
Real Root Approximation Using Fat Spheres∗

Sz. Béla†

Institute of Mathematics, Department of Geometry,
Budapest University of Technology and Economics,
Egry József út 1, 1111 Budapest, Hungary

belus@math.bme.hu

B. Jüttler
Institute of Applied Geometry, Johannes Kepler
University, Altenberger Str. 69, 4040 Linz, Austria

bert.juettler@jku.at

Abstract

We present a new algorithm to approximate real roots of multivari-
ate polynomial systems. This algorithm combines the standard subdi-
vision technique with a new domain reduction strategy. We introduce
fat spheres as multidimensional quadratic enclosures for algebraic hyper-
surfaces. Then we present a local reformulation technique of the algebraic
system, which provides a method to generate fat spheres. Based on the fat
sphere generation we formulate the new domain reduction strategy. The
iterative domain reduction generates a sequence of bounding boxes, which
converge with order three to the single roots of a multivariate polynomial
system.

Keywords: real root approximation, fat spheres, algebraic solver, subdivision
AMS subject classifications: 65D17, 65D18

1 Introduction

Finding real roots of multivariate polynomial systems is frequently needed in various
algebraic and geometric computations. Therefore real root finding methods are under
active development for a long time. Solvers presented in the literature are based on
different algebraic and geometric approaches. A general overview of the multivariate
root finding algorithms is given in [8, 18].

Algebraic approaches, such as the Gröbner-basis technique [4], resultant based
methods or continuous fractions methods, assure exact and efficient solution algo-
rithms. An algebraic solver, which uses the Gröbner-basis technique, was developed

∗Submitted: July 29, 2011; Revised: December 7, 2011; Accepted: July 5, 2012.
†This work was supported by the Austrian Science Fund (FWF) through the Doctoral

Program in Computational Mathematics, subproject 3.

72

belus@math.bme.hu
bert.juettler@jku.at


Reliable Computing 17(2), 2012 73

for instance by Rouillier [15] for bivariate polynomial systems. Busé et al. consid-
ered resultant based methods in [5, 6]. In [9] an algebraic method is described, which
uses Sturm-Habicht sequences. However, these algorithms frequently provide more
information about the solutions than one needs in certain applications, especially in
geometric computing. It is often unnecessary to compute all solutions. For instance
CAD-systems usually require information only about real solutions, which lie in a
certain domain. Moreover, symbolic methods are not well adapted to numerical com-
putations.

Homotopy solvers compute a family of root-finding problems. These methods
transform a simple problem to the original one in several steps, and compute the
roots of each intermediate problem. The computed sequence of roots converges to the
solutions of the original root-finding problem. Polynomial solvers based on homotopy
methods can be found in [12, 13]. However, homotopy methods always compute all
solutions of the polynomial system, which may lead to high memory requirements,
even if only the solutions within a certain domain are needed for the application.

Geometric modeling is an important application area of real root approximation. In
this field of application it is only required to compute real roots of polynomial systems
in a bounded domain of n-dimensional space. Subdivision algorithms constitute an
important family of the real root finding algorithms. These algorithms compute in
a certain domain (usually in an axis-aligned box). They decompose the problem
into several sub-problems. The decomposition terminates if suitable approximating
primitives can be generated in each sub-problem [14]. In order to construct these
approximating primitives, several domain reduction strategies can be combined with
standard subdivision techniques. These domain reduction methods are usually based
on interpolation, bounding region generation or least-squares approximation.

An essential tool of subdivision based algorithms is to represent the multivariate
polynomials by their Bernstein-Bézier form. This representation form is numerically
stable, and provides several advantageous properties. The de Casteljau algorithm pro-
vides fast a computational method for representing the polynomial system in different
regions of the initial computational domain. The convex hull and the variation dimin-
ishing properties can be efficiently applied in several steps of the domain reduction
strategies.

The first subdivision solvers were developed by Sederberg et al. for bivariate
polynomials represented in Bernstein-Bézier tensor product form. They use clipping
and subdivision techniques [16, 17]. Later on a family of algorithms was invented which
uses projection techniques [19]. Garloff et al. [10] combined a subdivision technique
with a pruning step based on the convex hull property of Bernstein polynomials and
an existence test based on Miranda’s theorem. The most recently developed solvers
have been presented by Mourrain et al. [8] and Elber et al. [7].

In this paper we present a new domain reduction strategy, which is based on
bounding region generation for algebraic hyper-surfaces. First we introduce a new
type of quadratic enclosure and describe a method to bound the algebraic hyper-
surfaces. Then we present a domain reduction algorithm, which generates intersecting
enclosures to bound the real roots of the polynomial system. In Section 4 we show that
the domain reduction strategy generates a sequence of bounding boxes, which converge
with order three to the single roots of a multivariate polynomial system. Later on we
present a hybrid algorithm, which uses the domain reduction strategy combined with
the global subdivision process. Finally we demonstrate the behaviour of the algorithm
by several examples.



74 Béla and Jüttler, Real Root Approximation Using Fat Spheres

2 Fat Spheres

In order to bound the real roots of multivariate polynomial systems we introduce a
special, multi-dimensional enclosure, the so-called “fat sphere”. We present an alge-
braic approach, which reformulates the algebraic system in order to bound algebraic
hyper-surfaces by fat spheres.

2.1 Fat Spheres as Quadratic Enclosures

A segment of an algebraic hyper-surface is given as the zero set of a polynomial in an
axis-aligned box Ω0 ⊂ R

n. It allocates the point set

C(f,Ω0) = {x : f(x) = 0} ∩ Ω0.

We consider different segments C(f,Ω) of this surface patch in different sub-domains
of the initial computational domain Ω ⊂ Ω0. All these sub-domains are assumed to be
axis-aligned boxes as well. In order to generate a bounding region for a surface patch
C(f,Ω) we define fat spheres as follows.

Definition 2.1. A fat sphere is defined in an axis-aligned box Ω ⊂ R
n by

- a multi-dimensional sphere (median sphere) S ⊂ R
n,

- and a distance ̺ ∈ R.

Then the fat sphere is the point set in the box Ω

F(S , ̺,Ω) = {x : ∃x0 ∈ S , ‖x− x0‖2 ≤ ̺} ∩ Ω.

The fat sphere with one-dimensional median sphere is the so-called fat arc in R
2

(see [2]). In this case the median sphere is a circle.
A multi-dimensional sphere S can always be defined as an algebraic set. It is the

zero set of a special quadratic equation, which possesses the form

p = a〈x,x〉+ 〈b,x〉+ c = 0, a, c ∈ R, b ∈ R
n,

where not all coefficients vanish simultaneously. A whole sphere S is defined alge-
braically as

S = {x : p(x) = 0}.
The median spheres can also be represented in parametric form with the help of

rational functions. It is an advantageous property of arcs and spheres that they possess
an exact rational parametric and implicit representation. The implicit representation
provides a simple way to represent the offset of the spheres and to compute their
intersection, while the parametric form simplifies the visualisation.

