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Abstract

This paper presents an approach for developing formally verifiable con-
flict detection algorithms for aircraft flying arbitrary, nonlinear trajecto-
ries. The approach uses a multivariate polynomial global optimization
algorithm based on Bernstein polynomials. Since any continuous function
on a closed interval, such as an aircraft trajectory within a closed inter-
val of time, can be uniformly approximated by a Bernstein polynomial,
this global optimization algorithm can be used to define conflict detection
algorithms for arbitrarily complicated trajectories. Conflict detection al-
gorithms developed using this approach can be formally verified in a me-
chanical theorem prover. This represents an improvement over standard
approaches to conflict detection for complex trajectories that essentially
search for conflicts by testing many future states and are therefore not
guaranteed to detect a given conflict. The proposed approach is illus-
trated with a formally verified conflict detection algorithm.

Keywords: aircraft conflict detection, formal verification, global optimization, theo-
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1 Introduction

In air traffic management, a loss of separation is a violation of the separation re-
quirement between two aircraft. This separation requirement is given by a minimum
horizontal separation, e.g., 5 nautical miles, and a minimum vertical separation, e.g.,
1000 feet [14]. Assuming an aircraft trajectory model, conflict detection algorithms
predict whether or not two aircraft will lose separation within some lookahead time,
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which is typically 5 minutes. When a conflict is detected, conflict resolution algorithms
compute resolution maneuvers for the aircraft that maintain the required aircraft sepa-
ration. Conflict detection and resolution (CD&R) systems are part of computer-based
systems that assist pilots and air traffic controllers to maintain safety in the airspace
by keeping aircraft separated. These separation assurance systems are critical ele-
ments of air/ground distributed operational concepts for the next generation of air
traffic management systems such as the US’s Next Generation of Air Traffic Systems
(NGATS) [24] and Europe’s Single European Sky ATM Research (SESAR).1

The internal logic of CD&R algorithms relies on the reported current state in-
formation of the aircraft, typically 3D position and velocity vectors, and an aircraft
trajectory model that propagates the current state information for a given lookahead
time. Several state propagation methods for CD&R systems have been proposed [8].
For example, state-based conflict detection algorithms use a linear projection of the
current state of the aircraft. This simple aircraft trajectory model corresponds to a
point mass moving along a straight line at constant speed. More sophisticated state
propagation methods assume nonlinear trajectories or probabilistic trajectory models.

This paper concerns formal verification of conflict detection algorithms that model
aircraft trajectories as continuous functions over real numbers. In the context of this
paper, formal verification refers to computer-checked mathematical proofs that a given
algorithm satisfies some safety properties, where the algorithm and the properties are
expressed in a formal mathematical notation. In this sense, an algorithm is not a
computer program, but a mathematical abstraction of a computer program. Formal
verification, as used in this paper, guarantees that algorithms used in critical sys-
tems, such as CD&R, are functionally and logically correct, i.e., that assuming an
ideal computer platform, the algorithms implement their intended functionalities. A
complementary area in computer science known as software verification concerns the
correctness of algorithm implementations in specific computer platforms. Software
verification is out of the scope of this paper. In particular, this paper assumes that
the arithmetic used in the description of conflict detection algorithms has real number
semantics, as opposed to floating-point number semantics.

A safety property of conflict detection algorithms known as soundness states that
all potential conflicts, according to a given aircraft trajectory model, are detected.
That is, if in every situation where two aircraft are in conflict, a given algorithm returns
true, then that algorithm is sound. For example, an algorithm that always returns true
is trivially sound, although it is not a particularly useful one. Another safety property,
known as completeness, states that the algorithm only detects potential conflicts. That
is, if in every situation where an algorithm returns true, the aircraft are actually
in conflict, then the algorithm is complete. For example, an algorithm that never
returns true is trivially complete, but it is not sound. The notions of soundness and
completeness are related to the notions of missed alerts and false alerts, respectively.
A conflict detection algorithm that misses alerts negatively affects the safety case for
separation assurance systems, since it may indicate that certain maneuvers are safe
when they are not. False alerts also have safety implications as they may diminish the
confidence that pilots and air traffic controllers have on these systems.

Properties such as soundness and completeness have been formally verified for
CD&R algorithms that assume linear trajectories using mechanical theorem provers [10,
13]. A conflict resolution algorithm for curved trajectories has been formally verified
using hybrid-model checking techniques [19]. Other type of trajectories, such as piece-

1http://www.eurocontrol.int/content/sesar-and-research.
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wise linear trajectories admit analytical methods [7, 6] and thus, formal verification
of these algorithms is feasible. Most CD&R algorithms that handle complicated tra-
jectories either iterate an analytical method at specified discrete steps [2, 17] or rely
on numerical approximation methods [21, 18, 1]. Formal verification of these kinds of
algorithms is very difficult. In general, soundness and completeness of iterative algo-
rithms cannot be inferred from soundness and completeness of the analytical methods
that they iterate since some conflicts may be missed or not correctly solved for input
values outside the specified discrete steps. Furthermore, CD&R algorithms based on
numerical methods are neither sound nor complete unless the computation errors are
correctly accounted for.

This paper presents a numerical approximation approach for designing provably
sound and complete conflict detection algorithms for arbitrary aircraft trajectories.
In this approach, conflict detection for arbitrary aircraft trajectories is expressed as a
global optimization problem and then analytically solved using Bernstein polynomi-
als [9]. Methods for global optimization based on Bernstein polynomials allow for the
computation of lower and upper bounds for arbitrary continuous functions, e.g., the
separation distance between two aircraft, to any desired precision. These bounds are
guaranteed to be correct. This is in contrast to some numerical methods for global
optimization such as genetic algorithms [5] that do not guarantee the correctness of
their results.

The rest of the paper is organized as follows. The formal mathematical notation
used in this paper is introduced in Section 2. The conflict detection problem and how
this problem can be expressed as a global optimization problem is discussed in Sec-
tion 3. As part of this work, Bernstein polynomials and their main properties have
been formally specified and verified. This formal development of Bernstein polyno-
mials is described in Section 4. A method for finding bounds of the maximum and
minimum values of functions that are defined as the maximum of two polynomials is
presented in Section 5. That method, which uses Bernstein polynomials, is the core
function of a verified conflict detection algorithm for arbitrary trajectories proposed
in Section 6. The last section concludes this paper.

The work presented in this paper is part of a research project by the authors that
aims at the development of verification technology for global optimization problems.2

This research project includes the development of a formal library for Bernstein pol-
ynomials, which is available as part of the PVS NASA Libraries.3

2 Prototype Verification System (PVS)

An important feature of the mathematical development presented in this paper is that
it has been specified and formally verified in the proof assistant called Prototype Veri-
fication System (PVS) [15]. PVS is a computer program that consists of a specification
language, i.e., a mathematical notation, and a theorem prover, i.e., a symbolic engine
that implements the deductive rules of a logic system. The PVS specification language
enables the precise definition of mathematical objects such as functions and relations,
and the precise statement of logical formulas such as lemmas and theorems. Proofs
of logical formulas can be mechanically checked using the PVS theorem prover, which
guarantees that every proof step is correct and that all possible cases of a proof are

2http://shemesh.larc.nasa.gov/people/cam/Bernstein.
3http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
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covered. All propositions, lemmas and theorems presented in this paper have been
mechanically checked in PVS for logical correctness.

The use of a formal language, e.g., in this case the specification language of
PVS, enforces rigorous definitions of mathematical objects, where all dependencies
are clearly specified. This level of rigor is justified in the development of algorithms
for air traffic management given the critical nature of these kinds of systems. In par-
ticular, formal verification provides a very high confidence on the correctness of the
results presented in this paper. However, this also makes the notation heavy and dif-
ficult to read for the non-expert reader. To make this development more accessible to
the casual reader, the work presented here uses a simpler mathematical notation that
does not require the reader to be familiar with the syntax or semantics of the PVS
language.

Despite the use of standard mathematical notation in many places, this paper
heavily emphasizes the abstract data structures and specific signatures (types) of the
functions used in the algorithms. This includes writing many properties as explicit
statements involving function calls. The reason for this is that the intended audience
includes not just mathematicians interested in global optimization but also researchers
in air traffic management who may want to implement a formally verified conflict
detection algorithm whose output can be trusted. Such readers will be interested in
specific definitions that can be directly translated to code.

The PVS specification language is strongly typed, i.e., all declarations are explicitly
typed. This feature guarantees that all PVS functions are total and well-defined. For
instance, a mathematical formula that includes a division needs to make explicit the
fact that the divisor is different from zero, otherwise the expression would be undefined.
In PVS, these conditions are handled by a type system, which is enforced by the PVS
type-checker. Since PVS type annotations tend to be verbose, formulas in this paper
are implicitly typed, i.e., it is assumed that the type domain of variables is inferred
from the context where the formula appears.

