
An Efficient Implementation of the SIVIA

Algorithm in a High-Level Numerical

Programming Language∗

Pau Herrero, Pantelis Georgiou and Christofer Toumazou
Center for Bio-Inspired Technology, Institute of
Biomedical Engineering, Imperial College London,
SW7 2AZ, United Kingdom

{pherrero;pantelis;c.toumazou}@imperial.ac.uk

Benot Delaunay and Luc Jaulin
Lab-STICC, ENSTA-Bretagne, 29806 Brest cedex 9,
France
{benoit.delaunay;luc.jaulin}@ensta-bretagne.fr

Abstract

High-level, numerically oriented programming languages such as Mat-
lab, Scilab or Octave are popular and well-established tools in the sci-
entific and engineering communities. However, their computational effi-
ciency sometimes limits their use in certain areas where intensive numer-
ical computations are required, such as interval analysis. In this paper,
we present an efficient implementation of the well known Set Inverter via
Interval Analysis (SIVIA) algorithm in Matlab that has a computational
efficiency comparable to its C++ counterpart. Such implementation aims
at promoting and facilitating the use of SIVIA algorithm by the afore-
mentioned communities. The source code of a Matlab implementation is
freely distributed.

Keywords: Interval analysis, set inversion, high-level numerical language, Matlab
AMS subject classifications: 65-00

1 Introduction

Set Inverter via Interval Analysis (SIVIA) [8] is a well-known algorithm in the interval
analysis [12] community that characterises the solution set of a system of non-linear
real constraints by enclosing it between internal and external unions of interval boxes
(pavings). SIVIA has been applied successfully in many areas of engineering such as
control engineering and robotics [7]. The need for an efficient implementation of SIVIA
is driven by its high computational complexity due to its branch-and-bound nature,
which in the worst case is exponential on the number of variables [8].

∗Submitted: September 13, 2012; Revised: October 15, 2012; Accepted: October 19, 2012.

239

240 Herrero et al, Vector Set Inversion in Matlab

Typical programming languages used to implement SIVIA have been C++, For-
tran 90 and ADA, which provide good computational efficiency, in terms of time
and memory, and have operator overloading capabilities, that allow implementing a
user-friendly interval arithmetic that facilitates the writing of arithmetic expressions
involving interval variables. However, these programming languages present the dis-
advantage of having a relatively slow learning curve and may have portability issues
between different platforms, something that limits their use in many areas of science
and engineering.

On the other side, high-level, numerically oriented (HLNO) programming lan-
guages such as Matlab, Scilab and Octave are extensively used by engineers, physicists
and mathematicians due to their user-friendliness, portability, good technical support,
extensive number of toolboxes, big online community of users, good documentation
and powerful data plotting tools. However, these languages are not particularly known
for their computational efficiency, mainly due to their interpreted nature, and can be
specially inefficient if they are not used in the way they are meant to be used, e.g.,
using explicit for loops instead of array computations or built-in functions. Therefore,
an efficient implementation of SIVIA in a HLNO programming language is desired to
facilitate and promote its use in the scientific and engineering communities.

Different attempts to implement SIVIA algorithm using HLNO programming lan-
guages have been done. The SCS Toolbox [15] is a Matlab implementation of SIVIA
which based on the interval arithmetic library Intlab [13]. However, the computational
efficiency of this implementations remains very low compared to other existing imple-
mentations in C++. In this paper, we present a novel implementation paradigm for
SIVIA algorithm that is well suited to current available HLNO programming languages
that include a matrix library and operator overloading capability. The proposed imple-
mentation has been coded in Matlab and its computational efficiency has been proven
to be comparable to an existing C++ implementations. Such implementation can be
ported easily to any other of the existing HLNO programming languages. Similarly to
the original SIVIA implementation, the novel implementation allows the use of interval
contractors [6], which helps reduce the complexity of the algorithm.

The paper is organised as follows. Section 2 reviews the notion of set inversion and
the original implementation of the SIVIA algorithm. Section 3 presents a novel vector
implementation of SIVIA optimised for the currently available HLNO programming
languages. Then, the concept of using interval contractors within SIVIA [6], and
its use within the novel SIVIA implementation, is presented in Section 4. Section
5 introduces some tips about a Matlab implementation of the proposed algorithm.
Section 6 presents some numerical results of the presented implementation in Matlab
and compares them with a SIVIA implementation in C++. Finally, some applications
are presented in Section 7 to show the potential of the tool. Section 8 summarises the
conclusions about the presented work and introduces some ongoing work.