2.2 Algebraic Reformulation

We approximate the zero set of the polynomials F = {f1, . . . , fn} in the sub-domain
Ω ⊂ R

n. The geometric interpretation of this problem is to find the intersection points
of algebraic hyper-surfaces in the sub-domain Ω. In order to find these intersection
points, we compute a new polynomial f̂ , which has a special Hessian matrix in the
center point c of the sub-domain Ω,

H(f̂)(c) =






λ · · · 0
...

. . .
...

0 · · · λ




 = λ I

n×n, λ ∈ R. (1)



Reliable Computing 17(2), 2012 75

We apply the same reformulation technique as presented in [3] to generate approximat-
ing arcs for algebraic space curves. We compute a polynomial f̂ as the combination
of the polynomials fi ∈ F with respect to the index set i ∈ J ⊆ {1, . . . , n} as

f̂ =
∑

i∈J

kifi (2)

with the linear polynomials ki defined as

ki(x) = ui +
n∑

j=1

kj
i (x

j − cj), kj
i , ui ∈ R, (3)

where c = (cj)nj=1 is the center point of the sub-domain Ω. The new polynomial f̂
has to satisfy (1). The coefficients of ki can be computed by solving a linear system.
In order to obtain not only the trivial solution for the coefficients of the multipliers
ki, we choose for the constant terms ui of the multipliers arbitrary but fixed, non-zero
parameter values.

Lemma 2.2. Let NJ = #J denote the number of the elements of the index set J ⊆
{1, . . . , n}. We compute ki for an arbitrary but fixed parameter vector u = (ui)i∈J,
where ui 6= 0. If the gradient vectors ∇fi(c) are linearly independent and

n− 1 ≤ NJ, (4)

then a non-trivial polynomial f̂ of the form (2) can always be found, which satisfies
(1) in the center point c of a sub-domain Ω.

The proof is based on a comprehensive analysis of the linear system which has to
be solved in order to find the linear multipliers ki. Due to space limitations, we do
not present the proof in this paper. The interested reader is referred to [1].

According to Lemma 2.2 we consider only the cases where the combination (2)
involves n − 1 or n polynomials. In both cases the linear polynomials ki can be
computed for arbitrary but fixed parameters ui 6= 0. In Table 1 we present the
dimensions of the linear system which has to be solved in order to find the linear
multipliers ki. The solution space of the coefficients of ki is at least one dimensional
for polynomial systems given in three- or higher dimensional space. However, we
need only one collection of coefficients, which defines the multipliers ki. Therefore
we compute the vector of coefficients kj

i , which has the smallest l2-norm. Then the
multipliers ki obtained by the construction are unique for each parameter vector u.

Lemma 2.3. Given the set of polynomials F = {fi : i = 1, . . . n} over the domain
Ω ⊆ Ω0, we suppose that for any point c ∈ Ω0 the vector set {∇fi(c) : fi ∈ F} is lin-
early independent. For an arbitrary but fixed vector of parameters u, where ui ∈ R\{0},
we compute the polynomial f̂ with a special Hessian matrix using the linear multipliers
with the coefficient vector with minimal l2-norm. Then f̂ depends continuously on the
points of the domain Ω0.

The proof is available in [1].
After the algebraic reformulation the new polynomials possess a special quadratic

Taylor expansion p = T 2
c
f̂ . The quadratic polynomial defines the algebraic set

S = {x : p(x) = 0},



76 Béla and Jüttler, Real Root Approximation Using Fat Spheres

Table 1: Comparison of strategies to construct polynomials with special Hessians
for different numbers of variables. The table shows the number of coefficients and
the dimension of their solution space in the construction of a new function f̂ . For
each number of dimensions n, the first row shows the results if we combine n − 1
polynomials, the second one if we combine n polynomials.

n
number of

NJ
number of dimension of

equations coefficients solution system

2 2
1 2 0
2 4 2

3 5
2 6 1
3 9 4

4 9
3 12 3
4 16 7

5 14
4 20 10
5 25 11

...

100 5049
99 9900 4851
100 10000 4951

which is a sphere. This sphere can be used as median sphere for approximating the
algebraic hyper-surface f̂ = 0. The Bernstein-Bézier (BB) norm is the maximum
absolute value of the coefficients in the BB-form of the polynomial represented in the
domain Ω. With the help of this norm we can bound the difference of the polynomials
f̂ and p in Ω

ε = ‖f̂ − p‖ΩBB. (5)

Due to the convex hull property

|f̂(x)− p(x)| ≤ ε, ∀x ∈ Ω,

which implies that

p(x)− ε ≤ f̂(x) ≤ p(x) + ε, ∀x ∈ Ω. (6)

A fat sphere as bounding region can be defined in Ω for f̂ = 0 as

F(p, ε,Ω) = {x : |p(x)| ≤ ε} ∩ Ω.

The boundaries of this region are the offsets of the median sphere p = 0. This fat
sphere bounds the zero level set of f̂ .

In the two-dimensional case the fat sphere generation is the same as the fat arc
generation (see [2]). The zero level set of polynomials and their approximations are
given by implicitly defined curves in R

2. In the three-dimensional space we have two
different strategies to generate modified polynomials. We can use either two or all three
polynomials from F to generate a new polynomial f̂ . Then a fat sphere is defined as
a thickened region of a three-dimensional sphere.



Reliable Computing 17(2), 2012 77

3 Domain Reduction

In order to find real roots of polynomial systems, we present here a new domain
reduction strategy. This domain reduction strategy generates fat spheres to bound
the zero set of the algebraic system.

3.1 Domain Reduction Algorithm

In order to bound the zero set of a polynomial system, we present here a domain
reduction algorithm, which is applied to the sub-domains of the initial computational
domain Ω0. First it detects the empty sub-domains in the computational domain and
eliminates them. Therefore it analyzes the sign changes of the BB-coefficients in the
representation of the polynomials. If one of the polynomials has only negative or only
positive BB-coefficients over the sub-domain, then no point of the sub-domain belongs
to the solution set of the polynomial system. Such sub-domains can be neglected
during further computations.

In order to bound the zero set of the polynomials F = {f1, . . . , fn}, we compute a
new system of polynomials with modified Taylor expansion. The technique described
in Section 2.2 provides us with a method to compute polynomials f̂i which possess
a special Hessian matrix in the center point of the sub-domain. The set of modified
polynomials F̂ = {f̂1, . . . , f̂n} has a zero set which contains the solution set of the
polynomials F in the sub-domain Ω. The quadratic Taylor expansion of the modified
polynomials about the center point c of Ω

pi(x) = T 2
c
(f̂i)(x) = f̂i(c) +∇f̂i(c)T(x− c) +

1

2
(x− c)TH(f̂i)(c)(x− c)

has a zero level set, which is a part of a sphere. Each sphere is used as a median sphere
to generate a fat sphere Fi(pi, εi,Ω). Such a fat sphere is the thickened neighbourhood
of the median sphere pi = 0, and it contains the zero set of f̂i in the sub-domain Ω.
If all the fat spheres intersect in Ω, then a min-max box is constructed around this
intersection (see details in Section 3.2). The domain reduction algorithm returns this
min-max box Ω∗as a bounding region of the zero set of the polynomials fi ∈ F .

