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Abstract

The objective of this paper is to study the existing definitions of in-
terval order relations for comparing intervals in the context of decision-
making problems. First, a detailed survey of existing definitions is pre-
sented, along with the advantages and drawbacks of each. Then, a global
comparison is performed, taking the best order relations from each group.
Finally, a conclusion is drawn about the best order relations.
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1 Introduction

Decision making involves selecting the best alternative in conflicting situations arising
in the different sectors of our daily life. It is also essential to study the different
fields of optimization theory, operational research (O.R.) and management science,
etc. A decision depends on various factors, such as uncertainty in the future or risk.
Decision making is classified according to the scale of certainty, that ranges from
full certainty to full uncertainty; this scalle is called the degree of certainty. There
are several types of decisions, such as, (i) decisions under certainty, (ii) decisions
under risk, (iii) decisions under conflicting situations, (iv) decisions under uncertain
conditions, and others. Again, a decision under uncertainty is categorized into several
types. Here, we focus mostly on optimistic and the pessimistic decision making. For
optimistic decision making, the decision maker selects the best alternative, ignoring
the uncertainty, whereas in the pessimistic case, the decision maker selects the best
alternative with less uncertainty.
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By real numbers, we generally represent the crisp or deterministic parameters of
a particular mathematical model. These mathematical models actually describe some
exact and certain problems in a traditional way. However, there are many unpre-
dictable real life situations, especially in the cases of engineering problems or different
branches of operations research and management science, where it is very difficult to
assume the parameters as fixed real numbers. In these situations, the decision maker
has to take decisions under uncertainty, and some imprecise or inexact elements au-
tomatically come into the existence in those models. To handle those imprecise or
uncertain parameters, generally, O.R. practitioners and management authorities use
either stochastic or fuzzy approaches. In the stochastic approach, imprecise parame-
ters are considered as random variables following some known probability distributions.
On the other hand, in fuzzy approaches, the uncertainty is viewed either as a fuzzy set
with appropriate membership function or as a fuzzy number. Also, in some cases, both
approaches are applied to tackle the impreciseness. In these approaches, there arises
a question regarding the choice of probability distributions or the selection of mem-
bership functions. It is actually a formidable task for a decision maker in an inexact
environment. To overcome this difficulty, recently, some researchers have used inter-
vals to specify imprecise parameters. In decision making problems, the order relation
between intervals plays an important role in selecting the best alternative. During the
last few decades, several researchers have proposed the definitions of order relations
of intervals using different mathematical approaches. Those approaches were mainly
developed to reformulate or to solve various interval oriented optimization problems.
Since their primary aim was to develop better solution techniques, in many cases rig-
orous discussions about the corresponding interval ordering definition have not been
given. The researchers finished the discussions after fulfilling their purpose. However,
our main intention here is to analyze various facets of those definitions and to discuss
its general applicability in diverse fields. During our discussion, it will be seen that
unlike real numbers the ranking of intervals is not symmetric. As a result, in many
cases, their definitions cannot differentiate two intervals in general, even though they
can be applied efficiently to solve the prescribed models.

In this paper, we present a comparative study of the existing definitions of order
relations between intervals, analyzing level of acceptability and shortcomings from
different points of view. The order relations we analyze were proposed by Moore [12],
Ishibuchi and Tanaka [3], Chanas and Kuchta [1], Kundu [9], Zhang [18], Sengupta and
Pal [14], Levin [10], Sevastjanov and Róg [15], Hu and Wang [2], Mahato and Bhunia
[11] and Kulpa [8]. These order relations are discussed in detail and are compared on
a set of selected pairs of intervals. Finally, an encouraging conclusion is drawn in this
regard.

The rest of this article is constructed as follows: In Section 3, the basic features
of the considered order relations are given. In Section 2 and 4, the basics of intervals,
interval arithmetic and different types of intervals have been depicted. The detailed
group wise investigations of the considered order relations have been given spreading
over the sections 5 to 8. In Section 9, we have done a comparative study among
the selected interval ranking definitions. Finally, the conclusion has been given in
Section 10.
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2 Interval Numbers

Interval numbers are a generalization of real numbers and are subsets of R, the set of
real numbers. Just as real numbers have an associated arithmetic and mathematical
analysis, interval numbers have a distinct interval arithmetic and interval analysis
[5, 4, 12, 13]. A new order relation and its application to uncertain data has been
given in [2]. Kulpa [6, 7] described the space of intervals diagrammatically, and,
applying this concept, he explained not only the interval arithmetic but also introduced
a new paradigm for studying the interval relations. However, the ranking properties
of intervals are not the same as real numbers.

Normally, an interval number A is defined as

A = [aL , aR ] = {x : aL ≤ x ≤ aR , x ∈ R} .

Here, aL , aR ∈ R are the lower and upper bounds of the interval A, respectively.
Every real number a ∈ R is expressed as interval number [a, a] with zero width.
Alternatively, an interval number can also be expressed by its centre and radius. In

this form, an interval number A = [aL , aR ] is denoted by 〈aC , aW 〉, where aC =
a

L
+a

R
2

and aW =
a

R
−a

L
2

are known as the centre and radius of the interval, respectively.

3 Basic Features of the Order Relations Consid-
ered

The problem treated here deals with ordering of interval numbers in solving decision
making problems. A number of ranking definitions prescribed in the literature are
reviewed and tested on a set of selected pairs of intervals. A detailed analysis of
the ranking definitions reveals that they were based on different mathematical back-
grounds. Some of them were defined directly, i.e., just by observing we can rank
intervals directly, while for the rest of the ranking definitions, intervals can be ranked
with the help of either probabilistic or fuzzy concepts or with some specific functions
or indices.

Here, the main features of all the considered order relations are given in chronolog-
ical order. After the development of interval numbers, when the experts were recogniz-
ing the necessity of ranking of intervals to develop a well-organized and self-dependent
theory of intervals, Moore [12], the pioneer of this study, defined two transitive or-
der relations. One of them is dependent just on the bounds of the intervals and the
other is the extension of the set inclusion property of intervals. Highlighting the disad-
vantages of the Moore’s [12] definitions, Ishibuchi and Tanaka [3] defined much more
efficient ranking definitions in the context of decision makers’ point of view. They
also presented the definitions using the bounds as well as the centre and radius of the
intervals. The ranking definitions for maximization and minimization problems were
offered differently in this case. To generalize the works of [3], Chanas and Kuchta [1]
introduced the t0, t1-cut of the intervals and redefined the order relations of [3] by the
same. However, all these definitions mentioned earlier have a lack of ability to answer
the question “How much larger is the interval, if it is greater than the other?” raised
by Sengupta and Pal [14]. Kundu [9] introduced a probabilistic approach to define the
interval ranking relation named as “fuzzy leftness relation”. Zhang et al. [18] intro-
duced a new approach using the possibility degree of intervals to compare intervals.
They defined two types of possibility degree for the intervals. Sengupta and Pal [14]
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pointed out two different approaches for comparing any two intervals. In the first ap-
proach, providing the definition of “Acceptability index” or “Value Judgment index”,
they compared any two intervals in the context of an optimistic decision maker’s point
of view, whereas in another approach, they suggested the “fuzzy preference ordering”
between any two intervals in case of pessimistic decision making. However, their defi-
nitions fail in some cases. Levin [10] defined the order relations for intervals with the
help of a remoteness function. He also used the generalization of some set theoretical
and logical operations. However, the process is very complicated. Sevastjanov and Róg
[15] also proposed the same using a probabilistic approach. In the last two approaches,
the proposed definitions of the equality of two intervals are not generally applicable,
unless aL = bL and aR = bR . In the year 2006, another interval ranking definition was
proposed by Hu and Wang [2] using the centre and radius of the intervals. Also, they
pointed out the drawbacks of Kundu’s [9] leftness relation and gave the modified fuzzy
leftness relation. Almost at the same time, Mahato and Bhunia [11] proposed new
definitions of order relations between two intervals to overcome the incompleteness of
the definitions developed earlier. They defined the order relations “≤omin”, “<omin”
and “ ≥omax”, “>omax” for optimistic and “≤pmin”, “<pmin” and “ ≥pmax”, “>pmax”
for pessimistic decision making. Diagrammatic tools for describing the space of inter-
vals and the corresponding interval relations have been given by Kulpa [8]. He used
different types of diagrams, viz., M R diagrams, W diagrams etc. to serve the said
purpose. The well known set inclusion relations (⊆ and ⊇) and precedence relations
(� and �) were defined and represented diagrammatically as ordering relations on
intervals. In this connection, he also defined and explained graphically the two closely
related terms, viz., in-between interval relation and Lozenge.

4 Order Relations of Intervals

In contrast to real numbers, it is not straightforward to define a total order relation
for intervals. As a result, researchers have defined order relations in different ways.
Most of these definitions cannot specify the order relations properly for completely
overlapping intervals. To put this into focus, we shall present a comparative study
of existing order relations. Let A = [aL , aR ] and B = [bL , bR ] be a pair of arbitrary
intervals. These can be classified as follows:

Type I: Non-overlapping intervals;

Type II: Partially overlapping intervals;

Type III: Completely overlapping intervals.

These three types of intervals are shown in Figure 1 for different situations.

From the existing literature, it is observed that several researchers have developed
the definitions of order relations either based on set properties, or fuzzy applications, or
probabilistic approaches, or value based approaches, or depending upon some specific
indices or functions. For the sake of convenience, these definitions are divided into
several groups, as follows:

Group 1: General definitions of interval ranking;

Group 2: Definitions depending upon some specific indices/functions;

Group 3: Interval ranking depending on probabilistic or fuzzy concepts;

Group 4: Diagrammatic representation of interval ranking.
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Figure 1: Different types of intervals

5 General Interval Ranking Definitions

Some basic interval ranking definitions were prescribed using the general concept of
intervals. These were defined by means of upper bound, lower bound, centre and
radius of the intervals.