PVS is based on higher-order logic, so it supports the definition of functions that
return functions or that have functions as arguments. The notation λx : e represents
an anonymous function that takes as input x and returns e. As discussed above, PVS
is a strongly typed language and, therefore, the type of x has to be explicitly declared
in PVS. This paper assumes that the type of x is inferred from the context. A function
that returns another function is called a parametric function and its arguments are
called parameters. By convention, parameters are sub-indicated, e.g., a parametric
function f that given t, x, and y returns a function of type R → R is denoted ft,x,y,
where t, x, y are the parameters of f . Since ft,x,y has the type R → R, the function
application ft,x,y(z) has the type R for any z ∈ R.

PVS provides numerical types for natural and real numbers that correspond to
the mathematical sets N and R. In PVS, 1/3 + 1/3 + 1/3 is exactly equal to 1 and
sqrt(2) refers to the unique positive real number such that sqrt(2)*sqrt(2) is exactly
equal to 2. The sets of integer and real numbers are unbounded and it is possible to
prove properties about arbitrary large or small numbers.

The PVS specification language is a mathematical language rather than a program-
ming language. In PVS, algorithms are defined as mathematical functions. Therefore,
functions do not have side effects and variables have the mathematical meaning of
arbitrary constant values instead of memory cells as in programming languages. By
convention, names of functions that are intended to have a logical meaning, i.e., pred-
icates, are written in italics. Functions that are intended to be used as algorithmic
procedures are written in typewriter font.
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The PVS specification language supports data structures such as records and tu-
ples. Since records in this paper are mainly used to specify outputs of algorithms, they
are also written in typewriter font. Record types are defined as T = a1:T1 × . . . ×
an:Tn, where T is the name of the record type, a1 . . . an are the names of the fields,
and Ti, for 1 ≤ i ≤ n, is the type of the field ai. Field access will be denoted using
the dot symbol. The operator with is used to overwrite records, e.g., if t is a record
of type T, the record t′ = t with [ a1 ← e, an ← f ] refers to the record that is equal
to t in every field except in a1 and an, where it has the values e and f , respectively,
i.e., t′.a1 = e, t′.an = f , and for all 1 < i < n, t′.ai = t.ai.

Tuples will be typed in lowercase boldface, e.g., aaa = (a0, . . . , am−1) is an m-tuple
where subindices from 0 to m− 1 are used to denote particular elements of aaa. Given
a positive natural number m, the order < between m-tuples is defined by aaa < bbb if and
only if aj < bj for all 0 ≤ j < m. Similarly, the order ≤ between m-tuples is defined
by aaa ≤ bbb if and only if aj ≤ bj for all 0 ≤ j < m. The m-tuples 0 and 1 represent the
tuples whose components are all 0 and all 1, respectively. A bounded box [aaa,bbb], where
aaa < bbb, denotes the set of m-tuples greater than or equal to aaa and less than or equal to
bbb. The box [000,111] is called the unit box.

As in the case of records, tuples can be overwritten using the operator with, e.g.,
if aaa is an m-tuple, the tuple aaa with [ i ← b ], with 0 ≤ i < m, is equal to aaa in every
index except in i where it has the value b.

Algorithms for conflict detection considered in this paper use a 3D flat earth pro-
jection of the airspace. Aircraft positions and velocities in this 3D rectangular coor-
dinate system are represented in PVS as 3-tuples in R3, where the first and second
components denote the horizontal plane and the third component denotes the vertical
dimension. Such tuples are appropriately called vectors. Components of vectors are
sub-indicated by x, y, and z instead of 0, 1, and 2. Furthermore, if w is the vector
(wx, wy, wz), then w(x,y) denotes the projection of w in the horizontal plane, i.e.,
w(x,y) = (wx, wy), and w⊥ denotes the vector (wy,−wx, wz). The notation ‖w‖ refers
to the norm of the vector w and the notation w ·w′ refers to the dot product of the
vectors w and w′.

3 Conflict Detection

This section provides a mathematical description of aircraft conflicts for arbitrary tra-
jectories and discusses how the problem of detecting aircraft conflicts can be expressed
as a global optimization problem. Since conflicts between multiple aircraft can be de-
tected in a pairwise fashion, only two aircraft are considered. These two aircraft are
referred to as the ownship and the intruder.

The airspace volume is modeled using a flat-earth projection in a 3D rectangular
system, i.e., aircraft positions are viewed as points in R3. In this airspace, the separa-
tion requirement between two aircraft is specified as a minimum horizontal separation
D and a minimum vertical separation H. Typically, D is 5 nautical miles and H is
1000 feet [14]. In this paper, D and H are considered to be known numerical constants.
The separation requirement can be understood as an imaginary horizontal cylinder,
called protected zone, of height 2H and radius D around the intruder aircraft.

A loss of separation between the ownship and the intruder aircraft occurs when
the horizontal distance between the aircraft is less than D and the vertical distance
is less than H, i.e., when the ownship is in the interior of the intruder’s protected
zone. Let so ∈ R3 and si ∈ R3 be the current positions of the ownship and intruder
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Figure 1: Loss of Separation

aircraft, respectively. Formally, the ownship and intruder aircraft are said to be in loss
of separation if the following predicate on D, H, so, and si, holds.

los?(D,H, so, si) ≡ |sz| <H and ‖s(x,y)‖ < D,where s = so − si.

Loss of separtion is illustrated by Figure 1.

3.1 Trajectories

An aircraft trajectory represents the set of possible positions for the aircraft within a
lookahead time T according to some state estimation model [8]. As in the case of D
and H, T is assumed to be a known numerical constant.

A state estimation model for CD&R systems may be as simple as a linear projec-
tion of the current position at the current constant speed. More complicated models
consider uncertainties in the aircraft state due to aircraft dynamics, weather patterns,
and other factors. In this paper, an aircraft trajectory is a continuous function of type
Rm → R3, where the first variable in Rm represents time and it is bounded by the time
interval [0, T ]. The other variables in Rm represent uncertainties and are assumed to
be bounded as well. Given xxx ∈ Rm, the output of a trajectory evaluated at xxx is a
point in R3 that represents a 3-D position for the aircraft. The following examples
give formal definitions of trajectories for several types of state estimation models.

Example 1 (Linear Dynamics Without Uncertainty) A simple trajectory model
for aircraft assumes a linear projection of its current position s ∈ R3 along its current
velocity v ∈ R3. This type of trajectory can be represented by the parametric function
linears,v : R→ R3, with parameters s and v, defined by

linears,v(t) ≡ s + t v. (1)

In this case, Rm = R, i.e., m = 1, and the variable t ∈ [0, T ] represents time. This
linear trajectory is illustrated by Figure 2.

Example 2 (Linear Dynamics With Cross-Track Uncertainty) In Example 1,
the position at time t of an aircraft along a linear trajectory at constant speed is given
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Figure 2: Linear Trajectory

Figure 3: Linear Trajectory with Cross-Track Uncertainty

by linears,v(t), where s and v are the initial position and velocity vector of the air-
craft. Uncertainty in the horizontal position of the aircraft is known as cross-track
uncertainty [7]. If this uncertainty is bounded by some distance Ev, then the difference
between the actual position and the position only considering cross-track uncertainty at
any time is given by x Ev

‖v(x,y)‖
v⊥, for some x ∈ [−1, 1]. This difference vector is per-

pendicular to the initial velocity of the aircraft. Considering cross-track uncertainty,
the trajectory of an aircraft along a linear path can be represented by the parametric
function linearuncs,v,Ev : R3 → R3, with parameters s, v, and Ev, defined by

linearuncs,v,Ev (t, x) ≡ s + t v + x
Ev

‖v(x,y)‖
v⊥, (2)

where the variable t ∈ [0, T ] represents time and the variable x ∈ [−1, 1] represents the
(often unknown) cross-track uncertainty. This trajectory is illustrated by Figure 3.

Example 3 (Turn Dynamics Without Uncertainty) During a steady coordinated

turn without friction, the position of an aircraft will follow a circle of radius ν2

g tanϕ
,

where ν is the true air speed, g is the acceleration of gravity, and ϕ is the bank angle
of the aircraft. Thus, the trajectory of an aircraft during a turn can be represented by
the parametric function turns,R,α,ω,vz : R → R, with parameters s, R, α, ω, and vz,
defined by

turns,R,α,ω,vz (t) ≡ s + (R sin(α+ t ω), R cos(α+ t ω), t vz), (3)

where s is the center point of the turn, ω = ± g
ν

tanϕ, α is the angle along the turn at

time zero, R = ν2

g tanϕ
, and vz is the vertical speed. The variable t ∈ [0, T ] represents

time. This trajectory is illustrated by Figure 4.