If the fat spheres have no intersection, then the sub-domain Ω does not contain any
point of the zero set of F̂ , as well as any point of solution set of F . This implies that no
real root of the polynomial system lies in the sub-domain Ω. Thus, such a sub-domain
with non-intersecting fat spheres can be neglected in the further computations.

The two-dimensional real root finding algorithm approximates the solution of two
bivariate polynomials. In this low dimensional case the median sphere is always a
circular arc. In each sub-domain, which is not detected as a region without any
root inside, the algorithm DomainReduction generates two fat arcs. These are the
bounding regions of the two different algebraic curves. The first row of Figure 1
presents some examples of fat arcs and the bounding boxes around their intersections.
In the second figure of the first row one can see that the fat arcs intersect each other,
however the algebraic curves have no intersection point in the sub-domain. Such “false
positive boxes” can be eliminated if we apply the domain reduction iteratively. In
the three-dimensional case the algorithm DomainReduction bounds the intersection of
three algebraic surfaces. The fat spheres are generated as thickened three-dimensional
spheres. The second row of Figure 1 presents some examples of these fat spheres and
the generated bounding boxes around their intersections.



78 Béla and Jüttler, Real Root Approximation Using Fat Spheres

Algorithm 1 DomainReduction(F,Ω)

Require: Each polynomial has a sign change in its BB-coefficients in Ω.
1: f̂i : modified polynomials with spherical quadratic Taylor expansion pi
2: Si = {x : pi(x) = 0} {median spheres}
3: εi = ‖f̂i − pi‖ΩBB

4: F(pi, εi,Ω) {fat spheres}
5: C ← extremal points of fat sphere intersection
6: if C 6= ∅ then
7: Ω∗ ← min-max box around the points C {new bounding domain}
8: return Ω∗

9: end if

10: return ∅ {no bounding domain has been found}

Figure 1: Examples generated by the algorithm DomainReduction. In the first row fat
arcs are generated to bound the intersection of planar algebraic curves. The algebraic
curves are red, the median circles are shown in green. The gray regions represent
the generated bounding regions: the min-max boxes around the intersections of fat
arcs. In the second row fat spheres are shown. The boundary patches of the three
fat spheres are represented in red, green and blue. The gray regions represent the
generated min-max boxes around the intersections of fat spheres.



Reliable Computing 17(2), 2012 79

(a) (b)

Figure 2: Extremal points of fat arc intersection. The fat arcs are represented by
their bounding arcs (black) and the median arcs (green). In figure (a) the fat sphere
corner points are marked by yellow dots and the fat sphere extreme points (fat sphere
1-extrema) by pink ones. The important fat sphere extrema are marked by red dots
in figure (b). The bounding region of the fat arc intersection is the min-max box
generated around the important fat sphere extrema (gray rectangle).

3.2 Min-max Box of the Intersection of Fat Spheres

In order to bound the zero set of the polynomials F̂ , we consider the intersection of
the generated fat spheres. Each fat sphere

Fi(pi, εi,Ω) = {x : |pi(x)| ≤ εi} ∩ Ω

bounds the zero level set of the polynomial f̂i in the sub-domain Ω. If the intersection
of fat spheres is not empty,

I =

n⋂

i=1

Fi(pi, εi,Ω) 6= ∅,

then it contains the zero set of the polynomials f̂i in the sub-domain Ω. The region I
is a “curved polytope”, which is bounded by spherical patches and linear subspaces.
The spherical patches are a part of the boundary surfaces of the fat spheres. The pair
of bounding spheres of the fat sphere Fi(pi, ε,Ω) can be described as the point set

Pi = {x : pi(x) = ±εi} ∩ Ω.

The segments of linear subspaces which bound the fat sphere intersection are a part of
the boundaries of the sub-domain Ω. If the sub-domain is of the form Ω = ×n

i=1[αi, βi],
then the ith boundary pair of the domain Ω is defined as

∂Ωi = {x : xi = αi ∨ xi = βi} ∩ Ω.

An example for a two-dimensional fat arc intersection is shown in Figure 2. Each fat
arc is the intersection of the computational domain and an annulus. The intersection
of two fat arcs is bounded by a curved polygon. The boundaries of the polygon are
circular arcs.



80 Béla and Jüttler, Real Root Approximation Using Fat Spheres

In general it is not practical to use the intersection of fat spheres as computational
domains in further domain reductions. In order to reduce iteratively the bounding
regions, the output of the domain reduction has to be an axis-aligned box. Therefore
we compute the min-max box, which bounds the fat sphere intersection I. This box
can be computed exactly, by finding the extremal points of the fat sphere intersection.
For instance, in Figure 2(b) the extremal points of the fat arc intersection are marked
by red dots. Four of these extrema are the intersection points of the fat arc boundaries,
while another one is an extremal point of a boundary arc. In order to find the extremal
points of the fat sphere intersection in general, we use the following definitions.

Definition 3.1. Let NS denote the number of the elements of an index set S ⊆
{1, . . . , n}. A point x ∈ Ω is called

(i) fat sphere corner point if I, J ⊂ {1, . . . , n}, NI = k, NJ = n− k :

x ∈ X =
⋂

i∈I

∂Ωi

⋂

j∈J

Pj

(ii) fat sphere m-extreme point if I, J ⊂ {1, . . . , n}, NI = k, NJ < n− k

x ∈ Y =
⋂

i∈I

∂Ωi

⋂

j∈J

Pj ,

where Y is an m-dimensional algebraic object, and there exists n−k−m different
indexes l ∈ {1, . . . , n} \ I, such that each of them satisfies

∂pj
∂xl

= 0.

All corner points x of the sub-domain Ω are fat sphere corner points for k = n

x ∈
n⋂

i=1

∂Ωi ⊂ X .

All intersection points x of the fat sphere boundaries, which lie in the interior of the
domain Ω, are in the point set

x ∈
n⋂

j=1

Pi ⊂ X ,

These points are fat sphere corner points with k = 0.

Definition 3.2. We call a fat sphere corner point or a fat sphere extreme point x an
important fat sphere extrema, if it satisfies for all i ∈ {1, . . . , n}

−εi ≤ pi(x) ≤ εi,

thus the point x belongs to the intersection I of the fat spheres.

According to these definitions, all fat sphere corner points and fat sphere ex-
treme points are defined by an equation system with n equations in n variables, where
all equations are linear or quadratic. The quadratic equations are the equations for
spheres. Therefore each fat sphere corner point and fat sphere extreme point can be
computed as the solution of an equation system consisting of n − 1 linear equations



Reliable Computing 17(2), 2012 81

and a single quadratic equation. So all important fat sphere extrema can be computed
by solving a finite number of algebraic systems, where each system consists of n − 1
linear equations plus one linear or quadratic equation and at most 2n inequality tests.
The min-max box around the region I =

⋂n

i=1 Fi(pi, εi,Ω) 6= ∅, which is the fat sphere
intersection in the sub-domain Ω, is the min-max box around the important fat sphere
extrema. This axis-aligned box contains all points of the zero set of F , which lie in
the sub-domain Ω. Therefore this box is a reduced bounding region of the zero set of
F in the sub-domain Ω.