5.1 Moore’s Approach

Moore [12] is the pioneer of this study. He first gave two transitive order relations
between two intervals A and B as follows:

(i) A < B iff aR < bL ,

(ii) A ⊆ B iff bL ≤ aL and aR ≤ bR .

The second definition is known as the “set inclusion property” of the intervals.
Moore also defined the equality of two intervals as

A = B iff aL = bL and aR = bR .

Clearly, the first transitive order relation “<” is applicable only for Type - I inter-
vals. This order relation is not a partial order. The second relation is the generalization
of the definition of subsets for intervals. According to Sengupta and Pal [14], the sec-
ond one describes only the condition that the interval A is nested in B, but it cannot
make a value-based ordering of intervals. Nonetheless, this order relation is a partial
order, since the traditional set operation “⊆” is a partial order.
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5.2 Ishibuchi and Tanaka’s Approach

It has been observed that the definitions given in [12] are not applicable for all pairs of
intervals. Now we shall establish definitions for those intervals by considering different
scenarios:

Example 5.2.1 Let A = [1, 6], B = [2, 3] and C = [4, 5] be three intervals. Now there
is a question: which is the greater interval between A and B or between A and C?
Moore’s [12] definition does not answer this question. If A,B and C represent interval
profits, then which interval represents the maximum profitable interval between A and
C? We need further analysis to get satisfactory answers to these questions.

In connection with the study of mathematical programming problems with interval
coefficients, Ishibuchi and Tanaka [3] proposed some improved definitions of interval
order relations in comparison to that defined in [12]. These order relations represent
the decision makers’ preference between intervals. They proposed ranking definitions
separately for maximization and minimization problems. In these definitions, they
used not only the lower and upper bound form of the intervals, but also the centre
and radius form. The different definitions of Ishibuchi and Tanaka [3] are as follows:

5.2.1 Order relations for maximization problems

Definition 5.2.1 If A = [aL , aR ] and B = [bL , bR ] are two interval profits, then the
order relation ≤LR for maximization problems is defined as

A ≤LR B iff aL ≤ bL and aR ≤ bR ,

A <LR B iff A ≤LR B and A 6= B.

Definition 5.2.2 Let A = 〈aC , aW 〉 and B = 〈bC , bW 〉 be two intervals in centre and
radius form, then the order relation ≤CW for maximization problems is defined as

A ≤CW B iff aC ≤ bC and aW ≥ bW ,

A <CW B iff A ≤CW B and A 6= B.

Obviously, this order relation is a partial order.

5.2.2 Order relations for minimization problems

Definition 5.2.3 If A = [aL , aR ] and B = [bL , bR ] are two interval costs/times then
the order relation ≤∗LR is defined as

A ≤∗LR B iff aL ≤ bL and aR ≤ bR ,

A <∗LR B iff A ≤∗LR B and A 6= B.

Clearly, the order relations ≤∗LR and ≤LR are the same.

Definition 5.2.4 Another order relation ≤∗LR between the intervals A = 〈aC , aW 〉
and B = 〈bC , bW 〉 is as follows:

A ≤∗CW B iff aC ≤ bC and aW ≤ bW ,

A <∗CW B iff A ≤∗CW B and A 6= B.
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Obviously, this order relation is also a partial order.
Ishibuchi and Tanaka considered the centre and radius of the intervals as the ex-

pected value and the uncertainty of an imprecise parameter, respectively. These order
relations select the alternatives having optimal expected value with less uncertainty.
Hence, these represent the decision makers’ preference in solving the optimization
problems.

To convert linear programming problems involving objective functions with inter-
val coefficients into bi-criterial linear programming problems, Ishibuchi and Tanaka
defined two more order relations as follows.

Definition 5.2.5 For maximization problems, the order relation ≤LC is defined by

A ≤LC B iff aL ≤ bL and aC ≤ bC ,

A <LC B iff A ≤LC B and A 6= B.

Definition 5.2.6 For minimization problems, the order relation ≤∗RC is defined by

A ≤∗RC B iff aR ≤ bR and aC ≤ bC ,

A ≤∗RC B iff A ≤∗RC B and A 6= B.

Ishibuchi and Tanaka applied their definitions only to reformulate the aforemen-
tioned optimization problems in an alternative way, but their definitions can also be
used to rank arbitrary intervals. For Type - I and Type - II intervals, the definitions
hold very well. However, for Type - III intervals, these can only be applied partially.
To see this, consider the following example.

Example 5.2.2 Consider the Type - III pair of intervals A = [0, 10] = 〈5, 5〉 and
B = [4, 8] = 〈6, 2〉. These are shown in Figure 2. For maximization problems, the
interval B is preferred to A. Now, if we consider the ordering of the intervals A and
B for minimization problems, we observe that both the definitions ≤∗CW and ≤∗RC fail
to find the preferred interval from A and B.

Sengupta and Pal [14] noticed some noteworthy drawbacks of these definitions
with respect to the decision makers’ point of view. For the maximization case, B is
higher valued interval than A, but the answer to the question: “How much higher is
the interval B?” can not be obtained. According to them, Ishibuchi and Tanaka [3]
gave more emphasis to strict preference ordering rather than ranking of intervals in
terms of values. In another viewpoint, let us consider a constraint relation Ax ≤ B,
where A and B are any two intervals. Using the definitions of [3], it is not possible to
exploit the decision variable x comprehensively.

5.3 Chanas and Kuchta’s Approach

In the work of Ishibuchi and Tanaka [3], it is seen that linear programming models with
interval valued objective function are converted to bi-objective optimization problems
by means of the several interval ranking techniques developed by them. Chanas and
Kuchta [1] tried to generalize the work in [3] with the notion of t0, t1 - cut of the in-
tervals, so they would be able to solve the said optimization model by changing to its
parametric generalization instead of a multiobjective problem. In this circumstance,
they had to generalize the interval ranking definitions given in [3]. However, a detailed
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Figure 2: Ishibuchi and Tanaka’s method partially applicable for this pair of
intervals

analysis of the ranking was not given. It can be considered as the parametric general-
ization of the previous definitions. According to Chanas and Kuchta [1], the definition
of the t0, t1 - cut of an interval is as follows:

Definition 5.3.1 Let A = [aL , aR ] be any interval, t0 and t1 be any fixed numbers
such that 0 ≤ t0 < t1 ≤ 1. Then the t0, t1 - cut of the interval A, which is again an
interval, is denoted by A/[t0,t1] and defined by

A/[t0,t1] = [aL + t0 (aR − aL) , aL + t1 (aR − aL)] .

Using this definition on intervals, Chanas and Kuchta modified the interval ranking
definitions of [3]. For the maximization case, they considered definitions 5.2.1, 5.2.2
and 5.2.5 and redefined as follows:

(i) A ≤LR/[t0,t1] B ⇔ A/[t0,t1] ≤LR B/[t0,t1],
A <LR/[t0,t1] B ⇔ A/[t0,t1] <LR B/[t0,t1],

(ii) A ≤CW /[t0,t1] B ⇔ A/[t0,t1] ≤CW B/[t0,t1],
A <CW /[t0,t1] B ⇔ A/[t0,t1] <CW B/[t0,t1],

(iii) A ≤LC/[t0,t1] B ⇔ A/[t0,t1] ≤LC B/[t0,t1],
A <LC/[t0,t1] B ⇔ A/[t0,t1] <LC B/[t0,t1].

One can similarly generalize definitions 5.2.3, 5.2.4 and 5.2.6 for minimization prob-
lems. For t0 = 0 and t1 = 1, definitions (i), (ii) and (iii) certainly lead to the order
relations ≤LR, ≤CW and ≤LC proposed in [3], respectively, and for t0 = 0 and t1 = 1

2
,

definition (i) implies the order relation ≤LC.
Here, ranking decisions are taken by transforming into two new intervals with

smaller widths using the t0, t1-cut of the interval. To illustrate the interval ranking
definitions of Chanas and Kuchta [1], t0, t1-cuts of two given intervals are computed
for different values of t0 and t1 and then ranking decisions have been taken. The
results are displayed in Table 1, from which it is observed that for different pairs of
t0 and t1, the ranking decisions between two intervals are different. This shows that
the definitions of Chanas and Kuchta [1] do not give a concrete decision regarding the
interval ranking between two arbitrary intervals.

5.4 Hu and Wang’s Approach

A modified version of order relations for intervals has been proposed by Hu and Wang
[2]. In their article, they have studied the incompleteness of interval ranking techniques



46 S. Karmakar and A. K. Bhunia, Interval Order Relations

Table 1: Interval ranking depending on different t0, t1-cut values
[t0, t1] A/[t0,t1] B/[t0,t1] Ranking

[0, 1] A/[0,1] = [10, 30] B/[0,1] = [15, 25] A/[0,1] ≤CW B/[0,1]

[.1, 1] A/[.1,1] = [12, 30] B/[.1,1] = [16, 25] failed
[.3, 1] A/[.3,1] = [16, 30] B/[.3,1] = [18, 25] failed
[.5, 1] A/[.5,1] = [20, 30] B/[.5,1] = [20, 25] B/[.5,1] ≤LR A/[.5,1]

[.8, 1] A/[.8,1] = [26, 30] B/[.8,1] = [23, 25] B/[.8,1] ≤LR A/[.8,1]

[.2, .8] A/[.2,.8] = [14, 26] B/[.2,.8] = [17, 23] A/[.2,.8] ≤CW B/[.2,.8]

[.2, .6] A/[.2,.6] = [14, 22] B/[.2,.6] = [17, 21] A/[.2,.6] ≤CW B/[.2,.6]

[.4, .9] A/[.4,.9] = [18, 28] B/[.4,.9] = [19, 24] failed
[.5, .75] A/[.5,.75] = [20, 25] B/[.5,.75] = [20, 22.5] B/[.5,.75] ≤LR A/[.5,.75]

[.75, .85] A/[.75,.85] = [25, 27] B/[.75,.85] = [22.5, 23.5] B/[.75,.85] ≤LR A/[.75,.85]

developed earlier. Introducing new approaches, they have tried to fulfill the shortcom-
ings of the previous definitions. To introduce this, let us take a simple decision making
situation regarding interval ranking.