2 Set Inversion and the SIVIA Algorithm

Let f be a function from Rn → Rp and let Y be a subset of Rp, where (n, p) ∈ N∗2.
Set inversion is the characterisation of the set defined by:

X = {x ∈ Rn | f(x) ∈ Y} = f−1(Y). (1)

For any Y ∈ Rp, for any function f admitting an inclusion function [f](.) from IRn →
IRp [12], being IR the set of real intervals; and by choosing an inclusion test [t] defined

Reliable Computing 16, 2012 241

by:

[t](x) =

true if [f]([x]) ⊂ Y,
false if [f]([x]) ∩ Y = ∅,

undecided otherwise.
(2)

Set Inverter Via Interval Analysis (SIVIA) [8] approximates the set defined by Equation
(1) by means of 3 sets of axis-aligned boxes of Rn (S,N,E) of Rn, also referred to as
pavings, such that:

S ⊂ X ⊂ (S ∪ E), (3)

(N ∩ X) = ∅, (4)

∀[x] ∈ E, Width([x]) < ε, (5)

where Width is a real valued function that returns the maximum relative width of an
interval box [x] with respect to the initial box [x0], that is:

Width : [x] =
⊗
i∈[1,n]

[xi] 7−→ max
i∈[1,n]

width([xi])

width([x0i])
, (6)

with width defined for a single interval as width : [x] = [a, b] 7→ |b − a|; and ε is an
arbitrary positive number that allows control of the accuracy of the approximated set.
Algorithm (1) describes the classic implementation of SIVIA algorithm.

Algorithm 1 Classic implementation of SIVIA Algorithm

Require: • Y ⊂ Rp • [x0] ∈ IRn • [f] : IRn → IRp • ε > 0
Ensure: • S, N and E such that: • S ⊂ (X ∩ [x0]) ⊂ S ∪ E • N ∩ X = ∅
• width([x]) < ε (∀[x] ∈ E)

1: function SIVIA([f], Y, [x0], ε)

2: S← N← E← ∅
3: L← {[x0]}
4: while L 6= ∅ do

5: [x]← pop(L) . pop: Retrieves and removes the first interval box from a list

6: if [f]([x]) ⊂ Y then push(S, [x]) . push: Adds an interval box to a list
7: else if [f]([x]) ∩ Y = ∅ then push(N, [x])
8: else if Width([x]) < ε then push(E, [x]) . Width: Returns width of largest interval
9: else
10: {[x1], [x2]} = Bisect([x]) . Bisect: Bisects a box and returns resulting boxes
11: push(L, [x1])
12: push(L, [x2])
13: end if

14: end while

15: return (S,N,E)

16: end function

2.1 Example

Consider the set inversion problem defined by

X =
{

(x× y) ∈ ([−3, 3]× [−3, 3]) | x2 + y2 + x · y ∈ [1, 2]
}
. (7)

Figure (1) shows a graphical representation of the result provided by the SIVIA al-
gorithm to the set inversion problem stated by Equation (7) with ε = 0.01. Blue
boxes correspond to N (non-solutions), red boxes S (solutions) and yellow boxes to E

(undecided).

242 Herrero et al, Vector Set Inversion in Matlab

Figure 1: Graphical representation of the result provided by SIVIA algorithm
for the set inversion problem defined by Equation (7) with ε = 0.01, where blue
boxes correspond to N, red boxes S and yellow boxes to E.

2.2 Implementing SIVIA in a HNLO Programming Lan-
guage

Implementing SIVIA in a HLNO programming language, as presented in Algorithm
(1), is fairly straightforward if an interval arithmetic library is available [13]. How-
ever, its computational efficiency, compared to an equivalent implementation in C++,
is dramatically inferior. For example, let us consider the problem stated by Equa-
tion (7) with an absolute ε = 10−4. A C++ implementation of SIVIA solves such a
problem in about 0.55 s (Intel Core 2 Duo E8500 (3.16 Ghz) - 4 GB RAM), while an
equivalent Matlab implementation of the same algorithm, on the same computer, takes
1700 s. The reason of such inefficiency is due to the fact that HLNO programming
languages are parsed and the code is interpreted in real-time. Languages like C++
and Fortran are faster because they are compiled ahead of time into the computer’s
native language. The advantages of parsing in real time are greater platform inde-
pendence, robustness, and easier debugging. The disadvantages are a significant loss
in speed, increased overhead, and limited low-level control. To compensate the speed
loss, HLNO languages offer means to help speed up code, such as:

� To vectorize computations by replacing parallel operations with vector opera-
tions.

� To minimise function calls. Every time a function is called, a HNLO language
incurs some overhead to find and parse the file and to create a local workspace
for the function’s local variables.

� To avoid frequent reallocations of matrices. If a matrix is resized repeatedly,
like within a loop, this overhead becomes noticeable.

The SIVIA algorithm relies upon a while loop that iterates and at each iteration
evaluates the inclusion test and the Bisect functions until the list L becomes empty.
For the stated example, the algorithm carries out 527, 299 iterations. Therefore, for an

Reliable Computing 16, 2012 243

efficient implementation of the SIVIA algorithm in a HNLO programming language,
a paradigm shift is required.