Figure 2(b) shows a two-dimensional fat arc intersection, where the fat sphere
corner points and the fat sphere extreme points are marked by red and blue dots.
The red ones denote the important fat sphere extrema. This computational method is
sufficiently fast and effective to reduce bounding regions, for low dimensional examples
according to our experiments. Nevertheless, later on the extremal point computation
can cause problems, as the number of computed points increases exponentially with
the number of dimensions n.

4 Convergence of Domain Reduction

We bound the zero sets of polynomials with the help of quadratic enclosures. Therefore
we expect that the rate of convergence of the sequence of bounding regions is equal to
three. This expectation is confirmed for single roots of polynomial systems in Theorem
4.6 at the end of this section.

If we assume that the polynomials F possess a single root r in a domain, then the
gradient vectors of the polynomials are linearly independent in the point r. Thus the
implicitly defined hyper-surfaces, defined by the zero set of the polynomials, intersect
each other transversely at the root. Moreover, there exists a domain Ω0 around the
root r, such that for any point x ∈ Ω0 it holds that

det(J(F )(x)) 6= 0, (7)

where J denotes the Jacobian matrix of the polynomials F . Thus the gradient vectors
∇f1(x),∇f2(x), . . . ,∇fn(x) are linearly independent for all x ∈ Ω0. Therefore we
suppose that any point of the initial domain Ω0 fulfills (7).

The algorithm DomainReduction computes first a set of modified polynomials F̂ .
Each point of Ω0 fulfills (7), so the gradient vectors ∇fi(x) do not vanish. If we
compute in a sufficiently small sub-domain of Ω0, it can be shown that each modified
polynomial has a positive lower bound on the gradient length. Therefore also the
quadratic Taylor expansions of the modified polynomials are non-zero polynomials.
The following lemma certifies that the gradient vectors of the modified polynomials
are linearly independent in a sufficiently small sub-domain of Ω0.

Lemma 4.1. Suppose that the gradient vectors ∇f1(x),∇f2(x), . . . ,∇fn(x) of the
polynomials fi ∈ F are linearly independent for all x ∈ Ω0. Consider a sub-domain
Ω ⊆ Ω0, which has a diameter δΩ < ε. We compute the set of modified polynomials
F̂ in the sub-domain Ω for the arbitrary but fixed vectors of constants ui, which are
linearly independent. If ε is sufficiently small, then for all x ∈ Ω

det(J(F̂ )(x)) 6= 0.



82 Béla and Jüttler, Real Root Approximation Using Fat Spheres

Proof. The gradient vectors of fi are linearly independent in any point of Ω0, therefore
there exists a constant K > 0, such that all x ∈ Ω0 satisfy

| det(J(F )(x))| ≥ K > 0.

We compute the set of polynomials F̂c with special Hessians in a certain point c ∈ Ω0

for the fixed vectors of constants ui. Then the gradient vectors of f̂i ∈ F̂c in the point
c can be expressed as

∇f̂i(c) =
n∑

j=1

uj
i∇fi(c).

The vectors of constants ui define the matrix U = (u1, . . . ,un). Since the vectors ui

are linearly independent, the determinant of U is a positive constant U

|det(U)| = U > 0.

Therefore the determinant of the Jacobian of F̂c at the point c satisfies

|det(J(F̂c)(c))| =
∣
∣
∣det

(

U
T · J(F )(c)

)∣
∣
∣ = |det(U)| · |det(J(F )(c))| ≥ UK > 0.

Suppose that Ω ⊆ Ω0 is a sub-domain with center point c. The set of new polynomials
computed at a point c is F̂c. Then there exists εc > 0, such that if the diameter δΩ of
the sub-domain Ω is smaller than εc, for all x ∈ Ω

|det(J(F̂c)(x))| > 0.

Lemma 2.3 implies that for fixed vectors of constants ui the system of polynomials F̂c

depends continuously on the point c. Thus there exists a general bound ε > 0, such
that for any sub-domain Ω ⊆ Ω0, which has the diameter δΩ < ε, any x ∈ Ω satisfies

|det(J(F̂ )(x))| > 0,

where F̂ is the set of polynomials with special Hessians in the center of the sub-domain
Ω.

Corollary 4.2. The median spheres are the zero sets of the quadratic Taylor expan-
sions of f̂i about the center of the sub-domain Ω

pi = T 2
c
(f̂i)(x).

If the diameter of Ω is sufficiently small, then for all x ∈ Ω

det(J(p1, . . . pn)(x)) 6= 0.

Proof. The construction of pi implies that

|det(J(f̂1, . . . , f̂n)(c))| = |det(J(p1, . . . , pn)(c))|.

The polynomials f̂i depend continuously on the point c, as their quadratic Taylor
expansions pi do. According to the proof of Lemma 4.1 there exists a general bound
ε > 0, such that if the diameter δΩ of the sub-domain Ω is smaller than ε, then any
x ∈ Ω satisfies

|det(J(p1, . . . , pn)(x))| > 0.



Reliable Computing 17(2), 2012 83

We computed the fat sphere boundaries as concentric spheres to the median sphere
pi = 0. These spheres are defined by the equations

pi = ±εi,

where εi is computed as
εi = ‖f̂i − pi‖ΩBB.

Lemma 4.3. We compute a polynomial f̂i with special Hessian at the center point of
the sub-domain Ω. Let εi denote the bound

εi = ‖f̂i − T 2
c
(f̂i)‖ΩBB.

Then it satisfies
εi ≤ Cdiam(Ω)3.

Proof. The sub-domain Ω is an axis-aligned box. Since all norms are equivalent on
finite dimensional vector spaces, there exists a constant C1, such that

εi = ‖f̂i − pi‖ΩBB ≤ C1‖f̂i − pi‖Ω∞,

and C1 does not depend on Ω. If the center point of Ω is denoted by c, then

‖f̂i − pi‖Ω∞ = ‖f̂i − T 2
c
(f̂i)‖Ω∞ <

1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂i
dv3

(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(∗)

diam(Ω)3.

Recall from Lemma 2.3 that f̂i depends continuously on the points of the computa-
tional domain Ω0 for each parameter vector of u, where uj 6= 0. Thus for all Ω a global
upper bound C2 can be given for (∗). Therefore we observe that

εi ≤ 1

6
C1C2diam(Ω)3 ≤ Cdiam(Ω)3.

In order to measure the longest diameter of the intersection of fat spheres we give
a general lower bound on the gradient of a certain function.

Lemma 4.4. Consider the function h =
√∑n

i=1 q
2
i defined by the set of polynomials

Q = {q1, . . . , qn}. We assume that the Jacobian matrix is not singular in any x ∈ Ω

det(J(Q)(x)) 6= 0.

For all x ∈ Ω, which do not satisfy qi(x) = 0 for all i = 1, . . . , n, there exists a positive
constant LΩ such that

‖∇h(x)‖2 ≥ LΩ > 0.