Example 4 (Turn Dynamics With Wind and Altitude Uncertainty) In Exam-
ple 3, the position at time t of an aircraft in a steady turn is given by turnν,g,ϕ,s,α(t).
In the event of a wind where its speed components are varying between 0 and Ew and
assuming that the uncertainty in the altitude of the aircraft is bounded by Ea, the
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Figure 4: Turning Trajectory for Constant Bank-Angle

Figure 5: Turning Trajectory with Wind Uncertainty

trajectory of an aircraft during a steady turn can be represented by the parametric
function windturns,R,α,ω,vz ,Ew,Ea : R4 → R3, with parameters s, R, α, ω, vz, Ew, and
Ea, defined by

windturns,R,α,ω,vz ,Ew,Ea(t, x, y, z) ≡ turns,R,α,ω,vz (t)+

(t xEw, t y Ew, z Ea),
(4)

where the variable t ∈ [0, T ] represents time, the variables x, y ∈ [−1, 1] represent wind
uncertainty, and the variable z ∈ [−1, 1] represents altitude uncertainty. A top-down
view of this trajectory is illustrated by Figure 5.

As illustrated by these examples, the first variable in a trajectory function rep-
resents time and is bounded by [0, T ]. If the trajectory function has more than one
variable in the domain, the other variables are bounded in predetermined intervals as
well. For instance, in Example 2 the variables x and y, representing along-track and
cross-track errors, are bounded in the interval [−1, 1].

Trajectories for the ownship and intruder aircraft are denoted by Po and Pi, re-
spectively. Without loss of generality, it can be assumed that these trajectories have
the same variables, that is, they are both functions of type Rm → R3. Indeed, if one
trajectory has arguments that are not used by the other trajectory, the other trajectory
can be written as a function on its own arguments and those extra arguments as well.
For instance, the trajectory turns,R,α,ω,vz , which has the type R→ R3, can be trivially
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Figure 6: Conflict and Conflict-Free Scenarios

extended to a trajectory of type R4 → R3, the same type as windturns,R,α,ω,vz ,Ew,Ea ,
by defining turn′s,R,α,ω,vz ,Ew,Ea

(t, x, y, z) ≡ turns,R,α,ω,vz (t).

3.2 Conflicts and Conflict Detection Algorithms

While loss of separation is formalized as a predicate on two aircraft positions so and
si, a conflict between two aircraft is formalized as a predicate on the ownship and
intruder trajectories, Po and Pi in Rm → R3, respectively, and a box [aaa,bbb] ∈ Rm that
represents a range of interest in Rm, e.g., time should be in [0, T ]. The trajectories Po
and Pi are in conflict on the box [aaa,bbb] if there exists a point xxx ∈ [aaa,bbb] such that the
positions Po(xxx) and Pi(xxx) are in loss of separation:

conflict?(D,H,aaa,bbb, Po, Pi) ≡ ∃xxx ∈ [aaa,bbb] : los?(D,H,Po(xxx), Pi(xxx)). (5)

Figure 6 illustrates conflict and conflict-free scenarios in a relative coordinate system,
where the intruder is at the origin of the system and the ownship is moving relative
to the intruder. In each scenario, the “tube” in front of the ownship represents the
relative trajectory of the aircraft for a given box [aaa,bbb] ∈ Rm, where the first component
in the box the time interval [0, T ]. When Rm = R, i.e., m = 1, the relative trajectory
is a just a line.

An algorithm used by an aircraft to detect conflicts with another aircraft is called
a conflict detection algorithm. In this paper, a conflict detection algorithm is a func-
tion cd that takes as inputs D, H, aaa, bbb, Po, and Pi and returns an element of type
CDOutcome, with possible values LossAt(ccc), where ccc ∈ [aaa,bbb], NoConflict, and Unknown.

Formally, a conflict detection algorithm cd is sound if for all positive real numbers
D,H, boxes [aaa,bbb], and trajectories Po, Pi, cd(D,H,aaa,bbb, Po, Pi) = NoConflict implies
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that ¬conflict?(D,H,aaa,bbb, Po, Pi) hold; it is complete if cd(aaa,bbb, Po, Pi) = LossAt(ccc)
for some ccc ∈ [aaa,bbb] implies that conflict?(D,H,aaa,bbb, Po, Pi) holds. An algorithm that is
sound and complete is said to be correct. It is clear from the definition that correctness
is a key safety property for a conflict detection algorithm.

3.3 Conflict Detection and Global Optimization

Conflict between two trajectories can be written as an optimization problem and hence
global optimization methods can be used for conflict detection. This problem trans-
formation is accomplished through the cylindrical norm, which is described in detail
in [12]. The cylindrical norm of a vector w is the quantity

‖w‖D,H ≡ max

(
|wz|
H

,
‖w(x,y)‖

D

)
. (6)

With this length, R3 is a metric space in the sense of real analysis [22], and it therefore
satisfies the triangle inequality. The following lemma and theorems follow directly from
definitions.

Lemma 3.1 The ownship and the intruder, which have position vectors so and si,
are in loss of separation, i.e., los?(D,H, so, si) holds, if and only if ‖so − si‖D,H < 1.

Instead of the cylindrical norm, which involves the square root and absolute value
functions, the square of the cylindrical norm is considered. The function ‖w‖2D,H ,
defined as follows

‖w‖2D,H ≡ max

(
w2
z

H2
,
w2
x + w2

y

D2

)
,

is a maximum of two polynomials, the first in wz, and the second in wx and wy. The
following theorem shows that conflict between two trajectories can be expressed using
this function.

Theorem 3.1 For all boxes [aaa,bbb], positive constant values D and H, and trajectories
Po and Pi, conflict?(D,H,aaa,bbb, Po, Pi) holds if and only if there exists xxx ∈ [aaa,bbb] such
that sqdistD,H,Po,Pi

(xxx) < 1, where

sqdistD,H,Po,Pi
(xxx) ≡ max

(
w2
z

H2
,
w2
x + w2

y

D2

)
,with w = Po(xxx)− Pi(xxx). (7)

When both Po and Pi are polynomial trajectories, as in the cases of Example 1
and Example 2, the parametric function sqdist is defined as the maximum between
two polynomials. If the trajectories are not polynomials, such as the trajectories in
Example 3 and Example 4, since these functions are continuous on [aaa,bbb] they can be
uniformly approximated by polynomials to any given precision. This result is known
as the Weierstrass Approximation Theorem [9].

The predicate approx? specifies whether a given trajectory P is approximated by a
trajectory P ′ on the box [aaa,bbb] by a horizontal precision εD ≥ 0 and a vertical precision
εH ≥ 0.

approx?(aaa,bbb, εD, εH , P, P
′) ≡ ∀xxx ∈ [aaa,bbb] : |P (xxx)z − P ′(xxx)z| < εH and

‖P (xxx)(x,y) − P ′(xxx)(x,y)‖ < εD.

If it is known that the trajectories P ′o and P ′i , which are approximations of Po and
Pi, respectively, are in conflict, then it is possible to determine if Po and Pi are in
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conflict as well. This determination can be done by considering the effect that the
differences between these trajectories and their approximations have on the output of
the function sqdist. This effect is captured in the following proposition, which can
be proved by basic algebraic manipulations.

Proposition 1 Let [aaa,bbb], Po, P
′
o, Pi, P

′
i , εD = εoD + εiD, and εH = εoH + εiH , be

such that approx?(aaa,bbb, εoD, εoH , Po, P
′
o) and approx?(aaa,bbb, εiD, εiH , Pi, P

′
i ) hold. Then,

for all xxx ∈ [aaa,bbb],

1. sqdistD,H,P ′o,P ′i
(xxx) < 1− δ−(D,H, εD, εH) implies sqdistD,H,Po,Pi

(xxx) < 1,

2. sqdistD,H,P ′o,P ′i
(xxx) ≥ 1 + δ+(D,H, εD, εH) implies sqdistD,H,Po,Pi

(xxx) ≥ 1,

where

δ−(D,H, εD, εH) ≡ max(2
εD
D
− ε2D
D2

, 2
εH
H
− ε2H
H2

),

δ+(D,H, εD, εH) ≡ max(2
εD
D

+
ε2D
D2

, 2
εH
H

+
ε2H
H2

).

(8)

The next result follows directly from Theorem 3.1 and Proposition 1. It shows that if
Po and Pi are trajectories that are approximated by P ′o and P ′i , then range information
for the function sqdistD,H,P ′o,P ′i

can be used to detect conflict between Po and Pi. This

result will be directly used later to detect conflicts between Po and Pi, when P ′o and
P ′i are polynomial trajectories, by approximating the range of sqdistD,H,P ′o,P ′i

. Since

any trajectory can be uniformly approximated by polynomial trajectories, conflict
detection for arbitrary trajectories can be reduced to computing range information for
the function sqdistD,H,P ′o,P ′i

for some polynomial trajectories P ′o and P ′i .