Example 5.4.1 Let A = [1, 5] and B = [2, 4] be two intervals with the same mid
point. Which is the more acceptable interval between A and B? Most decision makers
cannot make a decision regarding the best interval in this case. In this context, Hu
and Wang’s [2] definition is useful. The definitions of [3] can also be applied for this
judgment.

Hu and Wang also introduced some novel interval arithmetic operations and proved
that their ranking definitions satisfy some basic properties (such as reflexivity, anti-
symmetry, comparability etc.) with the help of the newly developed arithmetic oper-
ations. Their interval ranking relation “≺=” is defined as follows:

Definition 5.4.1 For any two intervals A = [aL , aR ] = 〈aC , aW 〉 and B = [bL , bR ] =
〈bC , bW 〉,

A ≺= B iff

{
aC < bC whenever aC 6= bC
aW ≥ bW whenever aC = bC .

Furthermore

A ≺ B iff A ≺= B and A 6= B.

The centre and radius of the intervals are regarded as the expected value and the
uncertainty of the parameters, respectively, as we have seen previously in [3]. So,
whenever the centers of two intervals are the same, Hu and Wang [2] emphasized the
radii of the intervals for ordering.

The relation “≺=” satisfies the following relational properties:

(i) A ≺= A for any interval A (Reflexivity)

(ii) A ≺= B and B ≺= A then A = B for any two intervals A and B (Anti-
symmetry)

(iii) A ≺= B and B ≺= C then A ≺= C for any three intervals A, B and C
(Transitivity)

(iv) A ≺= B or B ≺= A holds for any two intervals A and B (Comparability)
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Now, we present two examples to demonstrate the efficiency of the interval ranking
definitions due to Hu and Wang [2].

Example 5.4.2 Let A = [5, 15] = 〈10, 5〉 and B = [8, 10] = 〈9, 1〉. Since aC = 10 >
9 = bC so B ≺= A.

Example 5.4.3 Let A = [5, 15] = 〈10, 5〉 and B = [8, 12] = 〈10, 2〉. Here aC = bC =
10 but aW = 5 > 2 = bW . According to Hu and Wang’s definition, the interval B is
preferable to A for any type of optimization problem.

5.5 Mahato and Bhunia’s Approach

At the same time, Mahato and Bhunia [11] proposed another class of definitions of
interval order relations which place more emphasis on the decision makers’ preference.
They first pointed out the incompleteness of the aforementioned interval ranking def-
initions with respect to the decision makers’ point of view. To clarify, let us consider
an example with a pair of intervals of Type-III:

Example 5.5.1 Let A = [10, 50] = 〈30, 20〉 and B = [25, 45] = 〈35, 10〉 be two inter-
vals representing the profits in the case of maximization problems and time/cost in-
tervals in the case of minimization problems. It is obvious that an optimistic decision
maker will always prefer the interval A to B for both maximization and minimization
problems. However, the job is not so easy for a pessimistic decision maker. For maxi-
mization problems, pessimists may choose the interval B as a most profitable interval
and for minimization problems, they select the lower cost/time interval A.

Mahato and Bhunia [11] proposed a modified version of Ishibuchi and Tanaka’s
[3] interval ranking definition according to the decision makers’ point of view. Only
upper bound-lower bound form and centre-radius form are used to define this order
relation.

Let A = [aL , aR ] = 〈aC , aW 〉 and B = [bL , bR ] = 〈bC , bW 〉 be two interval
costs/times for minimization problems and interval profits for maximization problems.

5.5.1 Optimistic decision-making

Definition 5.5.1 For minimization problems, the order relation ≤omin between the
intervals A and B is

A≤ominB iff aL ≤ bL ,

A<ominB iff A≤ominB and A 6= B.

This implies that A is superior to B and A is accepted. This order relation is not
symmetric.

Definition 5.5.2 For maximization problems, the order relation ≥omax between the
intervals A and B is

A ≥omax B iff aR ≥ bR ,

A >omax B iff A ≥omax B and A 6= B.

This implies that A is superior to B and optimistic decision makers accept the profit
interval A. Here also, the order relation ≥omax is not symmetric.
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5.5.2 Pessimistic decision-making

In this case, the decision maker determines the minimum cost/time for minimiza-
tion problems and the maximum profit for maximization problems according to the
principle “Less uncertainty is better than more uncertainty”.

Definition 5.5.3 For minimization problems, the order relation <pmin between the
intervals A = [aL , aR ] = 〈aC , aW 〉 and B = [bL , bR ] = 〈bC , bW 〉 for a pessimistic
decision maker are

(i) A <pmin B iff aC < bC , for Type - I and Type - II intervals,

(ii) A <pmin B iff aC ≤ bC and aW < bW , for Type - III intervals.

However, for Type - III intervals with aC < bC and aW > bW , pessimistic decisions
cannot be determined. In this case, the optimistic decision is to be considered.

Definition 5.5.4 For maximization problems, the order relation >pmax between the
intervals A = [aL , aR ] = 〈aC , aW 〉 and B = [bL , bR ] = 〈bC , bW 〉 for a pessimistic
decision maker are

(i) A >pmax B iff aC > bC , for Type - I and Type - II intervals,

(ii) A >pmax B iff aC ≥ bC and aW < bW , for Type - III intervals.

However, for Type - III intervals with aC > bC and aW > bW , a pessimistic decision
cannot be taken. In this case, the optimistic decision is to be taken.

5.6 Comparative Examples

The comparison has been done among the interval ranking approaches for the first
group of definitions. A set of 10 pairs of intervals has been chosen. Using these
definitions, we have tried to find the ranking of those pair of intervals; the results are
shown in Tables 2 and 3. Here, both Tables 2 and 3 shows the ranking for maximization
problems. The illustrative examples (Examples 1 to 10) are taken from Type - I, Type
- II and Type - III intervals and are of different degrees of complexity.

The simplest interval ranking definitions given by Moore [12] do not specify the
ranking of intervals except for one or two simple and non-questionable examples. The
first transitive order relation “<” can be applied only for Example 1, i.e., for Type -
I intervals. Another order relation, viz., “Set inclusion property” can be applied for
Examples 4 to 10, but no decision regarding the ordering of intervals can be drawn.
For Examples 2 and 3, Moore’s definitions [12] are not applicable.

Ishibuchi and Tanaka’s [3] definitions are more widely applicable than those of
Moore [12]. Ishibuchi and Tanaka’s definitions are applicable (partially or fully) for
almost all the examples. For Examples 1 to 4 and for Example 10 (i.e., for Type - I
and Type - II intervals), the order relations “<LR” and “≤LR” (or“<∗LR” and “≤∗LR”
for minimization problems) are fully applicable and directly find the optimum interval.
However, for Examples 5 to 9 (i.e., for Type - III intervals), the order relations “<CW ”
and “≤CW ” are only partially applicable. For Examples 5 and 6, the optimal interval
can be chosen using “≤CW ” for maximization problems, whereas for Examples 8 and
9, the minimum interval can be chosen using the order relation “≤∗CW ”. Ishibuchi and
Tanaka’s definitions are applicable either for maximization or minimization problems,
but are applicable for both types of problems on Example 7.
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Table 2: Comparative studies for maximization problems
Ex. Intervals Moore [12] Ishibuchi

& Tanaka
[3]

Hu &
Wang [2]

Mahato
& Bhunia
(Pes-
simistic
Case) [11]

1 A = [10, 20] = 〈15, 5〉,
B = [21, 23] = 〈22, 1〉.

A < B,
B is ac-
cepted.

A <LR B,
B is ac-
cepted.

A ≺ B,
B is ac-
cepted.

B >pmax

A, B is ac-
cepted.

2 A = [10, 20] = 〈15, 5〉,
B = [20, 22] = 〈21, 1〉.

Not Appli-
cable.

A <LR B,
B is ac-
cepted.

A ≺ B,
B is ac-
cepted.

B >pmax

A, B is ac-
cepted.

3 A = [10, 20] = 〈15, 5〉,
B = [19, 21] = 〈20, 1〉.

Not Appli-
cable.

A <LR B,
B is ac-
cepted.

A ≺ B,
B is ac-
cepted.

B >pmax

A, B is ac-
cepted.

4 A = [10, 20] = 〈15, 5〉,
B = [18, 20] = 〈19, 1〉.

B ⊆ A,
decision
cannot be
taken.

A <LR B,
B is ac-
cepted.

A ≺ B,
B is ac-
cepted.

B >pmax

A, B is ac-
cepted.

5 A = [10, 20] = 〈15, 5〉,
B = [17, 19] = 〈18, 1〉.

B ⊆ A,
decision
cannot be
taken.

A <CW

B, B is
accepted.

A ≺ B,
B is ac-
cepted.

B >pmax

A, B is ac-
cepted.