Proof. Since

∇h(x) =
∑n

i=1 qi∇qi
√∑n

i=1 q
2
i

,

we obtain

‖∇h(x)‖2 =

〈∑n

i=1 qi∇qi
√∑n

i=1 q
2
i

,

∑n

i=1 qi∇qi
√∑n

i=1 q
2
i

〉

=



84 Béla and Jüttler, Real Root Approximation Using Fat Spheres

=
q(x)

‖q(x)‖
T

J(Q)(x)J(Q)(x)T
q(x)

‖q(x)‖ ≥ min
‖v‖=1

v
TGram(∇q1(x), . . . ,∇qn(x))v,

where q(x)T = (q1(x), . . . , qn(x)). We assumed that J(Q)(x) is not singular, therefore
Gram(∇q1(x), . . . ,∇qn(x)) is also non-singular. Moreover it is symmetric. Thus for
all x ∈ Ω

‖∇h(x)‖2 ≥ λ(x) > 0,

where λ(x) is the minimal eigenvalue of the Gram matrix. Since the Gram matrix is
not singular, and it depends continuously on the points of Ω, there exists a positive
lower bound LΩ depending on Ω, such that

λ(x) ≥ LΩ > 0.

Lemma 4.5. Consider the sub-domains Ωc ⊂ Ω0, where c is the center point of the
sub-domain. A set of polynomials Qc is given for each sub-domain Ωc. We assume
that the Jacobian matrix of the polynomial system Qc is not singular in any x ∈ Ωc.
We consider the function

hc =

√
√
√
√

n∑

i=1

q2i

defined by the polynomials qi ∈ Qc. For all x from the sub-domain Ωc, which do not
satisfy qi(x) = 0 for i = 1, . . . , n, there exists a general positive constant L such that

‖∇hc(x)‖2 ≥ L > 0.

Proof. Each polynomial qi ∈ Qc depends continuously on the choice of the point c.
According to Lemma 4.4 there exists a lower bound of ‖∇hc(x)‖2 for all x ∈ Ωc, which
bounds the minimal eigenvalue of the Gram matrix of qi ∈ Qc. Therefore for all Ωc,
where det(J(Qc)(x)) 6= 0, there exists a general positive lower bound L, such that any
x ∈ Ωc satisfies

‖∇h(x)‖2 ≥ L > 0,

if x does not satisfy qi(x) = 0 for all qi ∈ Ωc.

Theorem 4.6. Suppose that the gradient vectors of the polynomials fi ∈ F are lin-
early independent for all points x ∈ Ω0. Consider a sub-domain Ω ⊆ Ω0, which is
sufficiently small and contains a single root r of the polynomials fi. We compute the
set of polynomials F̂ with special Hessians in the center point of the domain Ω for the
arbitrary but fixed vectors of constants ui, which are linearly independent. If we apply
the algorithm DomainReduction to the sub-domain Ω, then there exists a constant C,
such that the generated bounding region Ω∗ satisfies

diam(Ω∗) ≤ Cdiam(Ω)3.

Proof. Suppose that Ω is a sub-domain of Ω0, which contains a single root r. We
compute the set of polynomials F̂ with special Hessians in the center point c of Ω.
The fat spheres are defined by the point sets Fi(pi, εi,Ω). The fat sphere intersection
is denoted by I =

⋂n

i=1 Fi. Each fat sphere bounds the hyper-surface f̂i = 0, thus the
single root r ∈ Ω is contained in the fat sphere intersection

r ∈ I ∩ Ω.



Reliable Computing 17(2), 2012 85

We define the function

h(x) =

√
√
√
√

n∑

i=1

q2i ,

where qi(x) = pi(x)−pi(r). We consider the integral curves defined by the vector field
−∇h/‖∇h‖ in Ω. If Ω has a sufficiently small diameter, according to Corollary 4.2 all
x ∈ Ω satisfy

det(J(p1, . . . pn)(x)) 6= 0.

Since ∇pi(x) = ∇qi(x), for all x ∈ Ω

det(J(q1, . . . qn)(x)) 6= 0. (8)

Together with Lemma 4.4 this implies that the integral curves are regular in the inner
points of Ω \ {r}.

Suppose that x is an arbitrary point of the fat sphere intersection I computed in
a sufficiently small domain Ω. Such a point x ∈ I ∩ Ω fulfills for all i = 1, . . . n

|pi(x)| ≤ εi.

We consider the integral curve u(s) with the starting point u(0) = x ∈ I , which is
regular on Ω \ {r}. We assume that the curve is parameterised by arc length. Since
h(x) ≥ 0 and the tangent vectors of the curve u(s) always point in the direction of
steepest decent on h, there exists a parameter value s∗ such that for s < s∗

lim
s→s∗

u(s) = r.

According to the mean value theorem there exists ξ ∈ (0, s∗) such that

h(u(s∗))− h(u(0))

s∗
= ∇h(u(ξ)) · u̇(ξ) = −‖∇h(u(ξ))‖.

Since h(u(s∗)) = 0

s∗ =
h(u(0))

‖∇h(u(ξ))‖ =
h(x)

‖∇h(u(ξ))‖ ≤
√

2
∑n

i=1 ε
2
i

LΩ
.

We supposed that u(s) is arc length parametrized, therefore x ∈ I satisfies

‖x− r‖ = ‖u(0)− u(s∗)‖ ≤
√

2
∑n

i=1 ε
2
i

LΩ
.

Thus any point of I is closer to r than
√

2
∑

n

i=1
ε2
i

LΩ
. So the min-max box Ω∗ ⊂ Ω,

which contains I, has a diameter

diam(Ω∗) ≤ 2

√

2n
∑n

i=1 ε
2
i

LΩ
.

In Lemma 2.3 we have shown that the system of polynomials F̂ depends continu-
ously on the choice of the domain Ω. Therefore also each pi and qi depend continuously
on the choice of Ω. The lower bound LΩ of ‖∇h(x)‖2 bounds the minimal eigenvalue



86 Béla and Jüttler, Real Root Approximation Using Fat Spheres

of the Gram matrix of qi. According to Lemma 4.4 there exists a general positive
lower bound L, such that any x ∈ Ω satisfies

‖∇h(x)‖2 ≥ L > 0.

We have also shown in Lemma 4.3 that there exists a constant D, which does not
depend on the choice of Ω, such that

εi ≤ Ddiam(Ω)3.

Therefore the diameter of the min-max box Ω∗ satisfies

diam(Ω∗) ≤ 2

√

2n
∑n

i=1 ε
2
i

L
≤ 2
√
2Dn√
L

diam(Ω)3 = Cdiam(Ω)3,

where C does not depend on the choice of Ω.

In this result we used the condition that the polynomials possess a single root in the
computational domain. However, the DomainReduction algorithm can approximate
double roots of polynomial systems, too. Later we show an example (see Example
5.3) for double root approximation. As Table 3 shows, the algorithm reduces the
bounding region around a double root faster than the ordinary subdivision. Our
further numerical experiments indicate that the DomainReduction algorithm combined
with iterative subdivision provides super-linear convergence rate to double roots of a
polynomial system.