Proposition 2 If approx?(aaa,bbb, εoD, εoH , Po, P
′
o) and approx?(aaa,bbb, εiD, εiH , Pi, P

′
i ), then

1. If ccc is a point in the box [aaa,bbb] and sqdistD,H,P ′o,P ′i
(ccc) < 1 − δ−(D,H, εD, εH),

then conflict?(D,H,aaa,bbb, Po, Pi).

2. conflict?(D,H,aaa,bbb, Po, Pi) implies sqdistD,H,P ′o,P ′i
(xxx) ≤ 1 + δ+(D,H, εD, εH)

for some xxx ∈ [aaa,bbb],

Numerical approximation methods based on Bernstein polynomials are well-known
by the global optimization community [3]. The next section describes a formalization of
Bernstein polynomials in PVS, from an algorithmic point of view. A formally verified
algorithm for finding range information for the maximum and minimum values of a
function defined as the maximum of two polynomials is presented in Section 5. That
algorithm is used in verified algorithms for conflict detection of arbitrary trajectories,
proposed in Section 6, the correctness of which follows from Proposition 2.

4 Formalization of Bernstein Polynomials

Bernstein polynomials are mathematical objects used to approximate continuous func-
tions. This section presents an algorithmic formalization in PVS of multivariate Bern-
stein polynomials and their main properties. For technical details about this formal-
ization, the reader is referred to [11].

Let iii be an m-tuple of natural numbers and xxx be an m-tuple of variables over R.
The product xxxiii = xi00 · . . . · x

im−1
m−1 is called an m-variable monomial. The m-tuple iii is
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called the index of the monomial xxxiii. An m-variable polynomial of degree nnn is a finite
sum of the form

p(xxx) =
∑
iii≤nnn

ciii xxx
iii,

where the elements ciii ∈ R are called the coefficients of p. In PVS, an m-polynomial p
is represented by a function from Rm into R.

Let p(xxx) =
∑
iii≤nnn ciii xxx

iii be an m-variable polynomial. For any bounded box [aaa,bbb],
the m-polynomial p[aaa,bbb] can be defined as follows

p[aaa,bbb](xxx) ≡
∑
kkk≤nnn

∑
kkk≤iii≤nnn

(ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj
j )xxxk

kk. (9)

The PVS formalization provides a function translate that takes as inputs the
arrays aaa and bbb, and an m-polynomial p, and returns the polynomial p[aaa,bbb] defined by
Formula (9). The function translate satisfies

p(σ[aaa,bbb](xxx)) = translate(aaa,bbb, p)(xxx),

p(yyy) = translate(aaa,bbb, p)(σ−1
[aaa,bbb](yyy)),

where σ[aaa,bbb](xxx)j ≡ aj + xj(bj − aj). It follows directly from this that the maximum
(resp. minimum) value attained by p on the box [aaa,bbb] is the maximum (resp. minimum)
value attained by the polynomial translate(aaa,bbb, p) on the unit box.

4.1 Bernstein Polynomials

An m-variable Bernstein polynomial is an m-variable polynomial of the form

p(xxx) =
∑
iii≤nnn

b̂iiiBnnn,iii(xxx), (10)

where b̂iii ∈ R and

Bnnn,iii(xxx) ≡
m−1∏
j=0

(
nj
ij

)
x
ij
j (1− xj)nj−ij . (11)

The coefficients b̂iii are called the Bernstein coefficients of p. Any polynomial can be
written as a polynomial in Bernstein form by a simple transformation. Thus, the
m-variable polynomials Bnnn,iii(xxx) in Formula (11) form a basis for the vector space of
m-variable polynomials of degree at least nnn.

In PVS, m-variable polynomials in Bernstein form are represented using the data
structure proposed by Smith in [23]. Since the method presented in this paper does not
depend on a particular representation of polynomials, it suffices to say that the PVS
formalization provides a function tomultibern that takes an m-variable polynomial
p as input and returns an element of a particular data structure that represents the
Bernstein form of p. Furthermore, a function eval that takes as inputs a representation
of an m-variable polynomial in Bernstein form and an m-tuple xxx, and returns a real
number is defined such that for all xxx ∈ Rm,

eval(tomultibern(p),xxx) = p(xxx). (12)

A key result that makes Bernstein polynomials useful for proving polynomial in-
equalities is that the Bernstein coefficients of a polynomial provide lower and upper
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bounds for the values of the polynomial over the unit box. Another useful property of
Bernstein polynomials is that the values of the function at the endpoints of the unit
box are Bernstein coefficients of the polynomial. These properties are summarized in
the following inequalities,

min
iii≤nnn

b̂iii ≤ min
xxx∈[000,111]

p(xxx) ≤ min
iii∈Cnnn

b̂iii,

max
iii∈Cnnn

b̂iii ≤ max
xxx∈[000,111]

p(xxx) ≤ max
iii≤nnn

b̂iii,
(13)

where nnn is an m-tuple of natural numbers and Cnnn denotes the set of endpoint indices
of nnn, i.e., defined as follows.

Cnnn ≡ {iii ≤ nnn | ∀ 0 ≤ j < m : ij = 0 or ij = nj}. (14)

The record type

Outminmax ≡ lbmin : real× lbmax : real× lbvar :Rm+ ×

ubmax : real× ubmin : real× ubvar :Rm+,

defined in PVS, stores information about the range of a function f : Rm → R over a
given box. The type Rm+ is the type of points in Rm extended with special value that
represents an empty tuple. The intended semantics of the type Outminmax is given by
the predicate sound?. This predicate is defined on a function f : Rm → R, an element
omm of type Outminmax, and a box [aaa,bbb] such that sound?(f, omm, aaa, bbb) holds if and only
if

• omm.lbmin and omm.lbmax are, respectively, minimum and maximum possible
values for the lower bound of f on the box [aaa,bbb].

• omm.lbvar is either empty or is a point in the box [aaa,bbb] where f attains the value
omm.lbmax.

• omm.ubmin and omm.ubmax are, respectively, minimum and maximum possible
values for the upper bound of f on the box [aaa,bbb].

• omm.ubvar is either empty or is a point in the box [aaa,bbb] where f attains the value
omm.ubmin.

Thus, if sound?(f, omm, aaa, bbb) holds, then omm provides bounds on the minimum and
maximum values of f on [aaa,bbb].

The PVS formalization provides a function berncoeffsminmax that takes as input a
representation of an m-variable polynomial in Bernstein form p(xxx) =

∑
iii≤nnn b̂iiiBnnn,iii(xxx)

and returns an element omm of type Outminmax such that

• omm.lbmin = miniii≤nnn b̂iii, omm.lbmax = miniii∈Cnnn b̂iii, p(omm.lbvar) = lbmax, and

• omm.ubmin = maxiii∈Cnnn b̂iii, omm.ubmax = maxiii≤nnn b̂iii, p(omm.ubvar) = lbmin.

The next proposition follows directly from the definition of berncoeffsminmax.

Proposition 3 For any m-variable polynomial p,

sound?(p, berncoeffsminmax(tomultibern(p)),000,111)

holds.
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Let p be an m-variable polynomial defined on a box [aaa,bbb]. When the function
berncoeffsminmax is evaluated on tomultibern(translate(aaa,bbb, p)) and the unit box
[000,111], the fields lbvar and ubvar of the resulting element of type Outminmax are points
in [000,111] where the m-variable polynomial p attains the values lbmax and ubmin, re-
spectively.

Proposition 4 For any m-variable polynomial p and box [aaa,bbb], if

omm = berncoeffsminmax(tomultibern(translate(aaa,bbb, p))),

then sound?(p, denorm omm(omm, aaa, bbb), aaa, bbb) holds, where

denorm omm(omm, aaa, bbb) ≡ omm with [ lbvar← σ[aaa,bbb](omm.lbvar),

ubvar← σ[aaa,bbb](omm.ubvar) ].

According to Proposition 4, the range information for a polynomial p over an
arbitrary box [aaa,bbb] can be computed using the functions translate, tomultibern,
berncoeffsminmax, and denorm omm.

4.2 Domain Subdivision

The lower and upper bounds of the minimum and maximum values of a polynomial
on a bounded box given by Formula (13) are not always exact. There is, however, a
method that can be used to significantly improve the accuracy of the estimates for the
minimum and maximum values of a multivariate polynomial p in a bounded box [aaa,bbb].
The basic idea is to subdivide [aaa,bbb] into two boxes by picking a variable xj , where

j < m, and consider the case where aj ≤ xj ≤ aj+bj
2

separately from the case where
aj+bj

2
≤ xj ≤ bj . This method can be used recursively to compute arbitrarily precise

bounds of the minimum and maximum values of the polynomial on [aaa,bbb].
The de Casteljau algorithm [4] is commonly used to compute the Bernstein forms

of p(xxx with [ j ← xj
2

]) and p(xxx with [ j ← xj+1

2
]). In PVS, functions subdivl and

subdivr are defined that take as inputs a representation of an m-variable polynomial
in Bernstein form p and an index j < m, and return the representations of the m-
variable polynomials in Bernstein form for the polynomials p(xxx with [ j ← xj

2
]) and

p(xxx with [ j ← xj+1

2
]), respectively. The functions subdivl and subdivr satisfy the

following proposition.