From the comparison tables, it is seen that Hu and Wang’s [2] definitions can
successfully be applied to all the examples.

The interval ranking definitions due to Mahato and Bhunia [11] are also applicable
for all the types of examples considered. In our comparative study, we have considered
the order relation <pmax with respect to pessimistic decision makers’ point of view.
For Examples 1 to 7, the definition <pmax finds the ranking of intervals; however, for
Examples 8 to 10, the order relation <pmax fails to find the same. In these cases,
Mahato and Bhunia proposed to use the order relation from an optimistic decision
maker’s point of view. A similar situation occurs if we consider the ranking of intervals
for finding the interval for minimization problems. From the above consideration, it
can be concluded that the ranking definitions due to Hu and Wang [2] and Mahato
and Bhunia [11] are equally widely applicable.

6 Definitions Depending on Specific Indices or
Functions

The ranking definitions discussed to this point depend only either on the values of
upper-lower bound or centre-radius form of the intervals. On the other hand, several
researchers have prescribed ordering definitions that depend on some particular indices
or specified functions. Now we shall discuss those definitions.



50 S. Karmakar and A. K. Bhunia, Interval Order Relations

Table 3: Comparative studies for maximization problems
Ex. Intervals Moore [12] Ishibuchi

& Tanaka
[3]

Hu &
Wang [2]

Mahato
& Bhunia
(Pes-
simistic
Case) [11]

6 A = [10, 20] = 〈15, 5〉,
B = [15, 17] = 〈16, 1〉.

B ⊆ A,
decision
cannot be
taken.

A <CW

B, B is
accepted.

A ≺ B,
B is ac-
cepted.

B >pmax

A, B is ac-
cepted.

7 A = [10, 20] = 〈15, 5〉,
B = [14, 16] = 〈15, 1〉.

B ⊆ A,
decision
cannot be
taken.

aC = bC

and
aW > bW .
So,A ≤CW

B is satis-
fied and B
is chosen.

aC = bC

but
aW > bW .
So,A ≺ B,
B is
accepted.

B >pmax

A, B is ac-
cepted.

8 A = [10, 20] = 〈15, 5〉,
B = [12, 16] = 〈14, 2〉.

B ⊆ A,
decision
cannot be
taken.

≤CW

failed.
B ≤∗CW A
is satisfied
for mini-
mization
problems.

B ≺ A,
A is ac-
cepted.

>pmax

fails, but
A >omax

B and A is
accepted.

9 A = [10, 20] = 〈15, 5〉,
B = [11, 14] = 〈12.5, 1.5〉.

B ⊆ A,
decision
cannot be
taken.

≤CW

failed.
B ≤∗CW A
is satisfied
for mini-
mization
problems.

B ≺ A,
A is ac-
cepted.

>pmax

fails, but
A >omax

B and A is
accepted.

10 A = [10, 20] = 〈15, 5〉,
B = [10, 12] = 〈11, 1〉.

B ⊆ A,
decision
cannot be
taken.

B <LR A,
A is ac-
cepted.

B ≺ A,
A is ac-
cepted.

>pmax

fails, but
A >omax

B and A is
accepted.
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6.1 Sengupta and Pal’s Approach

Two valuable interval ranking approaches have been developed by Sengupta and Pal
[14]. They proposed two different ranking definitions — the first is the “acceptabil-
ity index” or the “value judgment index” and the second is the “fuzzy preference
ordering”. Both the methods depend on the decision maker’s point of view. “Fuzzy
preference ordering” will be discussed later. The acceptability index is defined in terms
of values using the centre and radius form of the intervals.

Definition 6.1.1 Let IR be the set of all closed intervals on the real line R. The
acceptability function A : IR× IR→ [0,∞) for the intervals A,B ∈ IR with aC ≤ bC

is denoted by A (A,B) or A<(A,B) and is defined by

A (A,B) =
bC − aC

bW + aW

, bW + aW 6= 0 and bC ≥ aC .

A (A,B) is considered as the grade of acceptability of “the interval A to be inferior to
the interval B”. Here, the terms “inferior” and “superior” are equivalent to the terms
“smaller” and “greater” respectively.

The values of the grade of acceptability A (A,B) of the intervals A and B are given
by

A (A,B)


= 0 if aC = bC ,
= m (0 < m < 1) if aC < bC and aR > bL

≥ 1 if aC < bC and aR ≤ bL .

If A (A,B) ≥ 1, then for minimization problems the interval A and for maximization
problems the interval B is accepted with full satisfaction. If 0 < A (A,B) < 1 then
for minimization problems A is accepted (obviously B is accepted for maximization
problems) with the grade of acceptability A (A,B). Again, if A (A,B) = 0, then
neither the interval A nor B is accepted. For this situation Sengupta and Pal [14]
suggest that the less uncertain interval would be the better choice for any type of
optimization problem.

To verify the applicability of the acceptability index, let us consider the intervals
A = [10, 30] = 〈20, 10〉, B = [12, 16] = 〈14, 2〉, C = [15, 25] = 〈20, 5〉, D = [24, 29] =
〈26.5, 2.5〉 and E = [32, 40] = 〈36, 4〉. These intervals are represented geometrically in
Figure 3.

Now, A (B,A) = 0.5, i.e., 0 < A (A,B) < 1,
A (A,C) = A (C,A) = 0,
A (A,D) = 0.52 i.e., 0 < A (A,D) < 1,
A (A,E) = 1.142857,
A (C,D) = 0.8667, i.e., 0 < A (C,D) < 1.
These results clarify the change of the values of the acceptability indices for dif-

ferent pairs of intervals with respect to the change of their relative positions. The
decision maker here is provided with the grade of inferiority (or superiority), i.e., how
much one interval is inferior (or superior) to the other. Here, the working principle of
this method is quite compatible with our intuition. In addition, we can use this index
method to exploit the decision variable x from the interval valued constraint Ax ≤ B,
where A and B are intervals, within the range of the intervals. This is extremely useful
in solving interval valued constrained optimization problems.

However, this technique has some drawbacks. According to Sengupta and Pal
[14], the acceptability index is only a value based ranking index, and it can only be
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Figure 3: Different intervals

applied partially to select the better alternative from the pessimistic point of view of
the decision maker. So, only the optimistic decision maker can use it completely.

6.2 Levin’s Approach

A noteworthy interval ordering was given by Levin [10]. First, he defined a specific
function known as “remoteness function”, then he prescribed comparison rule for in-
tervals.

Definition 6.2.1 The remoteness function U(A,B) of two intervals A and B is de-
fined by the proximity of intervals or by the dual measure of their remoteness. Mathe-
matically,

U (A,B) = |A \B|+ |B \A|+ |P | .

The remoteness function represents the total length of all the subintervals that make
A and B different from each other, including a subinterval P between A and B in cases
where A and B do not partially or completely overlap. “|P |” represents the length of
the interval P (or subinterval). Let us calculate the values of the remoteness function
for different pairs of intervals.

Example 6.2.1 If A = [2, 8] and B = [4, 8] (shown in Figure 4), then

U (A,B) = |A \B|+ |B \A|+ |P | = 2 + 0 + 0 = 2.

Figure 4: Intervals A = [2, 8] and B = [4, 8]
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Example 6.2.2 If A = [2, 5] and B = [2, 8] (shown in Figure 5), then

U (A,B) = |A \B|+ |B \A|+ |P | = 0 + 3 + 0 = 3.

Figure 5: Intervals A = [2, 5] and B = [2, 8]

Example 6.2.3 If A = [2, 5] and B = [3, 8] (shown in Figure 6), then

U (A,B) = |A \B|+ |B \A|+ |P | = 1 + 3 + 0 = 4.

Figure 6: Intervals A = [2, 5] and B = [3, 8]

Example 6.2.4 If A = [2, 5] and B = [8, 10] (shown in Figure 7), then

U (A,B) = |A \B|+ |B \A|+ |P | = 3 + 2 + 3 = 8.

Example 6.2.5 If A = [2, 10] and B = [4, 7] (shown in Figure 8), then

U (A,B) = |A \B|+ |B \A|+ |P | = (2 + 3) + 0 + 0 = 5.

The concepts of colloquial logical and set theoretical operations, viz., disjunction
(∨) and conjunction (∧) operations also appear, and are defined as

A ∨B = [aL , aR ] ∨ [bL , bR ] = [aL ∨ bL , aR ∨ bR ];
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Figure 7: Intervals A = [2, 5] and B = [8, 10]

Figure 8: Intervals A = [2, 10] and B = [4, 7]

A ∧B = [aL , aR ] ∧ [bL , bR ] = [aL ∧ bL , aR ∧ bR ],

where A = [aL , aR ] and B = [bL , bR ] are two arbitrary intervals. The operations
∨ = max and ∧ = min over the intervals A and B were defined as the set theoretical
generalizations. Using the remoteness function, the comparability relations “>”,“≥”
and “=” for arbitrary intervals as defined by Levin are given as follows:

A ≥ B ⇔ [U(A,A ∨B) ≤ U(B,A ∨B), U(A,A ∧B) ≥ U(B,A ∧B)] ,

A > B ⇔ [U(A,A ∨B) < U(B,A ∨B), U(A,A ∧B) > U(B,A ∧B)] ,

A = B ⇔ [U(A,A ∨B) = U(B,A ∨B), U(A,A ∧B) = U(B,A ∧B)] .

Now we illustrate how the remoteness function oriented interval ranking procedure
works with the following examples.