5 Subdivision Method

In this section we present an algorithm, which combines the DomainReduction with a
standard subdivision technique. It is an iterative domain reduction, which reduces the
bounding regions either by subdivision or by bounding the intersection of fat spheres.

5.1 Hybrid Algorithm

The global root approximation algorithm (see Algorithm 2) is an iterative domain
reduction, which bounds the roots of a multivariate polynomial system F within a
prescribed tolerance bound ε. The algorithm computes a set of axis-aligned boxes
with the help of hierarchical subdivision and fat sphere intersection. Each root of
the system is approximated via a nested sequence of domains, which have decreasing
diameters. The algorithm reduces the domains, until each list of nested domains has an
element with sufficiently small diameter. Then the algorithm returns the last element
of the lists.

Each sub-domain is analyzed, until it is detected as an empty region or it has a
sufficiently small diameter. We detect empty sub-domains via the convex hull property.
A sub-domain is also empty, if the algorithm DomainReduction generates fat spheres
which do not intersect. Then the algorithm does not analyze these domains any
further. Nevertheless, it can happen that a sub-domain without a root is computed
with small diameter, but it is not detected as an empty region. Thus the output can
also contain empty sub-domains (false positive boxes).

It is also important to separate the real roots of polynomials into different bounding
domains. In some cases we can certify whether a domain in the output contains only



Reliable Computing 17(2), 2012 87

Algorithm 2 Hybrid Algorithm(F,Ω, ε)

1: A ← DomainReduction(F, Ω) {domain reduction}
2: if 2 · diam(A) ≤ diam(Ω) then
3: if diam(A) > ε then

4: Hybrid Algorithm(F,A, ε) {recursive call}
5: else

6: B = B ∪ A
7: end if

8: else

9: if diameter of Ω > ε then

10: subdivide the domain Ω to Ωi {subdivision}
11: Hybrid Algorithm(F,Ωi, ε) {recursive call}
12: else

13: B = B ∪ Ω
14: end if

15: end if

16: return B

one single root, although this is not always possible. If two real roots have smaller
distance than the tolerance ε, they may share their bounding region in the output of
the algorithm. Therefore clearly the number of bounding regions in the output is not
necessarily equal to the number of real roots of the polynomial system.

As we described already in Section 2.2 we compute polynomials with special Hes-
sians as the combination of n − 1 or n different polynomials from the original set of
polynomials F . If we only combine n− 1 polynomials from F , then we can choose the
set of polynomials in the construction of each new polynomial f̂i differently. However,
we approximate the zero set of all polynomials in F , so we have to use all polynomials
at least once in the computation of f̂i. Otherwise we only approximate the solution set
of a certain subset of F . This problem does not appear if we use all the polynomials
in F to compute f̂i. According to our experiments, this strategy reduces the size of
the bounding domains faster, although we have to handle larger linear systems to find
polynomials with special Hessians.

In order to compute each new polynomial f̂i, we have to choose an arbitrary but
fixed vector of constants ui. These vectors are chosen a priori and they are kept fixed
during each subdivision and domain reduction step. We have seen in Lemma 4.1 that
the choice of the vectors ui is important. These vectors have to be linearly independent
in order to provide the third order convergence of the bounding regions for single roots.
It is also important that the choice of these constants does not decrease the numerical
accuracy of the computations. Therefore the coordinates of the vectors ui should be
of the same order of magnitude as the coefficients of the original polynomials. Lemma
4.1 also shows that the choice of the vectors ui influences the gradient direction of the
new polynomials. In addition to the fact that we need to generate new polynomials
with linearly independent gradients, a useful further condition would be to create a
new polynomial system with an orthogonal system of gradients. This increases the
numerical stability of the computations. In [1] we show that such a polynomial system
can be computed using the linear combinations of the new polynomials f̂i. With the
help of this linear transformation we can re-compute the system of new polynomials,
therefore we do not need to find an ideal choice of the vectors ui.



88 Béla and Jüttler, Real Root Approximation Using Fat Spheres

Figure 3: Approximation of the intersection points of implicitly defined curves given
by the zero level set of polynomials with bi-degree (9, 8) and (6, 9). On the left:
domains generated during the domain reduction steps, on the right: the center points
of the bounding domains are marked by red dots.

5.2 Examples

We present here several examples, which show the behaviour of the root-finding algo-
rithm Hybrid Algorithm for polynomial systems in two or three variables.

Intersection Points of Planar Algebraic Curves

Example 5.1. First we present a two-dimensional example to show the behaviour of
the Hybrid Algorithm. The two implicitly defined curves are defined by polynomials
with bi-degree (9, 8) and (6, 9). They are represented in the unit box. The intersection
points of the curves are approximated within the tolerance ε = 10−4. The curves have
five intersection points in the domain. After three subdivision steps all roots are
separated into different sub-domains. Then four or five domain reduction steps are
made in order to achieve the prescribed accuracy around each intersection point. The
output is represented in Figure 3. On the left one can see the domains generated
during the domain reduction steps (either with subdivision or with the help of fat arc
intersection). They are shown in different shades of gray. On the right the center
point of each bounding domain from the output is marked as a red dot.

Example 5.2. This example appears in the paper of Elber et al. [11]. They present
a strategy to approximate the intersection points of implicitly defined curves. Their
algorithm purges away empty domains and identifies domains with single solutions
more efficiently than the subdivision method. We compare here the Hybrid Algorithm

with the simple subdivision via this example.
The two bi-cubic curves are the reflection of each other along the x = y line (see

Figure 4). They intersect each other along the reflection line at five different points
and also in two other points in the domain. We represent the curves in the unit square
[0, 1]2, and approximate the roots using different tolerances. In Table 2 we compare
the total number of bounding domains in the output. The hybrid algorithm returns
for small tolerance a number of bounding domains, which is equal to the number of the



Reliable Computing 17(2), 2012 89

intersection points, while the subdivision method returns a large number of bounding
boxes. The hybrid algorithm eliminates efficiently the empty sub-domains. Moreover
it speeds up the convergence and uses fewer subdivision steps. In Figure 4 we show the
output of the hybrid algorithm and the subdivision algorithms. The intersection points
of the curves are marked by black crosses, while the generated bounding domains are
represented by their center points marked by red dots. In the first row of the figure
we represent the outputs of the hybrid algorithm, while in the second row the outputs
of the simple subdivision method are shown. Table 2 shows the number of generated
bounding boxes in the output for four different tolerances.

Both algorithms – the hybrid algorithm and the simple subdivision – were imple-
mented by using the computer algebra system Maple. Therefore the computational
time of these programs are not competitive with other implementations written in
programming languages such as C or C++. Thus we present here the running time
of the hybrid algorithm and the simple subdivision compared to each other. In the
last row of Table 2 we show the ratio of the running times used by the hybrid and the
subdivision algorithms for the four different tolerances.

Table 2: Approximating intersection of implicitly defined curves. The first two rows
show the number of used bounding regions for the seven intersection points of the
curves in Figure 4. The last row presents the relative running time of the two algo-
rithms; it is computed as the running time of the hybrid algorithm divided by the
running time used by the simple subdivision.