Proposition 5 For any m-variable polynomial p and for all xxx ∈ Rm,

eval(subdivl(tomultibern(p), j)(xxx) = p(xxx with [ j ← xj
2

]),

eval(subdivr(tomultibern(p), j)(xxx) = p(xxx with [ j ← xj + 1

2
]).

The functions subdivl and subdivr can be used to improve the accuracy of the
estimates for the minimum and maximum values of a polynomial in Bernstein form p
on the unit box. This result is captured in the following proposition.

Proposition 6 Let p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variable polynomial in Bern-

stein form, K be a real number, and < be a real order in {≤, <,≥, >}. If b̂Liii < K and
b̂Riii < K, for all iii ≤ nnn, then p(xxx) < K, for all xxx ∈ [000,111].
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The function berncoeffsminmax, when applied to subdivl(tomultibern(p), j) and
subdivr(tomultibern(p), j), returns elements of type Outminmax that represent range
information for the polynomial p on the “left” and “right” (in the j-th variable) halves
of the unit box, respectively. The function combine is used to aggregate the information
from these elements of Outminmax into one element of Outminmax that represents range
information for the polynomial p on the entire unit box [000,111]. Given elements omm1
and omm2 of type Outminmax, combine(omm1, omm2) returns an element omm that satisfies

• omm.lbmin = min(omm1.lbmin, omm2.lbmin),

• omm.lbmax = min(omm1.lbmax, omm2.lbmax),

• omm.lbvar is omm1.lbvar if omm.lbmax = omm1.lbmax, otherwise omm.lbvar =
omm2.lbvar,

• omm.ubmin = max(omm1.ubmin, omm2.ubmin),

• omm.ubmax = max(omm1.ubmax, omm2.ubmax), and

• omm.ubvar is omm1.ubvar if omm.ubmax = omm1.ubmax, otherwise omm.ubvar =
omm2.ubvar.

Let p be a polynomial in Bernstein form that represents the polynomial p, i.e., p =
tomultibern(p). It is not true that combining the outputs of subdivl(p, j) and
subdivr(p, j) produces an element of Outminmax that satisfies the predicate sound?.
The fields lbvar and ubvar in omml = berncoeffsminmax(subdivl(p, j)) and ommr =
berncoeffsminmax(subdivr(p, j)) are points in the unit box where the polynomials
represented by subdivl(p, j) and subdivr(p, j) attain the values lbmax and ubmin,
respectively. However, each of these polynomials represents p on only half of the unit
box [000,111]. Thus, the fields omml.lbvar, omml.ubvar, ommr.lbvar, and ommr.ubvar have
to be translated from [000,111] back to their respective half intervals for the predicate
sound? to hold. This translation is accomplished through the functions update and
updateOutminmax. The function update takes as inputs a tuple ccc ∈ Rm, a function
u : R → R, and a variable index j < m. It returns a tuple that is equal to ccc in all
components but the j-th component where it has the value u(cj), i.e.,

update(ccc, u, j) ≡ ccc with [ j ← u(cj) ].

The function updateOutminmax takes an element omm of type Outminmax, a function
u : R → R, and a variable index j < m as inputs. It updates the j-th components of
the m-tuples omm.lbvar and omm.ubvar using the function u:

updateOutminmax(omm, u, j) ≡ omm with [ lbvar← update(omm.lbvar, u, j),

ubvar← update(omm.ubvar, u, j) ].

Proposition 7 For any m-variable polynomial p, variable index j < m, and elements
omml, ommr of type Outminmax such that

omml = updateOutminmax(subdivl(tomultibern(p), j), λx :
x

2
, j),

ommr = updateOutminmax(subdivr(tomultibern(p), j), λx :
x+ 1

2
, j),

sound?(p, combine(omml, ommr),000,111) holds.
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5 The Maximum of Two Polynomials

Theorem 3.1 in Section 3.3 shows that the problem of conflict detection for polynomial
trajectories is equivalent to finding the global minimum of a function that is defined
as the maximum of two polynomials.

If f and g are two functions from Rm into R, then the function max(f, g) from Rm
into R is defined by

max(f, g)(xxx) ≡ max(f(xxx), g(xxx)).

If the functions f and g are polynomials, then the function berncoeffsminmax dis-
cussed in Section 4.1 can be used to compute an element of Outminmax that satisfies
the predicate sound? on the unit box for the function max(f, g). This is accomplished
through the function

max bc minmax(p, q) ≡ combine max(berncoeffsminmax(p),

berncoeffsminmax(q)),

where p = tomultibern(f) and q = tomultibern(g). In the definition of this function,
berncoeffsminmax is used to compute two elements of Outminmax that contain range
information for f and g on [000,111]. The function combine max then computes the worst
case scenario for the range of the function max(f, g) on [000,111], and it is defined as
follows.

combine max(omm1, omm2) ≡


omm1 if omm1.lbmin ≥ omm2.ubmax,
omm2 if omm2.lbmin > omm1.ubmax,
omm otherwise,

where omm.lbmin = min(omm1.lbmin, omm2.lbmin), omm.lbmax = 0, omm.ubmin = 0,
omm.ubmax = max(omm1.ubmax, omm2, ubmax), and both omm.lbvar and omm.ubvar are
set to empty.

Proposition 8 For any m-variable polynomials p and q,

sound?(max(p, q), max bc minmax(p, q),000,111)

holds, where p = tomultibern(p) and q = tomultibern(q).

Proposition 8 states that the function max bc minmax computes bounds on the
minimum and maximum values of the function max(p, q) in the unit box. Although
these bounds are correct, they may not be precise enough to determine whether a
relation such as max(p, q) ≥ K is satisfied for a given real number K. In this case,
Proposition 6 can be recursively applied to subdivide the unit box into smaller intervals
and compute estimates that are precise to any required approximation.

5.1 A Procedure For Checking max(p, q) ≥ K in [000,111]

The following procedure can be used to determine whether the maximum max(p, q)
of two m-variable polynomials p and q always takes a value of at least K on the unit
box [000,111].

1. Compute omm = max bc minmax(tomultibern(p), tomultibern(q)).

2. If omm.lbmin ≥ K, then the inequality max(p, q)(xxx) ≥ K holds for all xxx ∈ [000,111].
The procedure exits with success.
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3. If omm.lbmax < K, then the inequality max(p, q)(ccc) < K holds for ccc = omm.lbvar ∈
[000,111]. The procedure exits with failure, with ccc as counterexample.

4. Otherwise, choose any 0 ≤ j < m and recursively apply this procedure to
determine whether

(a) max(p, q)(xxx with [ j ← xj
2

]) ≥ K and

(b) max(p, q)(xxx with [ j ← xj+1

2
]) ≥ K,

for all xxx ∈ [000,111].

• If both Step 4a and Step 4b exit with success, then, by Proposition 6, the
inequality max(p, q)(xxx) ≥ K holds for all xxx ∈ [000,111]. The procedure exits
with success.

• If Step 4a exits with failure with counterexample ccc, then the inequality
max(p, q)(cccl) < K holds, where cccl = ccc with [ j ← xj

2
] ∈ [000,111]. The process

exits with failure, with cccl as counterexample.

• If Step 4b exits with failure with counterexample ccc, then the inequality
max(p, q)(cccr) < K holds, where cccr = ccc with [ j ← xj+1

2
] ∈ [000,111]. The

process exits with failure, with cccr as counterexample.

It should be noted that the procedure above does not necessarily terminate. How-
ever, at each recursive step, the interval [omm.lbmin, omm.lbmax], which contains the
minimum value of max(p, q) over the unit box [000,111], gets smaller.

Given m-variable polynomials p and q and a real number K, the procedure above
can also be used to determine whether the inequality max(p, q)(xxx) ≥ K holds for
all xxx ∈ [aaa,bbb]. In this case, the procedure is used with the m-variable polynomials
p[aaa,bbb] = translate(aaa,bbb, p) and q[aaa,bbb] = translate(aaa,bbb, q). If the procedure exits with
success, then the inequality max(p, q)(xxx) ≥ K holds for all xxx ∈ [aaa,bbb]. If the procedure
exits with failure with counterexample ccc, the inequality max(p, q)(ccc′) < K holds, where
ccc′ = σ[aaa,bbb](ccc).

