−2

nos3 960 15844 1.116235× 10−6 4.474995× 10−7

nos6 675 3255 1.490150× 10−8 1.804826× 10−5

nos7 729 4617 6.218675× 10−11 5.847953× 10−3

494bus 494 1666 1.895505× 10−7 1.542731× 10−6

685bus 685 3249 9.443388× 10−7 3.786334× 10−7

1138bus 1138 4054 2.683175× 10−8 1.185381× 10−5

bcsstk08 1074 12960 2.143812× 10−8 1.974372× 10−5

bcsstk09 1083 18437 3.307233× 10−6 1.245038× 10−7

bcsstk10 1086 22070 1.589878× 10−7 1.870267× 10−6

bcsstk11 1473 34241 3.450428× 10−10 9.970089× 10−4

bcsstk12 1473 34241 3.450428× 10−10 9.970089× 10−4

bcsstk13 2003 83883 1.631271× 10−11 1.639344× 10−2

bcsstk14 1806 63454 7.532640× 10−11 4.347826× 10−2

bcsstk15 3948 117816 1.479874× 10−11 1.960784× 10−2

bcsstk16 4884 290378 7.101325× 10−12 4.347826× 10−2

bcsstk17 10974 428650 7.137364× 10−12 6.666666× 10−2

bcsstk18 11948 149090 2.651683× 10−13 5.303367× 10−13

bcsstk19 817 6853 1.422774× 10−12 2.000000× 10−1

bcsstk20 485 3135 4.906076× 10−13 9.812153× 10−13

bcsstk21 3600 26600 1.679812× 10−9 1.886436× 10−4

bcsstk22 138 696 1.574716× 10−6 2.632306× 10−7

bcsstk23 3134 45178 4.129391× 10−13 8.258782× 10−13

bcsstk24 3562 159910 4.505463× 10−13 9.010926× 10−13

bcsstk25 15439 252241 4.965233× 10−13 9.930466× 10−13

bcsstk26 1922 30336 1.734873× 10−9 1.840603× 10−4

bcsstk27 1224 56126 2.139279× 10−6 1.596163× 10−7

bcsstk28 4410 219024 3.793892× 10−10 7.390983× 10−4

bcsstk29 13992 619488 −4.456757× 10−3 6.918194× 10−11

bcsstk30 28924 2043492 −1.621731× 10−3 2.254227× 10−10

bcsstk31 35588 1181416 −2.489720× 10−3 1.535309× 10−10

bcsstk32 44609 2014701 −3.938285× 10−3 7.106851× 10−11

bcsstm10 1086 22092 −3.930151× 10−3 7.484557× 10−11

bcsstm12 1473 19659 1.655245× 10−7 2.860420× 10−6

bcsstm27 1224 56126 −9.092098× 10−5 2.896654× 10−9

s1rmq4m1 5489 262411 1.131622× 10−8 3.356943× 10−5

s1rmt3m1 5489 217651 1.131880× 10−8 2.633866× 10−5

s2rmq4m1 5489 263351 1.849629× 10−10 1.605136× 10−3

s2rmt3m1 5489 217681 9.233019× 10−11 5.128210× 10−3

s3dkt3m2 90449 3686223 3.735724× 10−13 7.471449× 10−13

s3rmq4m1 5489 262943 1.444858× 10−12 3.333333× 10−1

s3rmt3m1 5489 217669 1.141553× 10−12 3.333333× 10−1

s3rmt3m3 5357 207123 1.049923× 10−12 3.333333× 10−1

e40r0000 17281 553216 −1.525591× 10−7 2.571163× 10−6

fidapm11 22294 617874 −8.589980× 10−3 3.659472× 10−11

af23560 23560 460598 −1.900918× 10−2 2.227833× 10−11
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Table 2: Accuracy of determination of λmin(H)

Dimension λmin(H) accuracy λmin(H)Matlab

100 4.5333× 10−13 9.0665× 10−13 −6.9998× 10−17

300 3.9548× 10−13 7.9096× 10−13 −8.2682× 10−17

500 2.5571× 10−13 5.1142× 10−13 −7.4669× 10−17

1000 3.6212× 10−13 7.2425× 10−13 −5.1042× 10−17

2000 2.5625× 10−13 5.1250× 10−13 −7.7758× 10−17

3000 3.1393× 10−13 6.2785× 10−13 −7.0075× 10−17

Table 3: Accuracy of determination of σmin(L)

Dimension σmin(L) accuracy

100 7.243781× 10−3 5.396916× 10−9

300 4.589570× 10−3 2.322655× 10−8

500 2.242722× 10−3 7.102137× 10−8

700 2.285277× 10−3 8.117293× 10−8

1000 2.007210× 10−3 6.279454× 10−8

1500 2.046545× 10−3 7.242206× 10−8

2000 1.310475× 10−3 2.069148× 10−7

3000 1.426971× 10−3 2.138952× 10−7

4000 1.379455× 10−3 1.325055× 10−7

5000 1.229878× 10−3 1.900621× 10−7

We also used this method to find the smallest eigenvalue of the Hilbert matrix.
This matrix is symmetric positive definite and original elements are

H̃ij =
1

i+ j − 1
,

but rounding errors cause Matlab to give us λmin(H) < 0; see Table 2.
Now we use this work to find the smallest singular value for lower triangular matrix

L with diag(L) ≡ 1.

L =


1 0 . . . 0
? 1 0 . . . 0
? . . . 1 . . . . . .
? ? . . . . . . 1 0
? ? . . . ? 1

 , (7)

One possibility is to use A = LTL, which is positive semidefinite, and use Theorem 4.1
to calculate the smallest eigenvalue for the matrix A. Doing so, we have:

σmin(L) =
√
λmin(A), (8)

Table 3 shows the results for lower triangular matrices with different rank and prandom
elements below the diagonal. For example we could calculate, the smallest singular
value for the matrix A with “dimension(A)=5000” to about 7 decimal figures. Table 3
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shows that, when the dimension increased, accuracy in the last column decreased.
The disadvantage is that this method is restricted to condition number [1, 3], about

108 or 1010. The above matrices are well-conditioned, with smallcondition number;
for example for matrix L3000×3000 the condition number is 2.288663× 103. Note that
all matrices are scaled to ‖A‖1 ≈ 1.

5 Summary

In this paper, we used the results of Sections 3, 4 and Theorem 4.1 to find the small-
est eigenvalue of a symmetric (Hermitian) matrix and the smallest singular value of
a lower triangular matrix L with diag(L) ≡ 1. This is done by verifying positive
semidefiniteness. The verification needs one floating-point Cholesky decomposition.
The computation either verifies that a given symmetric (Hermitian) matrix is not
positive semidefinite, so has one or more negative eigenvalue or else comes to no con-
clusions.
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