Algorithm ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
Hybrid Algorithm 15 14 7 7

Subdivision 22 40 68 71

Relative Timing (hybrid/subdivision) 3.32 0.6 0.34 0.2

Example 5.3. Example 5.2 indicates that the hybrid algorithm separates the different
roots well. Therefore we present an example where the roots of the polynomials change
from two single roots to one double root with the translation of one of the curves. The
curves are represented by the zero set of

f(x, y) = −(0.95 + 10−k) + 0.2x + 0.4y + x2 + y2,

g(x, y) = −0.48 + 0.2x+ 0.1y + xy.

We set the tolerance to ε = 10−8 and compute the approximation in the unit box
for the values of k = 2, 5 and 10. The distance between the exact roots (denoted by
δ) is given in the first row of Table 3 for each value of k. At the top of the table
we show the results obtained by using the hybrid algorithm, while at the bottom the
outputs of the simple subdivision method are shown. In each column the diameters
of the bounding domains are given, which were generated step by step during the
approximation methods. The bounding regions are reduced either until their diameter
is smaller than the tolerance or after at most up to eight steps. In the last column we
show the reduction of the bounding regions for one double root. The last row of the
table presents the relative running times of the two algorithms. Finally we present
a figure where the bounding domains are shown in the cases of k = 2, 5 and for the
double root. The shrinking regions are represented in different shades of gray (see
Figure 5).



90 Béla and Jüttler, Real Root Approximation Using Fat Spheres

Table 3: Approximating intersection points of implicitly defined curves, which are
translated in three steps (k = 2, 5, 10) from two single roots to one double root. We
present here the diameters of bounding boxes in each step of the bounding region
generation. In the cases of two single roots we mark the level of domain reduction
where the algorithms separate the roots. The distance of the two roots is given in the
first row of the table (δ). The last row presents the relative running time of the two
algorithms it is computed as the running time of the hybrid algorithm divided by the
running time used by the simple subdivision.

k = 2 (δ = 1.41 10−1) k = 5 (δ = 4.47 10−3) k = 10 (δ = 1.41 10−5) Double root
Fat arc generation

root separation 0.707 0.707 0.707
0.707 0.707 9.65 10−2 9.64 10−2 0.164
0.128 0.151 1.55 10−2 1.49 10−2 2.35 10−2

1.85 10−3 3.00 10−3 4.57 10−3 9.11 10−4 1.28 10−3

5.49 10−9 2.35 10−8 root separation 1.97 10−5 1.62 10−5

2.28 10−3 2.28 10−3 root separation 2.30 10−8

3.34 10−7 3.34 10−7 9.86 10−6 9.86 10−6

1.05 10−18 1.05 10−18 8.48 10−12 8.48 10−12

Subdivision
root separation 0.707 0.707 0.707
0.707 0.707 0.353 0.353 0.353
0.353 0.353 0.176 0.176 0.176
0.176 0.176 8.88 10−2 8.88 10−2 8.88 10−2

8.88 10−2 8.88 10−2 4.41 10−2 4.41 10−2 4.41 10−2

4.41 10−2 4.41 10−2 root separation 2.20 10−2 2.20 10−2

2.20 10−2 2.20 10−2 2.20 10−2 2.20 10−2 1.10 10−2 1.10 10−2

1.10 10−2 1.10 10−2 1.10 10−2 1.10 10−2 5.52 10−3 5.52 10−3

Relative Timing (hybrid/subdivision)
0.32 0.028 0.0029 0.0025



Reliable Computing 17(2), 2012 91

Hybrid Algorithm

ε = 0.1 ε = 0.01 ε = 0.001

Subdivision

ε = 0.1 ε = 0.01 ε = 0.001

Figure 4: Comparison of root approximation, computed by the hybrid algorithm and
subdivision. In the first row we present the outputs of the hybrid algorithm, while in
the second row the outputs of the simple subdivision method is shown for different
tolerances. The intersection points of the curves are marked by black crosses, while
the generated bounding domains are represented by their center points marked by red
dots.

Intersection Points of Algebraic Surfaces

Example 5.4. This example corresponds to the two-dimensional one in Example
5.2. It compares the simple subdivision method with the hybrid algorithm in a three-
dimensional root-finding problem. The problem is given by the equation system

0.4(x2 + y2 + z2)− 0.88(x + y + z)− 4xyz + 1.452 = 0,

104(x3 + y3 + z3)− 141(x2 + y2 + z2) + 61.875(x + y + z)− 27.978125 = 0,

x2 + y2 + z2 + 0.4(x+ y + z)− 1.58 = 0,

with respect to the unit cube. The system has six different roots in the computational
domain. These roots are situated pairwise relatively close to each other. If we approx-
imate such roots with simple subdivision, usually the root separation process is slow,



92 Béla and Jüttler, Real Root Approximation Using Fat Spheres

Fat arc generation

Subdivision

Figure 5: Reduction of bounding boxes in the cases of k = 2, 5 and for the double
root. In the first row we used the hybrid algorithm, while in the second row simple
subdivision was used.

and it uses a high number of bounding domains in the output. According to our exper-
iments in Example 5.2, we expect that the hybrid algorithm will use less subdivision
steps and generate fewer bounding regions in the output. In Table 4 we compare the
total number of computed bounding domains. The hybrid algorithm returns for small
tolerances a number of bounding domains, which is equal to the number of the roots.
Moreover it uses less subdivision steps (see the columns for #l), while the subdivision
method returns a large number of bounding boxes. In Figure 6 we show the output of
the hybrid algorithm and the subdivision algorithm. The generated bounding domains
are represented by their center point marked by red dots. In the first row we present
the outputs of the fat sphere generation, while in the second row the outputs of simple
subdivision method are shown. The last row presents the relative running time of the
two algorithms, computed as the running time of the hybrid algorithm divided by the
running time used by the simple subdivision.

Example 5.5. We can approximate the ordinary singular points of an implicitly
defined surface with the help of the hybrid algorithm. In this example we present two
different algebraic surfaces given by an implicit equation f(x, y, z) = 0 with ordinary
singularities. These singularities can be found by computing the zero set of the partial
derivatives

fx = 0, fy = 0, fz = 0.

A singular point of the surface also satisfies the equation f = 0.
In Figure 7 the dots mark the approximate solution points of the system of partial

derivatives. The red ones are the solutions, which lie close to the implicitly defined
surfaces f = 0. The first surface in the figure is called the Cayley-cubic. It has four



Reliable Computing 17(2), 2012 93

Table 4: Approximating intersection of implicitly defined surfaces. We present the
number of used bounding regions and the number of domain reduction steps (denoted
by #l). This number shows the maximal depth of the domain reduction or subdivision
tree, which is traversed by the algorithm during the root approximation. The last row
presents the relative running time of the two algorithms, computed as the running time
of the hybrid algorithm divided by the running time used by the simple subdivision.