Example 6.2.6 Let us consider the previous example, 6.2.3, where A = [2, 5] and
B = [3, 8]. We first calculate

A ∨B = [2, 5] ∨ [3, 8] = [3, 8];
A ∧B = [2, 5] ∧ [3, 8] = [2, 5];
U(A,A ∨B) = 4;U(B,A ∨B) = 0;
U(A,A ∧B) = 0;U(B,A ∧B) = 4;
⇒ U(A,A ∨B) > U(B,A ∨B) and U(A,A ∧B) < U(B,A ∧B).
⇒ B > A, so B is greater than A.
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Table 4: Comparative studies for maximization problems
Ex. Intervals Sengupta and Pal’s

Acceptability Index
[14]

Levin [10]

1 A = [10, 20] = 〈15, 5〉,
B = [21, 23] = 〈22, 1〉.

A (A,B) = 1.1667 >
1, B is accepted with
full satisfaction.

B > A, B is
accepted.

2 A = [10, 20] = 〈15, 5〉,
B = [20, 22] = 〈21, 1〉.

A (A,B) = 1, B is ac-
cepted with full satis-
faction.

B > A, B is
accepted.

3 A = [10, 20] = 〈15, 5〉,
B = [19, 21] = 〈20, 1〉.

A (A,B) = 0.8267,
B is accepted with
grade of acceptability
0.8267.

B > A, B is
accepted.

4 A = [10, 20] = 〈15, 5〉,
B = [18, 20] = 〈19, 1〉.

A (A,B) = 0.66, B is
accepted with grade
of acceptability 0.66.

B > A, B is
accepted.

5 A = [10, 20] = 〈15, 5〉,
B = [17, 19] = 〈18, 1〉.

A (A,B) = 0.5, B is
accepted with grade
of acceptability 0.5.

B > A, B is
accepted.

In addition, Levin [10] gave another set of order relations between two intervals
using the centre and radius form:

A ≥ B ⇔ aC ≥ bC ,

A ≤ B ⇔ aC ≤ bC ,

A = B ⇔ aC = bC .

However, this definition is restricted to intervals with different centre, and not appli-
cable to intervals with the same centre. Let us consider the following example:

Example 6.2.7 Let A = [0, 10] = 〈5, 5〉 and B = [4, 6] = 〈5, 1〉 be two intervals. The
consecutive steps of Levin’s [10] interval ranking process are as follows:

A ∨B = [0, 10] ∨ [4, 6] = [4, 10];
A ∧B = [0, 10] ∧ [4, 6] = [0, 6];
U(A,A ∨B) = 4;U(B,A ∨B) = 4;
U(A,A ∧B) = 4;U(B,A ∧B) = 4.
Clearly, U(A,A ∨ B) = U(B,A ∨ B) and U(A,A ∧ B) = U(B,A ∧ B). Hence,

Levin’s [10] remoteness function gives A = B, which is not true in this case. It is thus
concluded that Levin’s [10] approach is not a complete one, in general.

6.3 Comparative Examples

Two interval ranking definitions belong to this group. As with the first group, a com-
parative study has been made, taking the same set of 10 pairs of intervals as considered
in the first group. Here, the decision will be taken in the context of maximization prob-
lems. A summary appears in Tables 4 and 5.
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Table 5: Comparative studies for maximization problems

Ex. Intervals Sengupta and Pal’s
Acceptability Index
[14]

Levin [10]

6 A = [10, 20] = 〈15, 5〉,
B = [15, 17] = 〈16, 1〉.

A (A,B) = 0.1667 >
0, B is accepted with
grade of acceptability
0.1667.

B > A, B is
accepted.

7 A = [10, 20] = 〈15, 5〉,
B = [14, 16] = 〈15, 1〉.

A (A,B) = 0. Here
the interval with less
uncertainty is chosen.

B = A,
Method fails
to find the
ranking.

8 A = [10, 20] = 〈15, 5〉,
B = [12, 16] = 〈14, 2〉.

A (B,A) = 0.14286,
A is accepted.

B < A, A is
accepted.

9 A = [10, 20] = 〈15, 5〉,
B = [11, 14] =
〈12.5, 1.5〉.

A (B,A) = 0.3846,
A is accepted with
grade of acceptability
0.3846.

B < A, A is
accepted.

10 A = [10, 20] = 〈15, 5〉,
B = [10, 12] = 〈11, 1〉.

A (B,A) = 0.667,
A is accepted with
grade of acceptability
0.667.

B < A, A is
accepted.

Sengupta and Pal’s [14] acceptability index is an efficient interval ordering tech-
nique. It ranks the intervals depending upon the values of the acceptability function
A (B,A). For comparatively simple examples (Examples 1 and 2), the value of the ac-
ceptability function is greater than or equal to 1, and the optimum interval is selected
with full satisfaction. For the rest of the examples, which are of Type - III intervals, the
index value lies between 0 and 1 (i.e., 0 < A (B,A) < 1), and the preference interval is
selected with the grade of acceptability A (B,A). A greater value of the acceptability
function gives the preference intervals with a more satisfactory level. However, when
the value of the acceptability function is 0 (for Example 7), the optimum interval is
selected depending upon the width of the intervals. Levin’s [10] method is a very
interesting interval ranking technique, but the process is too complicated. Almost all
the examples are tackled very efficiently by this definition. However, for Example 7,
this definition fails to find a ranking. It is seen that for the intervals with same centre
the definitions are facing a little problem. However, Sengupta and Pal [14] manage
the situation by choosing the less uncertain intervals as optimal. Hence, Sengupta and
Pal’s [14] acceptability index is more generally applicable than Levin’s [10].

7 Ordering Depending on Probabilistic Concepts

Now, we shall discuss some ranking definitions depending on probabilistic measure-
ments. Sometimes these definitions are very effective for ranking of intervals.
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Figure 9: Graphical representation for Kundu’s leftness relation

7.1 Kundu’s Approach

The preceding definitions of interval order relations (except for Sengupta and Pal [14])
do not provide the answer to the question “How much larger is the interval is, if it is
known to be larger than the other?” Kundu [9] introduced a probabilistic approach
to define the order relations between two intervals. The answer to the above question
can be extracted from this ranking definition. First of all, he defined the fuzzy leftness
relation Left(A,B) between the interval A and B on the real line.

Definition 7.1.1 For any two intervals A and B, Left(A,B) is defined by

Left(A,B) = max {0, P (x < y)− P (x > y)} ,

where P (x < y) denotes the probability that x < y for x ∈ A, y ∈ B uniformly and
independently distributed in the intervals A and B respectively.

This preference relation is useful to select the most or the least preferred intervals
from a set of alternatives. Left(A,B) > 0 gives the least preferred choice A. For most
preferred choice, the relation was reformulated as

Right(A,B) = max {0, P (x > y)− P (x < y)} .

Example 7.1.1 Let us consider two intervals A = [20, 40] and B = [25, 30]. Let x ∈ A
and y ∈ B be independently and uniformly distributed. The graphical representation
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of the above two intervals is given in Figure 9. From the figure, it is clear that

P (x < y) =
AreaMRSP

AreaMNOP
=

37.5

100
= 0.375,

P (x > y) =
AreaRNOS

AreaMNOP
=

62.5

100
= 0.625.

Hence,

Left(A,B) = max {0, P (x < y)− P (x > y)}
= max {0, 0.375− 0.625} = 0.

However,

Right(A,B) = max {0, P (x > y)− P (x < y)}
= max {0, 0.625− 0.375} = 0.25 > 0.

Thus, the results imply that the interval B is left to the interval A and A is the best
choice for the maximization problem. This is quite reasonable. In addition, it is evident
that we may get a measurement of largeness of one interval over the other.

Now, let us consider another interval C = [25, 35] and try to find the best alterna-
tive between the intervals A and C applying the above probabilistic method. Then,
we have the following results: Left(A,C) = 0 and Right(A,C) = 0. Hence, both A
and C are optimal choices, which is inconsistent with a rational decision maker’s goal.
Therefore, this approach is also restricted to intervals with different centres.

7.2 Hu and Wang’s Modified Leftness Relation

The deficiency of Kundu’s [9] approach is clear from the preceding discussion. For the
intervals with same mid point, the definition is unable to differentiate the intervals, i.e.,
the decision maker cannot find the preference intervals. In this perspective, a modified
fuzzy leftness relation has been given by Hu and Wang [2] that can compensate for
the previous drawback of Kundu’s [9] method.The modified leftness relation is defined
as follows:

Definition 7.2.1 Let A = [aL , aR ] = 〈aC , aW 〉 and B = [bL , bR ] = 〈bC , bW 〉 be two
intervals such that aL 6= aR and bL 6= bR . Then

LeftH (A, B) =


Left (A, B) aC 6= bC

max

{
0,

aR − bR
2 max {aW , bW }

}
aC = bC .

We have seen that Kundu’s [9] definition fails to distinguish intervals with the same
centres. However, this modified definition gives a slightly extended form of Kundu’s,
and makes it a complete fuzzy leftness relation. Hu and Wang also prove that this
relation LeftH(A,B) follows same basic properties, which are very important to solve
interval oriented optimization problems or mathematical models.