The complexity of the procedure is exponential in the number of variables. How-
ever, some heuristics can be used to greatly speed this procedure [23, 20, 16]. For
instance, Step 4 involves applying the procedure recursively on the left and right hand
sides of the unit box. However, if the procedure is run for the left (resp. right) side of
the unit box first, in some cases, it may not be necessary to run it for the right (resp.
left) hand side at all. An example of this is when the recursive call on the right (resp.
left) hand side exits with failure with a counter example ccc. In this case, ccc is also a
counterexample for the larger box, so running the procedure on the left (resp. right)
hand side of the box is not necessary. There are also heuristics for the selection of
the variable j in Step 4 and of the order in which Step 4a and Step 4b are performed.
These heuristics improve the efficiency of the procedure by pruning the execution tree
generated by the recursive calls in Step 4.

5.2 The Algorithm bernMinmax

This section describes a formally verified algorithm, which is based on the procedure
presented in Section 5.1, that computes range information for the minimum and max-
imum values of a function defined as the maximum of two polynomials.

The function bernMinmax, defined in Figure 7, has as inputs representations p

and q of m-variable polynomials in Bernstein form p and q, respectively, a maximum



226 Narkawicz and Muñoz, Conflict Detection Algorithms

01 : bernMinmax(p, q, N, i, varsel, localex, globalex, omm) : Outminmax ≡
02 : let bmm = max bc minmax(p, q) in

03 : if i = N or localex(bmm) or (i > 0 and between(omm, bmm)) or

04 : globalex(bmm) then bmm

05 : else

06 : let (leftp, jp) = varsel(p, i),

07 : (leftq, jq) = varsel(q, i),

08 : (left, j) = if mod(i, 2) = 0 then (leftp, jp)

09 : else (leftq, jq) endif,

10 : (pl, pr) = (subdivl(p, j), subdivr(p, j)),

11 : (ql, qr) = (subdivl(q, j), subdivr(q, j)),

12 : (p1, p2) = if left then (pl, pr) else (pr, pl) endif,

13 : (q1, q2) = if left then (ql, qr) else (qr, ql) endif,

14 : σ = if left then λx : x/2 else λx : (x+ 1)/2 endif,

15 : omm = if i > 0 then combine(omm, bmm) else bmm endif,

16 : bmm1 = bernMinmax(p1, q1, N, i + 1, varsel, omm) in

17 : if globalex(bmm1) then

18 : combine(updateOutminmax(bmm1, σ, j), bmm)

19 : else

20 : let omm = combine(omm, bmm1),

21 : bmm2 = bernMinmax(p2, q2, N, i + 1, varsel, omm),

22 : bmmleft = if left then bmm1 else bmm2 endif,

23 : bmmright = if left then bmm2 else bmm1 endif in

24 : combine(updateOutminmax(bmmleft, λx : x/2, j),

25 : updateOutminmax(bmmright, λx : (x+ 1)/2, j))

26 : endif

27 : endif

Figure 7: The function bernMinmax
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recursion depth N ∈ N, and the current recursion depth i ≤ N. Additional inputs
include a function varsel that selects the variable on which to subdivide at each
iteration and which direction to explore first, predicates localex and globalex on the
output type that cause the algorithm to exit locally and globally, respectively, and a
parameter omm of the same type as the output value. These additional inputs allow
for the use of heuristics based on a particular variable selection method, direction of
recursion, and strategy for early termination. They are described in Section 5.4.

The function bernMinmax returns a record of type Outminmax. Assuming that
bmm = max bc minmax(p, q) as in Line 1 of this function, if the condition in Line 3 is
true, then the function returns bmm. In this case, bmm will satisfy either localex or
globalex, except when the maximum depth has been reached, i.e., i = N, or when the
execution tree is pruned by the condition between(omm, bmm).

If the condition in Line 3 is false, then the function varsel is used to select a
variable to subdivide and a direction (left or right) for each one of the polynomials. It is
important to note that the function varsel is an input to bernMinmax, so it can handle
any subdivision scheme. Next, the domain subdivision functions subdivl and subdivr

presented in Section 4.2, are used to subdivide the unit box [000,111] into smaller sub-boxes.
At each subdivision, the function max bc minmax is recursively called to compute an
element of Outminmax that stores information about the ranges of the polynomials on
the given sub-box. Using this function, two elements bmm1 and bmm2 of Outminmax are
produced; one representing range information for the box [000,111 with [ j ← 1

2
]] and the

other representing range information for the box [000 with [ j ← 1
2

],111]. The algorithm
effectively stops when the predicate globalex is satisfied after the first of the two
recursive calls of the function bernMinmax. This is acoomplished by the condition in
Line 17. Since the points represented by lbvar and ubvar are computed in a unit box,
they must be translated back to the half boxes from the full boxes in the function, by
using the function updateOutminmax.

If the condition in Line 17 is false, the two elements of type Outminmax resulting
from applying updateOutminmax to bmm1 and bmm2 are combined into a new element of
type Outminmax that represents the range information of the function max(p, q) over
the unit box.

The correctness property of the function bernMinmax states that it computes an
element of type Outminmax that bounds the range of the function max(p, q) over the
unit box. The following theorem has been proved in PVS by induction on the structure
of the definition of bernMinmax. Proposition 8 is used to prove the base case. The
inductive case is discharged by Proposition 7 in Section 4.2.

Theorem 5.1 For all m-variable polynomials p, q : Rm → R, N ∈ N, i ∈ N, with
i ≤ N, varsel : N → boolean × N<m, localex, globalex : Outminmax → boolean,
and omm ∈ Outminmax, if bmm ∈ Outminmax is given by

bmm = bernMinmax(tomultibern(p), tomultibern(q), N, i, varsel, omm),

then

1. max(p, q)(bmm.lbvar) = bmm.lbmax,

2. max(p, q)(bmm.ubvar) = bmm.ubmin, and

3. bmm.lbmin ≤ max(p, q)(xxx) ≤ bmm.ubmax, for all xxx ∈ [000,111].

It is noted that Theorem 5.1 holds for all possible values of the input parameters
varsel, localex, globalex, and omm. These parameters are added for practical and
efficiency reasons. They are explained in Section 5.4.
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polyMinmax(p, q,aaa,bbb, N, varsel, localex, globalex) : Outminmax ≡
let p = tomultibern(translate(p,aaa,bbb)),

q = tomultibern(translate(q,aaa,bbb)),

omm = bernMinmax(p, q, N, 0, varsel, localex, globalex, emptymm)

in

denorm omm(omm, aaa,bbb)

Figure 8: The function polyMinmax

5.3 Function polyMinmax

The function polyMinmax, defined in Figure 8, computes range information for the
maximum of two polynomials on an arbitrary box [aaa,bbb]. The algorithm works in four
steps:

1. Convert the polynomials from the box [aaa,bbb] to the unit box [000,111] using the
function translate defined by Formula (4) in Section 4.

2. Compute the Bernstein form of the translated polynomial using the function
tomultibern from Section 4.1.

3. Apply bernMinmax to compute an element bmm of Outminmax that gives range
information for the maximum of these two polynomials in Bernstein form on the
unit box.

4. Translate omm from [000,111] back to [aaa,bbb] linearly using the function denorm omm

defined in Section 4.1.

The constant element emptymm of type Outminmax is defined such that all the nu-
merical fields are 0 and the m-tuples are empty. The following correctness property of
the function polyMinmax has been proved in PVS.

Theorem 5.2 For all m-variable polynomials p, q : Rm → R in standard form, N ∈ N,
varsel : N → boolean × N<m, and localex, globalex : Outminmax → boolean, if
omm ∈ Outminmax is given by

omm = polyMinmax(p, q,aaa,bbb, N, varsel, localex, globalex),

then

• max(p, q)(omm.lbvar) = omm.lbmax, max(p, q)(omm.ubvar) = omm.ubmin, and

• omm.lbmin ≤ max(p, q)(xxx) ≤ omm.ubmax, for all xxx ∈ [aaa,bbb].

According to Theorem 5.2, the range information computed by polyMinmax can
be used to check universally quantified propositions of the form

∀x ∈ [aaa,bbb] : max(p, q)(xxx) < K,

for any given m-variable polynomials p, q, constant value K, and real order relation
< ∈ {≥, >,≤, <}. If < is one of ≥ or >, it suffices to check whether omm.lbmin < K. If
< is one of ≤ or <, it suffices to check whether omm.ubmax < K. Furthermore, since an
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existential proposition of the form “∃ccc ∈ [aaa,bbb] : max(p, q)(ccc) < K” is equivalent to the
negation of the universal proposition “∀xxx ∈ [aaa,bbb] : max(p, q)(xxx) ¬< K”, the former
type of existentially qualified propositions can also be checked using the algorithm
polyMinmax. In this case, the witness ccc is either omm.lbvar or omm.ubvar depending on
<.