Algorithm ε = 0.1 #l ε = 0.01 #l ε = 0.001 #l

Hybrid Algorithm 42 2 6 5 6 5
Subdivision 78 5 78 8 66 11

Relative Timing (hybrid/subdivision) 0.97 0.67 0.81

Hybrid Algorithm

ε = 0.1 ε = 0.01 ε = 0.001

Subdivision

ε = 0.1 ε = 0.01 ε = 0.001

Figure 6: Comparison of approximate roots computed with the hybrid algorithm and
subdivision. In the first row we represent the outputs of the hybrid algorithm, while
in the second row the outputs of simple subdivision method are shown for different
tolerances.



94 Béla and Jüttler, Real Root Approximation Using Fat Spheres

Figure 7: Ordinary singularities on implicitly defined surfaces.

ordinary singularities, which are computed in the unit cube as the solution of the
system

−250xz + 175x+ 125.5z − 87.85 = 0,

250yz − 75y − 124.95z + 37.485 = 0,

−125x2 + 125y2 + 125.5x − 124.95y + 50z − 25.275495 = 0.

The second surface is the Ding-dong surface, which has one ordinary singularity. It is
computed in the unit cube as the solution of the system

18x− 9.06 = 0,

18y − 8.994 = 0,

81z2 − 100.08z + 29.9136 = 0.

The tolerance during the computations was set to 0.01 in both examples.

The examples were computed by using the computer algebra system Maple. There-
fore only relative timings were investigated during the comparison of the hybrid algo-
rithm and the simple subdivision approach.

Currently we are working on the C++ implementation of the algorithm. We plan
to embed our real root finding method into the library “Mathemagix”, developed by
the GAALAD group, at INRIA, Sophia Antipolis. It would improve the efficiency of
the computations and enable the computation of examples in higher dimensions. This
implementation will also pave the way for certified computing, e.g. by using interval
arithmetic.



Reliable Computing 17(2), 2012 95

6 Conclusion

We presented an algorithm to approximate real roots of multivariate polynomial sys-
tems. This algorithm combines a standard subdivision technique with a new domain
reduction strategy. The domain reduction is based on a special bounding region gen-
eration method. This method reformulates the algebraic system in order to bound the
zero set of each new polynomial. The bounding primitive is the so-called fat sphere,
which consists of an approximating spherical patch and its thickened neighbourhood.

Subdivision combined with the domain reduction method provides a fast and effi-
cient method to approximate real roots of polynomial systems. The structure of this
hybrid algorithm carries two main messages. First of all, that analyzing geometric
properties of algebraic objects leads to stable techniques on real algebraic set approx-
imation. This stability is certified by the Bernstein-Bézier polynomials. In addition,
the use of local domain reduction strategies is advantageous. Although fat sphere com-
putation requires extra computational time compared with other bounding primitives,
the generated bounding regions converge faster. Computing with quadratic bounding
regions provides faster termination of the algorithm and reduces the depth of the sub-
division tree. Moreover, this hybrid algorithm performs better than pure subdivision
in the case of double roots and single roots which are close to each other.

References

[1] Sz. Béla. Fat Arcs and Fat Spheres for Approximating Algebraic Curves and
Solving Polynomial Systems. PhD thesis, Johannes Kepler University, Linz, 2011.
http://www.math.bme.hu/~belus/thesis.pdf.

[2] Sz. Béla and B. Jüttler. Fat arcs for implicitly defined curves. In Mathematical
Methods for Curves and Surfaces, volume 5862 of Lecture Notes in Computer
Science, pages 26–40. Springer, 2009.

[3] Sz. Béla and B. Jüttler. Approximating algebraic space curves by circular arcs. In
J.-D. Boissonnat et al, editor, Curves and Surfaces, Avignon, June 24-30, 2010,
Lecture Notes in Computer Science. Springer, to appear.

[4] B. Buchberger. Gröbner-bases: An algorithmic method in polynomial ideal the-
ory. In N.K. Bose, editor, Multidimensional Systems Theory - Progress, Directions
and Open Problems in Multidimensional Systems, pages 184–232. Reidel Publish-
ing Company, The Netherlands, 1985.

[5] L. Busé, M. Elkadi, and B. Mourrain. Generalized resultants for unirational
algebraic varieties. Journal of Symbolic Computation, 59:515–526, 2000.

[6] L. Busé, M. Elkadi, and B. Mourrain. Residual resultant of complete intersection.
Journal of Pure and Applied Algebra, 164:35–57, 2001.

[7] G. Elber and M. Kim. Geometric constraint solver using multivariate rational
spline functions. In SMA ’01: Proceedings of the sixth ACM symposium on Solid
modeling and applications, pages 1–10, New York, 2001.

[8] M. Elkadi and B. Mourrain. Symbolic-numeric tools for solving polynomial equa-
tions and applications. In I.Z. Emiris and A. Dickenstein, editors, Algorithms and
Computation in Mathematics, volume 14, pages 125–168. Springer-Verlag, 2005.

[9] I.Z. Emiris and E.P. Tsigaridas. Real solving of bivariate polynomial systems.
In E.W. Mayr V.G. Ganzha and E.V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing, LNCS, pages 150 –161. Springer-Verlag, 2005.

http://www.math.bme.hu/~belus/thesis.pdf


96 Béla and Jüttler, Real Root Approximation Using Fat Spheres

[10] J. Garloff and A. P. Smith. Solution of systems of polynomial equations by using
bernstein expansion. Alefeld, Götz (ed.) et al., Symbolic algebraic methods and
verification methods. Wien: Springer. 87-97 (2001)., 2001.

[11] I. Hanniel and G. Elber. Subdivision termination criteria in subdivision mul-
tivariate solvers using dual hyperplanes representations. Comput. Aided Des.,
39:369–378, 2007.

[12] T.Y. Li. Numerical solution of multivariate polynomial systems by homotopy
continuation methods. Acta Numerica, 6:399–436, 1997.

[13] A. Morgan and A. Sommese. A homotopy for solving general polynomial systems
that respects m-homogeneous structures. Applied Mathematics and Computation,
24:101–113, 1987.

[14] B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial equa-
tions. Journal of Symbolic Computation, 44(3):292–306, 2009.

[15] F. Rouillier. Solving zero-dimensional systems through the rational univariate
representation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999.

[16] T. W. Sederberg and T. Nishita. Curve intersection using Bézier clipping.
Computer-Aided Design, 22(9):538–549, 1990.

[17] T. W. Sederberg and S. R. Parry. Comparison of three curve intersection algo-
rithms. Computer-Aided Design, 18(1):58–63, 1986.

[18] E. C. Sherbrooke. Computation of the Solutions of Nonlinear Polynomial Systems.
PhD thesis, Massachusetts Institute of Technology, 1993.

[19] E.C. Sherbrooke and N.M. Patrikalakis. Computation of the solutions of nonlinear
polynomial systems. Computer Aided Geometric Design, 10(5):379–405, 1993.


	Introduction
	Fat Spheres
	Fat Spheres as Quadratic Enclosures
	Algebraic Reformulation

	Domain Reduction
	Domain Reduction Algorithm
	Min-max Box of the Intersection of Fat Spheres

	Convergence of Domain Reduction
	Subdivision Method
	Hybrid Algorithm
	Examples

	Conclusion