Now, we shall explain the working principle of modified leftness relation with the
help of the following example:

Example 7.2.1 Let A = [4, 10] = 〈7, 3〉 and B = [6, 8] = 〈7, 1〉. Clearly, Left(A,B) =

0. But LeftH (A,B) = max
{

0, 10−8
2 max{3,1}

}
= 1

3
> 0. Hence, it is concluded that the

interval A is left of B, and B is the most preferred interval in the case of maximization.
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7.3 Zhang’s Approach

Another interval ranking method has been introduced by Zhang et al. [18] using the
possibility degree of intervals. Like probability theory and fuzzy set theory, possibility
theory is another technique to handle uncertainty. It uses a pair of dual set functions
— possibility and necessity measures [16, 17]. Here, possibility degree means a certain
degree that one interval is larger or smaller than the other. Zhang et al defined the
possibility degrees PA≥B and PB≥A for the intervals A and B (for three different types
of intervals) in the following way:

PB≥A =



1 if bL ≥ aR

bR − aR

bR − bL

+
aR − bL

bR − bL

.
bL − aL

aR − aL

if aL ≤ bL < aR ≤ bR

+0.5
aR − bL

bR − bL

.
aR − bL

aR − aL

bR − aR

bR − bL

+ 0.5
aR − aL

bR − bL

if bL < aL < aR ≤ bR

PA≥B =



0 if bL ≥ aR

0.5
aR − bL

bR − bL

.
aR − bL

aR − aL

if aL ≤ bL < aR ≤ bR

aL − bL

bR − bL

+ 0.5
aR − aL

bR − bL

if bL < aL < aR ≤ bR

Zhang et al. [18] considered the basic three types of intervals presented in Fig-
ure 1. The intervals A and B are regarded as random variables a and b with uniform
distributions in their intervals. The possibility degrees PA≥B and PB≥A are equal to
the respective probabilities that the random variable a is larger or smaller than b.

The following example illustrates the working principle of the possibility degree
ranking.

Example 7.3.1 Let us consider the three intervals as A = [10, 20], B = [16, 19] and
C = [11, 14]. Here, our objective is to rank the intervals A and B and the intervals A
and C. For this purpose, we have to calculate PA≥B, PB≥A and PA≥C , PC≥A. Now
for A and B, PB≥A = 0.75 and PA≥B = 0.25, which imply that the interval B is larger
than A. Again, for A and C, PC≥A = 0.75 and PA≥C = 0.25, which compel a decision
maker to choose the interval C as better than A. Here, if we take another interval
D = [14, 16], then PD≥A = 0.5 and PA≥D = 0.5. It is obvious from these results that a
decision concerning the superiority of the intervals A and D can not be made. Hence,
this method is also not suitable for intervals with the same centre.

7.4 Sengupta and Pal’s Fuzzy Preference Ordering

Another ordering definition using fuzzy set theory and fuzzy logic was proposed by
Sengupta and Pal [14] from the pessimistic decision maker’s point of view. Risk
averseness is the basic character of pessimistic decision makers, i.e., they take the
decision with the principle “more uncertainty is worse than less uncertainty”.

The class of intervals with A (A,B) ≥ 0 and aW < bW is considered here. For
intervals not belonging to this class, i.e., for intervals with A (A,B) ≥ 0 and aW ≥ bW ,
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Figure 10: Representation of membership function

the choice of interval for any decision maker is straight forward. Thus, they considered
only the former class of intervals. Among these intervals,

if A (A,B) ≥ 1⇒ B is strictly preferred to A,
if A (A,B) = 0⇒ A is strictly preferred to B,
if A (A,B) ∈]0, 1[⇒ ∃ a fuzzy preference between A and B.

Definition 7.4.1 Sengupta and Pal [14] defined the fuzzy set B∗ as

B∗ = Rejection of B ={(X,B) : A (X,B) ≥ 0 and xW < bW }

and the membership function µ
B∗ (X) of the set B∗ is defined by

µ
B∗ (X) =



1 if xC = bC

max

{
0,
xC − (bL + xW )

bC − (bL + xW )

}
if bC ≥ xC ≥ bL + xW

0 otherwise,

where X is the variable interval and X = [xL , xR ] = 〈xC , xW 〉.

The values of the membership function B∗ lie between 0 and 1. A graphical represen-
tation of the membership function µ

B∗ appears in Figure 10.
A complication in pessimistic decision theory arises when the intensity of the pes-

simism is changed. Let us consider a linguistically termed set of different degrees of
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pessimisms as {..., very very low, very low, low, moderate, high, very high, very very
high,...}. Sengupta and Pal [14] modified their fuzzy preference ordering according
to different degrees of pessimism. They defined a modified nonlinear membership

Figure 11: Linguistic scale of different degrees of pessimism

function as

π
B∗ = (µ

B∗ )p (1)

where p is a crisp number that represents the level of pessimism of the parameter for
any decision maker and p ∈ [1/m,m], where m is a finite large number. The quan-
tity p takes the values 1/m and m whenever the decision maker becomes absolutely
pessimistic or absolutely optimistic, respectively. However, a decision maker never
becomes an absolute pessimist or absolute optimist. A linguistic scale was defined by
them on the basis of different degrees of pessimism as given in Figure 11.

From the above scale, it is clear that when the values of the nonlinear member-
ship function given in Equation (1) lie between [0.3333, 0.6667], the decision maker
with any preference level wants to remain indifferent to reject or accept B. Again,
some difficulties arise when applying this preference relation to distinguish between
two arbitrary intervals. Since the modified membership function is dependent on the
degree of pessimism p, for different degrees of pessimism, we get different values of
the membership function and therefore, the preference ordering will also fluctuate fre-
quently according to the values of p. This makes the method difficult to generalize,
and thus it is also inconsistent with our requirement. This is the disadvantage of the
above preference ordering. Though there are some drawbacks pointed out in both the
techniques introduced by Sengupta and Pal [14], the acceptability index and fuzzy
preference ordering methods are considered as powerful as well as valuable interval
ranking methods in decision making problems.

7.5 Sevastjanov and Róg’s Approach

A compact interval ranking definition has been presented by Sevastjanov and Róg [15]
using the probabilistic concept. They have actually pointed out two separate ranking
definitions - one for crisp intervals and the other for fuzzy intervals. Here we shall
discuss only the ordering of crisp intervals. In fuzzy interval ordering, they assumed
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α -level sets (which are the crisp intervals) corresponding to each fuzzy interval and
used the interval ordering definition developed for crisp intervals. However, a detailed
discussion of this case is out of the scope of this paper. In order to define their ranking
definition, they considered not only ranking of interval numbers, but also the critical
cases of comparisons of real numbers with intervals. They spontaneously excluded the
cases of Type - I intervals and those where the real numbers are situated outside the
intervals. These are the easiest cases in which we can select our optimal choice without
any hesitation.

We now present the actual definitions of Sevastjanov and Róg [15]. Let A =
[aL , aR ] and B = [bL , bR ] be two intervals. The interval A = [aL , aR ] is a degenerate
real number a ∈ R if aL = aR = a. As for the preceding two probabilistic approaches
(viz., Zhang et al. [18] and Kundu’s [9]), we assume that the two random variables
x ∈ [aL , aR ] and y ∈ [bL , bR ] are uniformly and independently distributed. The interval
ordering is as follows:

P (B > A) =



0 if bL ≤ aL ≤ bR ≤ aR

bL − aL

aR − aL

if aL ≤ bL and bR ≤ aR

bL − aL

aR − aL

if aL < bL = bR < aR ,

P (B < A) =



1− (bL − aL)2

(aR − aL) (bR − bL)
if bL ≤ aL ≤ bR ≤ aR

aR − bR

aR − aL

if aL ≤ bL and bR ≤ aR

aR − bL

aR − aL

if aL < bL = bR < aR ,

P (B = A) =



(bR − aL)2

(aR − aL) (bR − bL)
if bL ≤ aL ≤ bR ≤ aR

bR − bL

aR − aL

if aL ≤ bL and bR ≤ aR

0 if aL < bL = bR < aR .

The following examples illustrate the working principle of the above interval ranking
method.

Example 7.5.1 For A = [4, 8] and B = [2, 5], the above probability based ranking
definitions give P (B > A) = 0; P (B < A) = 0.91667; P (B = A) = 0.0833. These
results indicate that the interval B is less than A, and the interval A is selected for
maximization problems.

Example 7.5.2 If A = [2, 10] and B = [3, 4] then P (B > A) = 0.125; P (B < A) =
0.75; P (B = A) = 0.125. These results also show that for maximization problems the
interval A is accepted, while B is selected for minimization problems.
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The following examples reveal an interesting result regarding the order relations
between a real number and an interval number and also between two intervals.

Example 7.5.3 Let A = [0, 10] and b = 7. Then, P (b > A) = 0.7;P (b < A) =
0.3;P (b = A) = 0. So, A is selected for minimization problem and b is selected for
maximization problems.

However, Sevastjanov and Róg’s ranking fails for the following two examples.

Example 7.5.4 For A = [0, 10] and B = [4, 6]. P (B > A) = 0.4; P (B < A) = 0.4;
P (B = A) = 0.2.

Example 7.5.5 For A = [10, 15] and b = 12.5 then P (b > A) = 0.5; P (b < A) = 0.5;
P (b = A) = 0.

From the probability measures of the above two pairs of intervals as given in the
last two examples, no decisions can be taken about the choice of optimal intervals,
i.e., we cannot take any decision that either the interval A or B is accepted for a
maximization problem. Hence, the above ranking definition is also not applicable for
intervals having the same centre.

7.6 Comparative Examples

We have compared the interval ranking definitions for maximization problems for
the probabilistic group of rankings with the same set of 10 pairs of intervals as the
comparisons of the general rankings and rankings depending on indices. The results
appear in Tables 6 and 7.

Using Kundu’s [9] leftness relation Left(A,B), we have obtained preference inter-
vals for each example except Example 7. For Type - I and Type - II intervals (here,
Example 1 and 2), the value of the leftness relation is 1 and the preference intervals
are selected easily. For other types of intervals, the values of the leftness relation lies
between 0 and 1. The choice of better interval is easier when the values of the relation
are nearly 1 (for Examples 3, 4 and 10). For other examples, we also get our optimal
choice but not so firmly. For Example 7, the value of the leftness function is 0 and the
definition fails accordingly. Hence, a decision maker cannot use this definition when
the intervals have the same centre.