5.4 Parameters varsel, omm, localex, and globalex

The parameter varsel is used to determine two things: (1) Which variable to subdivide
at each recursive step, and (2) Whether to compute bounds to the left or the right first
in that variable. The algorithm takes as inputs a representation p of an m-variable
polynomial in Bernstein form p and a natural number i. It returns a pair (left, j),
where left is a Boolean value and j < m. The value left being true means that
the given variable should be subdivided to the left first, and j is a natural number
representing the index of the variable to be subdivided. The most basic example of such
a function is given by varsel(p, i) = (true, mod(m, i)), which alternates the variables
and always computes range information on the left interval first. However, as noted
in [16] and [20], there are much more efficient methods for choosing these variables and
directions, including several based on derivatives. The function varsel is an input to
the algorithm in PVS, so it can facilitate any subdivision scheme. One method that has
been implemented in PVS is called MaxVarMinDir. This method chooses the variable
for which the range between the first and last Bernstein coefficients, when all other
variables are held constant, is greatest. In the algorithm bernMinmax, the function
varsel is called on both p and q, and the answer that is used alternates between these
answers.

The parameter omm is used for caching the current output of the algorithm. The
function between is defined as follows

between(omm, bmm) ≡ omm.lbmax ≤ bmm.lbmin and

bmm.ubmax ≤ omm.ubmin.

It tests whether the output bmm at the current recursive step can contribute any-
thing to the final output of the function once it is combined. At a given recursive
step in the algorithm, if between(omm, bmm) returns true, then the output bmm of the
current recursive step will not contribute to the overall output of the function since
between(omm, bmm) implies that combine(omm, bmm) = omm.

The predicates localex and globalex are used to prune the executing tree depend-
ing on particular objectives. The predicate localex will be used to exit the algorithm
locally and continue to the next recursive step. While both of these predicates are
used in the algorithm to simply break recursion locally, the predicate globalex will be
chosen so that if recursion breaks because globalex returns true, then every recursion
above will also break, effectively resulting in a global exit from the algorithm. For
instance, to check propositions of the form “∀xxx ∈ [aaa,bbb] : max(p, q)(xxx) ≥ K”, localex
and globalex can be defined as follows.

localex(omm) ≡ omm.lbmin ≥ K,
globalex(omm) ≡ omm.lbmax < K.

In this case, if a box satisfies the inequality, there is no need to subdivide the box.
On the other hand, if the negated inequality is satisfied by a point in the box, the
algorithm must exit since a counterexample to the universally quantified inequality
has been found.
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6 Conflict Detection for Arbitrary Trajectories

It is noted in Section 3.3 that conflict detection between two trajectories Po and Pi
over a box [aaa,bbb] can be reduced to determining whether the function sqdistD,H,Po,Pi

ever takes a value less than 1 on [aaa,bbb]. The function sqdistD,H,Po,Pi
is defined as the

maximum of the functions f(xxx) =
w2

z
H2 and g(xxx) =

w2
x+w2

y

D2 , where w = Po(xxx) − Pi(xxx).
The numerical constants D and H represent the minimum horizontal and vertical
separation between the aircraft, respectively.

If Po and Pi are polynomial functions, the functions f and g are also polynomials,
and therefore the function sqdistD,H,Po,Pi

is the maximum of two polynomials. The
next proposition follows from Theorem 3.1 in Section 3.3 and the definition of the
predicate sound?.

Proposition 9 If sound?(sqdistD,H,Po,Pi
, omm, aaa, bbb) holds, then

• If omm.lbmin ≥ 1, then conflict?(aaa,bbb, Po, Pi) does not hold.

• If omm.lbmax < 1, then conflict?(aaa,bbb, Po, Pi) holds, and conflict is attained at the
point lbvar, which is an element of [aaa,bbb].

According to Proposition 9 and Theorem 5.2 in Section 5, conflict between trajecto-
ries Po and Po can be determined by using the algorithm polyMinmax defined in Sec-
tion 5.3. For this purpose, the local exit and global exit predicates used in the algo-
rithm bernMinmax can defined as follows.

cd localexit(omm) ≡ omm.lbmin ≥ 1,

cd globalexit(omm) ≡ omm.lbmax < 1.

Alternatively, if the trajectories Po and Pi are not defined by polynomials but are
approximated by polynomial trajectories P ′o and P ′i , the discussion in Section 3.3, in-
cluding Proposition 1, implies that conflict information for Po and Pi can be computed
by considering the function sqdistD,H,P ′o,P ′i

, which is the maximum of two polynomi-

als. In this case, the local exit and global exit predicates are parametric on D, H, εD,
and εH , where εD and εH represent desired precisions in the horizontal and vertical
dimensions as explained in Section 3.3. These parametric predicates are defined as
follows.

cd localexitD,H,εD,εH (omm) ≡ omm.lbmin ≥ 1 + δ+(D,H, εD, εH),

cd globalexitD,H,εD,εH (omm) ≡ omm.lbmax < 1− δ−(D,H, εD, εH),

where δ+(D,H, εD, εH) and δ−(D,H, εD, εH) are defined by Formula (8) in Section 3.3.
Based on these results, this section presents a formally verified conflict detection

algorithm for arbitrary trajectories.

6.1 Verified Conflict Detection Algorithm

Suppose that Po and Pi are polynomial trajectories from Rm into R3. The algorithm
cd poly, in Figure 9, can be used to check whether these two trajectories are in conflict
on a given box [aaa,bbb], i.e., whether conflict?(D,H,aaa,bbb, Po, Pi) holds. The parametric
function cd polyN,εD,εH is a conflict detection algorithm as defined in Section 3.2. It
has as inputs positive real numbers D,H, a box [aaa,bbb], and polynomial trajectories
Po, Pi. It returns an element of type CDOutcome with the values Unknown, NoConflict,
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cd polyN,εD,εH
(D,H,Po, Pi, aaa,bbb) : CDOutcome ≡

let p = λxxx : (Po(xxx)z − Pi(xxx)z)2/H2,

q = λxxx : (Po(xxx)(x,y) − Pi(xxx)(x,y))
2/D2,

omm = polyMinmax(p, q,aaa,bbb, N, MaxVarMinDir,

cd localexitD,H,εD,εH ,

cd globalexitD,H,εD,εH
) in

if cd localexitD,H,εD,εH (omm) then

IsFalse

elsif cd globalexitD,H,εD,εH
(omm) then

Conflict(omm.lbvar)

else

Unknown

endif

Figure 9: The function cd poly

or LossAt(ccc), where ccc ∈ [aaa,bbb] is a point at which the trajectories loss separation. The
parameter N ∈ N represents a maximum depth for the bounding algorithm polyMinmax

presented in Section 5.3. The parameters εD and εH are usually 0, except when Po
and Pi are polynomial approximations of non-polynomial trajectories in which case
they are small nonnegative real numbers.

Theorem 6.1 states that the algorithm cd polyN,εD,εH is correct, as defined in Sec-
tion 3.2, when εD = εH = 0.

Theorem 6.1 (Correctness for Polynomial Trajectories) For all polynomial tra-
jectories Po and Pi from Rm into R3, boxes [aaa,bbb] ∈ Rm, and depths N ∈ N,

1. cd polyN,0,0(D,H,Po, Pi, aaa, bbb) = NoConflict implies

¬conflict?(D,H,aaa,bbb, Po, Pi).

2. cd polyN,0,0(D,H,Po, Pi, aaa, bbb) = LossAt(ccc) implies

los?(D,H,Po(ccc), Pi(ccc))

and hence ¬conflict?(D,H,aaa,bbb, Po, Pi) holds.

Theorem 6.1 is a particular case of a more general theorem that takes the param-
eters εD and εH into account. Theorem 6.2 shows that the algorithm cd poly can
also be used to compute conflict information for arbitrary trajectories, assuming that
polynomial approximations are known.

Theorem 6.2 (Correctness for Arbitrary Trajectories) For all aircraft trajec-
tories Po, Pi : Rm → R3, polynomial trajectories P ′o, P

′
i : Rm → R3, nonnegative real

numbers εD = εoD + εiD and εH = εoH + εiH , boxes [aaa,bbb] ∈ Rm, and depths N ∈ N,
such that P ′o and P ′i are polynomial approximations of Po and Pi, respectively, i.e.,
approx?(aaa,bbb, εoD, εoH , Po, P

′
o) and approx?(aaa,bbb, εiD, εiH , Pi, P

′
i ) hold,
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1. cd polyN,εD,εH (D,H,P ′o, P
′
i , aaa, bbb) = NoConflict implies

¬conflict?(D,H,aaa,bbb, Po, Pi).

2. cd polyN,εD,εH (D,H,P ′o, P
′
i , aaa, bbb) = LossAt(ccc) implies

los?(D,H,Po(ccc), Pi(ccc))

and hence ¬conflict?(D,H,aaa,bbb, Po, Pi) holds.

Notice that the applications of cd poly in Theorem 6.2 involve the polynomial tra-
jectories P ′o and P ′i , whereas the conclusions involve Po and Pi. Theorem 6.1 and
Theorem 6.2 have both been formally proved in PVS. Theorem 6.1 follows trivially
from Theorem 6.2 by setting Po = P ′o, Pi = P ′i , εD = 0, and εH = 0. The proof of
Theorem 6.2 follows from Theorem 5.2 in Section 5.3 and Proposition 1 in Section 3.3.