Next, Sengupta and Pal’s [14] fuzzy preference ordering, the complement of the
acceptability index method, is applicable only for examples 8, 9 and 10, as we know
that it is relevant to the class of intervals with A (A,B) ≥ 0 and aW < bW . In
each case, the rejection value A∗ is calculated for the interval with greater width.
In Example 10 the rejection value for the interval A is 0, so we cannot reject the
interval A, i.e., A can be accepted as preferable to B for maximization problems. The
rejection values for Example 9 and Example 8 for the interval A are 0.286 and 0.6667
respectively. Here also we can accept the interval A. The fuzzy preference method is
well accepted by pessimistic decision makers.

Zhang’s [18] method needs to calculate the values of the possibility degrees PA≥B

and PB≥A for the intervals A and B. For the simpler examples Example 1 to 5 and
examples 9 and 10, the differences between the possibility degrees are comparatively
high and hence, in these cases, we can easily select the preference interval. For exam-
ples 6 and 8, we agree with A ≥ B or B ≥ A according to the corresponding greater
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Table 6: Comparative studies for maximization problems
Ex. Intervals Kundu’s

Leftness
relation [9]

Sengupta
and Pal’s
Fuzzy
Pref-
erence
relation
[14]

Zhang et
al. [18]

Sevastja-
nov and
Róg [15]

Hu and
Wang’s
modified
leftness
relation[2]

1 A = [10, 20] = 〈15, 5〉,
B = [21, 23] = 〈22, 1〉.

Left(A,B) =
1, A is left
to B and B
is accepted.

A (A,B) =
1.1667 >
1, B is
accepted
with full
satisfac-
tion.

PA≥B =
0,
PB≥A =
1, B is
accepted.

B is
accepted
without
any test.

LeftH(A,B)
= 1, A is
left to B
and B is
accepted.

2 A = [10, 20] = 〈15, 5〉,
B = [20, 22] = 〈21, 1〉.

Left(A,B) =
1, A is left
to B and B
is accepted.

A (A,B) =
1.0, B is
accepted
with full
satisfac-
tion.

PA≥B =
0,
PB≥A =
1 B is
accepted.

B is
accepted
without
any test.

LeftH(A,B)
=1, A is
left to B
and B is
accepted.

3 A = [10, 20] = 〈15, 5〉,
B = [19, 21] = 〈20, 1〉.

Left(A,B) =
0.95, A is
left to B
and B is
accepted.

A (A,B) =
0.8267,
B is ac-
cepted
with
grade of
accept-
ability
0.8267.

PA≥B =
0.025,
PB≥A =
0.975
B is
accepted.

P (A >
B) = 0,
P (A <
B) =
0.95,
P (A =
B) =
0.05,
B is
selected.

LeftH(A,B)
=0.95, A
is left
to B
and B is
accepted.

4 A = [10, 20] = 〈15, 5〉,
B = [18, 20] = 〈19, 1〉.

Left(A,B) =
0.8, A is left
to B and B
is accepted.

A (A,B) =
0.66, B is
accepted
with
grade of
accept-
ability
0.66.

PA≥B =
0.1,
PB≥A =
0.9 B is
accepted.

P (A >
B) = 0,
P (A <
B) =
0.8,
P (A =
B) =
0.2, B is
selected.

LeftH(A,B)
=0.8, A is
left to B
and B is
accepted.

5 A = [10, 20] = 〈15, 5〉,
B = [17, 19] = 〈18, 1〉.

Left(A,B) =
0.6, A is left
to B and B
is accepted.

A (A,B) =
0.5, B is
accepted
with
grade of
accept-
ability
0.5.

PA≥B =
0.2,
PB≥A =
0.8 B is
accepted.

P (A >
B) =
1, P (A <
B) =
0.7, P (A =
B) =
0.2, B is
selected.

LeftH(A,B)
=0.6, A is
left to B
and B is
accepted.
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Table 7: Comparative studies for maximization problems
Ex. Intervals Kundu’s

Leftness
relation [9]

Sengupta
and Pal’s
Fuzzy
Pref-
erence
relation
[14]

Zhang et
al. [18]

Sevastja-
nov and
Róg [15]

Hu and
Wang’s
modified
leftness
relation[2]

6 A = [10, 20] = 〈15, 5〉,
B = [15, 17] = 〈16, 1〉.

Left(A,B) =
0.2, A is left
to B and B
is accepted.

A (A,B) =
0.1667 >
0, B is
accepted
with
grade of
accept-
ability
0.1667.

PA≥B =
0.4,
PB≥A =
0.6 B is
accepted.

P (A >
B) =
0.3,
P (A <
B) =
0.5,
P (A =
B) =
0.2, B is
selected.

LeftH(A,B)
=0.2, A is
left to B
and B is
accepted.

7 A = [10, 20] = 〈15, 5〉,
B = [14, 16] = 〈15, 1〉.

Left(A,B) =
0.0 =
Left(B,A),
method
fails.

A (A,B) =
0.0, here
the inter-
val with
less un-
certainty
is chosen.

PA≥B =
0.5,
PB≥A =
0.5
method
fails.

P (A >
B) =
0.4,
P (A <
B) =
0.4,
P (A =
B) = .2,
method
fails.

LeftH(A,B)
=.4, A is
left to B
and B is
accepted.

8 A = [10, 20] = 〈15, 5〉,
B = [12, 16] = 〈14, 2〉.

Left(B,A) =
0.2, B is left
to A and A
is accepted.

A∗= Re-
jection
of A. Its
mem-
bership
function
value
µA∗ =
0.6667.

PA≥B =
0.6,
PB≥A =
0.4 A is
accepted.

P (A >
B) =
0.4,
P (A <
B) =
0.2,
P (A =
B) =
0.4, De-
cision
cannot
be taken.

LeftH(B,A)
=.2, B is
left to A
and A is
accepted.

9 A = [10, 20] = 〈15, 5〉,
B = [11, 14] = 〈12.5, 1.5〉.

Left(B,A) =
0.5, B is left
to A and A
is accepted.

A∗= Re-
jection
of A. Its
mem-
bership
function
value
µA∗ =
0.286.

PA≥B =
0.75,
PB≥A =
0.25 A is
accepted.

P (A >
B) =
0.6,
P (A <
B) =
0.1,
P (A =
B) =
0.3, A is
selected.

LeftH(B,A)
=.5, B is
left to A
and A is
accepted.

10 A = [10, 20] = 〈15, 5〉,
B = [10, 12] = 〈11, 1〉.

Left(B,A) =
0.8, B is left
to A and A
is accepted.

A∗= Re-
jection
of A. Its
mem-
bership
function
value
µA∗ =
0.0.

PA≥B =
0.9,
PB≥A =
0.1 A is
accepted.

P (A >
B) = 0,
P (A <
B) =
0.8,
P (A =
B) =
0.2, A is
selected.

LeftH(B,A)
=.8, B is
left to A
and A is
accepted.
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possibility degrees. However, for Example 7, when the possibility degrees are equal,
the definition completely fails to rank the intervals.

Now, we analyze the ranking definition due to Sevastjanov and Róg’s [15]. Here,
we have to calculate three probabilities P (A > B), P (A = B) and P (A < B) for
each example. For examples 1 and 2, there is no need to apply this definition. For
the other examples, the optimum interval is selected according to the greatest value
among the three probabilities. However, for Example 7, the probabilities P (A > B)
and P (A < B) are same and hence, the decision regarding interval ranking is not
possible. A similar situation also occurs for Example 8, as the probabilities P (A > B)
and P (A = B) are the same.

The last ranking definition of this group is the modified leftness relation due to
Hu and Wang [2]. Actually, this is an extension of Kundu’s [9] leftness relation.
For Example 7, i.e., in case of intervals with the same center, Kundu’s [9] leftness
relations Left(A,B) = 0.0 and Left(B,A) = 0.0, but the modified leftness relation
LeftH(A,B) = 0.4. Hence, B is the selected interval. For other examples, Kundu’s
[9] leftness relation and Hu and Wang’s [2] modified leftness relation follow the same
formula. In this group, Sengupta and Pal’s [14] method and Hu and Wang’s [2] method
are working with the same efficiency level but, the latter one can be handled easily
and more efficiently in application areas.

8 Diagrammatic Representation of Interval Or-
dering

To this point we have discussed interval orderings depending on mathematical formu-
lae. Now we shall discuss the ordering of intervals diagrammatically due to Kulpa [8].
An extensive exposition on the diagrammatic representation of a number of interval
relations has been given by Kulpa [8]. In fact he developed the ways of representing
the space of intervals in diagrams. The diagrams were configured on a two-dimensional
Euclidean space. The different types of diagrams developed by him are M R-diagrams
(i.e., mid point-radius diagrams), W-diagrams (the shape of the diagram looks like the
letter “W’) etc. To interpret the ordering of intervals, M R-diagrams are essential.

8.1 M R-Diagrams

Generally, the diagrammatic representation of intervals is done by E-diagrams (i.e.,
End points diagrams). If an interval is given in its upper-lower bound form then
E-diagrams are useful, but E-diagrams are too complicated to handle for the mid
point-radius form. The M R-diagrams are then much more easily applicable. As
the name implies, the diagrams are drawn using the mid points and radii of the
intervals. In two-dimensional Euclidean space, the horizontal axis represents the mid
points and the vertical axis represents the radii of the intervals; i.e., the intervals
are uniquely represented by the points of the M R-diagram space. For an interval
A = [aL , aR ] = 〈aC , aW 〉, the M R-diagram is shown in Figure 12. The end points
of A can also be easily obtained from the diagram, which is evident from the figure.
Thus, any pair of the four basic quantities aL , aR , aC and aW of an interval A uniquely
determine the point representing that interval. There are some dotted diagonal lines
in the diagram. These diagonal lines indicate that all the intervals lying on those have
the same value of their beginning , or end respectively. Details concerning M R- and
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Figure 12: The M R diagram for the interval space

other diagrams are available in [8].