Theorem 6.1 and Theorem 6.2 are proved in PVS and they are available as part of
the formal development at http://shemesh.larc.nasa.gov/people/cam/Bernstein.

6.2 An Example with Polynomial Trajectories

Consider the following two polynomial trajectories of type R→ R3, meaning that they
only depend on the time parameter and do not involve uncertainties.

Po(t) = (−3.2484 + 270.7 t+ 433.12 t2 − 324.83999 t3,

15.1592 + 108.28 t+ 121.2736 t2 − 649.67999 t3,

38980.8 + 5414.0 t− 21656.0 t2 + 32484.0 t3)

Pi(t) = (1.0828− 135.35 t+ 234.9676 t2 + 3248.4 t3,

18.40759− 230.6364 t− 121.2736 t2 − 649.67999 t3,

40280.15999− 10828.0 t+ 24061.9816 t2 − 32484.0 t3)

These trajectories represent the 3D Euclidean positions of the ownship and intruder
aircraft, respectively.

The unit of time for these trajectories is hours (hr), the unit of horizontal position
is nautical miles (nm), and the unit of vertical position is feet (ft). The minimum
separation standard is 5nm horizontally and 1000ft vertically, i.e., D = 5 and H =
1000. The lookahead time is assumed to be 3 minutes, i.e., T = 1

20
. Since the only

variable of the polynomial is time, the box of interest for conflict detection is just the
interval [0, T ].

At time t = 0 hours (current time), the positions of the ownship and intruder air-
craft are (−3.2484, 15.1592, 38980.8) and (1.0828, 18.40759, 40280.15999), respectively.
At this time, the aircraft are approximately 5.414 nm apart horizontally, and approx-
imately 1299.36 ft apart vertically. Thus, given the minimum separation standard,
the aircraft are not currently in loss of separation. However, the algorithm cd poly

predicts that the aircraft are in conflict. That is,

cd polyN,0,0(D,H,Po, Pi) = LossAt(5105/262144), (15)

where N = 16, which is the maximum recursion depth needed for the algorithm to ter-
minate in this case. Theorem 6.1 states that these trajectories will be in loss of separa-
tion at time t = 5105

262144
, or in about 70 seconds. It follows that conflict?(D,H, 0, T, Po, Pi)

http://shemesh.larc.nasa.gov/people/cam/Bernstein
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holds. Indeed, at this time, the aircraft are approximately 4.999 nm apart horizontally
and −999.92 ft vertically.

It is important to note that these results, which have been proved in PVS, are not
subject to computation errors. For instance, the evaluation of cd poly in Formula (15)
is mathematically equal to Conflict(5105/262144). Furthermore, at time t = 5105

262144

the horizontal distance between the aircraft is strictly less than 5 horizontally and
strictly less than 1000 vertically.

6.3 Conflict Detection with Turning Trajectories

The trajectory of an aircraft in a steady turn, without considering uncertainties, is
described by the parametric function turns,R,α,ω,vz : R → R, with parameters s, R,
α, ω, and vz, defined by Formula 3 in Section 3.1. Even though the function turn is
not defined by polynomials, it can be approximated by polynomials. For any given
natural number n > 0, the following polynomial trajectory approximates the trajectory
turns,R,α,ω,vz .

turnpolys,R,α,ω,vz ,n(t) = s + (

n∑
i=0

R
(−1)i

(2i+ 1)!
(α+ t ω)2i+1,

n∑
i=0

R
(−1)i

(2i)!
(α+ t ω)2i,

t vz).

(16)

The summations in the first and second components of this trajectory represent Taylor
series expansions of R sin(α+ t ·ω) and R cos(α+ t ·ω), respectively. The next lemma
gives a bound for the error of this approximating trajectory, in terms of the predicate
approx? defined in Section 3.3.

Lemma 6.1 For any parameters s, α, R, ω, vz, and natural numbers n, the polyno-
mial trajectory turnpolys,α,R,ω,vz ,n approximates turns,α,ω,R,vz over the time interval
between 0 and T , i.e.,

approx?(0, T, ε1 + ε2, 0, turns,α,ω,R,vz , turnpolys,α,R,ω,vz ,n)

holds, where
β ≡ max(|α|, |α+ T · ω|),

ε1 ≡ R
β3+2n

(3 + 2n)!,

ε2 ≡ R
β2+2n

(2 + 2n)!.

It is easy to see that ε1 and ε2 in Lemma 6.1 converge to zero as n approaches infinity.
While this gives a bound for the error of the approximation, it depends on n. Thus, it
is helpful to first specify the desired precision δD and then compute a number n such
that ε1 + ε2 < δD. This can be accomplished through a function named exp term num

that takes as inputs a nonnegative real number x and a positive precision ε > 0. It

returns a natural number j > x + 1 with the property that xk

k!
< ε for all k ≥ 2 j.

The existence of such a function follows from the fact that xk

k!
converges to zero as k

approaches infinity. There are many ways to define such a function, and in the PVS
development it is defined recursively.
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According to Lemma 6.1 and Theorem 6.2, the function turnpoly can be used to
deduce conflict information for trajectories defined by turn. This is stated explicitly
in the following theorems, which consider the case where both aircraft are turning and
where only one aircraft is turning. These theorems have been formally proved in PVS.

Theorem 6.3 (Both Aircraft Are Turning) For all Po, P
′
o, Pi, P

′
i , so, si, αo,

αi, ωo, ωi, Ro, Ri, voz, viz, βo, βi, n, cd outcome, N, D, H, and T , if

• Po = turnso,αo,ωo,Ro,voz ,

• Pi = turnsi,αi,ωi,Ri,viz ,

• βo = max(|αo|, |αo + T · ωo|),

• βi = max(|αi|, |αi + T · ωi|),

• n = exp term num(εD/(4 max(Ro, Ri)),max(βo, βi)),

• P ′o = turnpolyso,αo,Ro,ωo,voz ,n
,

• P ′i = turnpolysi,αi,Ri,ωi,viz ,n
, and

• cd outcome = cd poly(D,H,P ′o, P
′
i , 0, T, N, εD, 0),

then

1. cd outcome = NoConflict implies ¬conflict?(D,H, 0, T, Po, Pi).

2. cd outcome = LossAt(ccc) and εD < D implies conflict?(D,H, 0, T, Po, Pi).

Theorem 6.4 (Only The Intruder Aircraft Is Turning) For all Po, Pi, P
′
i , so,

si, vo, αi, ωi, Ri, viz, βi, n, cd outcome, N, D, H, and T , if

• Po = linearso,vo (cf. Section 3.1),

• Pi = turnsi,αi,ωi,Ri,viz ,

• βi = max(|αi|, |αi + T · ωi|),

• n = exp term num(εD/(2Ri), βi),

• P ′i = turnpolysi,αi,Ri,ωi,viz ,n
, and

• cd outcome = cd poly(D,H,Po, P
′
i , 0, T, N, εD, 0),

then

1. cd outcome = NoConflict implies ¬conflict?(D,H, 0, T, Po, Pi).

2. cd outcome = LossAt(ccc) and εD < D implies conflict?(D,H, 0, T, Po, Pi).

7 Conclusion

A polynomial global optimization method for developing verifiable conflict detection
algorithms for arbitrary trajectories has been proposed. The key idea of the method is
to compute bounds for the maximum and minimum values of a function that is defined
as the maximum of two polynomials. The bounds are computed using a recursive
branch-and-bound algorithm via Bernstein polynomials.

The proposed method has been specified and verified in the interactive theorem
prover PVS, and it assumes that computations are performed using real number se-
mantics with infinite precision, a built-in feature of PVS. In a programming language,
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this semantics can be achieved using a library for arbitrary precision arithmetic such
as GMP.4

In contrast to other global optimization methods, the method proposed here has
been mechanically verified in a theorem prover. Therefore, it is guaranteed to be free
of logical errors. Further, if implemented in a programming language, the correctness
of the software only depends on the correctness of the library for arbitrary precision
arithmetic, which is relatively small compared to general purpose global optimization
environments such as GlobSol5 and COCONUT6. The use of a specialized algorithm,
which has been formally verified, as opposed to a general tool for global optimization
could greatly simplify the certification process needed for the deployment of safety-
critical CD&R systems.

Branch-and-bound methods for global optimization are usually exponential in the
number of variables, and the method presented here is not the exception. However,
recent developments in branching and pruning heuristics and efficient representations
of multivariate polynomials make Bernstein polynomial methods practical in many
cases. Future research will study the feasibility of the proposed approach for airborne
conflict detection, where the computational resources are scarce and the frequency of
execution is on the order of 1Hz.
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