8.2 Symbols for Different Types of Intervals

Generally, the set of intervals is divided into three types: (i) completely disjoint, (ii)
partially overlapping and (iii) fully overlapping. Nonetheless, Kulpa [8] divided the
aggregate of intervals into seven different types, and to indicate these types he intro-
duced different interval relation symbols and conjunction diagrams. For simplicity, we
shall use other symbols than those used by Kulpa [8], without using the conjunction
diagrams. Our notations and symbols are depicted in Table 8.

8.3 Interval Order Relations

Kulpa [8] defined the order relations of interval numbers in several ways. The basic
interval order relations, viz., “<” and “>” are applicable only for disjoint intervals,
and these are too restrictive in many situations. Before giving other order relations,
he defined two related notions — In between interval relation and Lozenge.

Definition 8.3.1 (In between interval relation) Let A = [aL , aR ] and B = [bL , bR ] be
two intervals. A variable interval U = [uL , uR ] is said to lie in-between A and B if

min {aL , bL} ≤ uL ≤ max {aL , bL} and min {aR , bR} ≤ uR ≤ max {aR , bR} .
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Table 8: Basic interval relations and their symbols

Symbol
names

Intervals Relation between
the interval param-
eters

Nature of the relation

A :
T1 B : a

R
< b

L
Completely disjoint.

A :
T2 B : a

R
= b

L
Partially overlapping
just touching at one
of the end points.

A :
T3 B : a

L
< b

L
< a

R
< b

R
Partially overlapping.

A :
T4 B : a

L
= b

L
but a

R
<

b
R

Overlapping but the
lower end points are
equal.

A :
T5 B : a

L
> b

L
and a

R
<

b
R

Fully overlapping.

A :
T6 B : a

L
> b

L
and a

R
=

b
R

Overlapping but the
upper end points are
equal.

A :
T7 B : a

L
= b

L
and a

R
=

b
R

Equal intervals.
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Definition 8.3.2 (Lozenge) A Lozenge, denoted by � A,B � for a pair of intervals
〈A,B〉, is the set of intervals that lie in-between some given intervals. Mathematically,

� A,B � = {U = [uL , uR ] : (min {aL , bL} ≤ uL ≤ max {aL , bL})
and (min {aR , bR} ≤ uR ≤ max {aR , bR})} .

Figure 13: M R-diagram for set inclusion property

Kulpa [8] defined a pair of interval orderings. Among these, one is the traditional
set inclusion relation “⊆” considering the intervals as sets, while the other is the
precedence relation denoted by “�”. The relations can be defined as follows:

(i) A ⊆ B ⇔ (bL ≤ aL and aR ≤ bR)⇔ |bC − aC | ≤ bW − aW ,

A ⊇ B ⇔ B ⊆ A,

(ii) A � B ⇔ (aL ≤ bL and aR ≤ bR)⇔ |bW − aW | ≤ bC − aC ,

A � B ⇔ B � A.

The M R-diagrams of these interval relations are shown in Figure 13 and Figure 14.
Figure 13 represents the diagrammatic representation of set inclusion relation, while
Figure 14 shows the same for the precedence relation. The diagonal border lines
shown in the figures have extra significance: Exactly one of the four ordering relations
⊆,⊇,�,� must hold between the intervals A and B when they do not lie on the
same diagonal line. For the intervals which lie on the same diagonal line, exactly two
relations i.e., either any one between ⊆ and ⊇ or between � and � hold.

9 Global Comparison

In this section, a comparison of the best interval ranking definitions from the groups
in sections 5, 6, 7 and 8 is made. For this purpose, we have selected 5 pairs of different
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Figure 14: M R-diagram for set precedence property

types of intervals (for maximization problems). From the first group, any one of the
definitions of Hu and Wang [2] and Mahato and Bhunia [11] can be considered, since
they work with the same efficiency level. Here we have taken Mahato and Bhunia’s [11]
definition for global comparison. From the second and third groups, the best selected
ordering definitions are Sengupta and Pal’s [14] acceptability index method and Hu
and Wang’s [2] modified leftness relation. In fourth group, there is only one definition,
viz., Kulpa’s [8] diagrammatic definition, which has been taken for comparison. The
comparison is displayed in Table 9.

From the table, it is evident that for examples 1 and 5, the same intervals (interval
B for Example 1 and interval A for Example 5) have been selected by all the definitions,
whereas in Example 2 and 4, except for Kulpa’s scheme [8], all other definitions select
the same intervals. For Example 3, Sengupta and Pal’s [14] acceptability index and
Kulpa’s [8] diagrammatic approach fail to select the better interval. Hence, it is
concluded that the definitions due to Mahato and Bhunia [11] and Hu and Wang [2]
from first group and Hu and Wang’s [2] modified leftness relation from the third group
can be considered for ranking the interval numbers.

10 Concluding Remarks

In this paper, we have discussed the existing definitions of interval order relations
along with their advantages and shortcomings. These definitions are based on set
properties, fuzzy applications, probabilistic approaches, or value-based approaches, or
depending upon some specific indices/functions. To serve the purpose, the ranking
definitions have first been categorized into four groups based on different properties.
In each group, we have done comparative studies with a set of pairs of intervals, then
the best definition has been selected from each group. A global comparison has then
been performed on the selected definitions. For future research, one may use any one
of the group wise selected definitions for solving continuous optimization problems
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Table 9: Comparative studies for maximization problems
Ex. Intervals Group I

(Mahato
& Bhunia)
[11]

Group II
(Sengupta-
Pal’s Ac-
ceptability
Index)[14]

Group III
(Hu &
Wang’s
leftness
relation)[2]

Group IV
(Kulpa)[8]

1 A = [0, 5] = 〈2.5, 2.5〉,
B = [0, 10] = 〈5, 5〉.

B is ac-
cepted.

A (B,A) =
0.333, B is
accepted.

LeftH(A,B) =
0.5, A is left
to B and B
is accepted.

T4 type and
B ⊇ A.
B will be
selected.

2 A = [2, 6] = 〈4, 2〉,
B = [0, 10] = 〈5, 5〉.

B is ac-
cepted.

A (B,A) =
0.14286, B
is accepted.

LeftH(A,B) =
0.2, A is left
to B and B
is accepted.

T5 type and
B ⊇ A. De-
cision cannot
be taken.

3 A = [4, 6] = 〈5, 2〉,
B = [0, 10] = 〈5, 5〉.

A is ac-
cepted.

A (B,A) =
0.0 =
A (A,B),
method
fails.

LeftH(B,A) =
0.4, B is left
to A and A
is accepted.

T5 type and
B ⊇ A. De-
cision cannot
be taken.

4 A = [4, 8] = 〈6, 2〉,
B = [0, 10] = 〈5, 5〉.

A is ac-
cepted.

A (A,B) =
0.14286, A
is accepted.

LeftH(B,A) =
0.2, B is left
to A and A
is accepted.

T5 type and
B ⊇ A. De-
cision cannot
be taken.

5 A = [5, 10] =
〈7.5, 2.5〉,
B = [0, 10] = 〈5, 5〉.

A is ac-
cepted.

A (A,B) =
0.333, A is
accepted.

LeftH(B,A) =
0.5, B is left
to A and A
is accepted.

T6 type and
B ⊇ A.
A will be
selected.

with real/interval coefficients.
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with Examples in Parameter and State Estimation, Robust Control and Robotics.
Springer-Verlag, London, 2001.

[5] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dor-
drecht, 1996.



72 S. Karmakar and A. K. Bhunia, Interval Order Relations

[6] Z. Kulpa. Diagrammatic representation for a space of intervals. Machine Graphics
and Vision, 6(1):5–24, 1997.

[7] Z. Kulpa. Diagrammatic representation for interval arithmetic. Linear Algebra
and its Applications, 324:55–80, 2001.

[8] Z. Kulpa. A diagrammatic approach to investigate interval relations. Journal of
Visual Languages and Computing, 17:466–502, 2006.

[9] S. Kundu. Min-transitivity of fuzzy leftness relationship and its application to
decision making. Fuzzy Sets and Systems, 86:357–367, 1997.

[10] V. I. Levin. Ordering of intervals and optimization problems with interval pa-
rameters. Cybernetics and Systems Analysis, 40(3):316–323, 2004.

[11] S. K. Mahato and A. K. Bhunia. Interval-arithmetic-oriented interval computing
technique for global optimization. Applied Mathematics Research Express, 2006:1–
19, 2006.

[12] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia,
1979.

[13] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis.
SIAM, Philadelphia, 2009.

[14] A. Sengupta and T. K Pal. On comparing interval numbers. European Journal
of Operational Research, 127:28–43, 2000.

[15] P. Sevastjanov and P. Róg. Two-objective method for crisp and fuzzy interval
comparison in optimization. Computers and Operations Research, 33:115–131,
2006.

[16] R. R. Yager. An introduction to applications of possibility theory. Human Systems
Management, 3:246–269, 1983.

[17] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systems, 1:3–28, 1978.

[18] Q. Zhang, Z. P. Fan, and D. H. Pan. A ranking approach for interval numbers
in uncertain multiple attribute decision making problems. Systems Engineering -
Theory and Practice, 5:129–133, 1999.