3 Vector Implementation of SIVIA

HLNO programming languages, such as Matlab, are well-known for being efficient
when executing vector and matrix computations. With this idea in mind, we present
a novel implementation of SIVIA, referred to as VSIVIA, that aims to minimise the
use of explicit loops and function calls in the code and favours the use of vector
computations, which at the same time minimises the function calls. The idea behind
VSIVIA is to evaluate all the boxes of the list L in a vector way instead of processing
them one by one, as it is done in the classic implementation. The motivation behind
this strategy is based on the assumption that HLNO languages, and in particular
Matlab, are computationally efficient for matrix and vector operations . Therefore,
the inclusion test [t], Width and Bisect functions from Algorithm (1) need to be
extended to their vector form. Let the vector inclusion test [t](L) be defined as:

[t](L) =

in if [f](L) ⊂ Y,
out if [f](L) ∩ Y = ∅,

undecided = ¬in ∧ ¬out,
(8)

where [f](L) is a vector inclusion function from IRn×m 7→ IRp×m, m is the number of
interval boxes in L; and in, out and undecided are vectors of boolean variables of the
same size as L. The implementation of the VSIVIA algorithm is shown in Algorithm
(2), where Width(L) returns a vector of doubles of the same size as L corresponding
to the width of largest intervals of each one of the boxes contained in L; and Bisect(L)
bisects all the boxes contained in L by their larger (relative to the initial box [x0])
interval dimension and returns the corresponding list of boxes which is double the size
of L. Note that logical indexing [11] is used to point to the interval boxes that need
to be considered from the corresponding vector.

Algorithm 2 Vector implementation of SIVIA algorithm (VSIVIA) algorithm

Require: • Y ⊂ Rp • [x0] ∈ IRn • [f] : IRn → IRp • ε > 0
Ensure: • S, N and E such as: • S ⊂ (X ∩ [x0]) ⊂ S ∪ E • N ∩ X = ∅
• width([x]) < ε (∀[x] ∈ E)

1: function VSIVIA([f], Y, [x0], ε)

2: S← N← E← ∅
3: L← {[x0]}
4: while L 6= ∅ do

5: in← ([f](L) ⊂ Y) . in: Vector of booleans same size as L (logical index)
6: out← ([f](L) ∩ Y = ∅) . out: Vector of booleans same size as L (logical index)

7: push(S,L(in)) . push: adds elements to a list
8: push(N,L(out))

9: U← L(¬in ∧ ¬out) . U: Undecided boxes
10: eps← (Width(U) < ε) . Width: returns widths of largest intervals dimensions.
11: push(E,U(eps)) . eps: logical index
12: L← Bisect(U(¬eps)) . Bisect: bisects each box in U, returns list twice as long

13: end while

14: return (S,N,E)

15: end function

244 Herrero et al, Vector Set Inversion in Matlab

4 Using Interval Contractors within VSIVIA

Interval constraint propagation (ICP) is an approach that combines constraint prop-
agation techniques [10] from artificial intelligence and interval analysis [12] to solve
constraint satisfaction problems (CSPs) on intervals [2]. The main idea behind ICP
consists of removing these parts of an a prior feasible interval domain (interval box)
that are are not consistent with the set of involved constraints in a CSP. ICP can be
used within the SIVIA algorithm to reduce its computational complexity by reducing
the number of boxes to be bisected [6] and potentially reducing its computation time.

4.1 Interval Contractors

A degenerate box made with a single point x will be denoted by {x} or simply by x.
The function C : IRn → IRn is an interval contractor if:

(i) ∀[x] ∈ IR,C([x]) ⊂ [x] (contraction)
(ii) ∀x ∈ [x], (C({x}) = {x})⇒ ({x} ∈ C([x])) (consistency)
(iii) C({x}) = ∅ ⇒ (∃ ε > 0,∀x ⊂ B(x, ε),C({x}) = ∅) (weak continuity)

(9)

where B(x, ε) is the ball with center x and radius ε. A box [x] is said to be insensitive
to C if C([x]) = [x]. From Property (i), boxes can only be contracted. From Property
(ii), an insensitive point x is never removed by C. From Property (iii), the set of all
insensitive x is closed.

Different consistency techniques, such as 2B-consistency, 3B-consistency, Box-
consistency and Hull-consistency [1], can be used to build an interval contractor, and
its suitability is usually problem-dependent. In this work, a forward-backward con-
tractor [6] (2B-consistency) has been considered for its simplicity of implementation.

In order not to indefinitely contract a box, the efficiency of a contraction [xc] =
C([x]) is defined as

η = min
i∈[1,n]

width([xci])

width([xi])
. (10)

Algorithm 3 Forward-Backward Contractor

Require: • Y ⊂ IRp • [x0] ∈ IRn • [f] : IRn → IRp • [f−1] : IRp → IRn • ζ > 0
Ensure: [x] ⊆ [x0]

1: function forward backward contractor(Y, [x0], [f], [f−1], ζ)

2: [x]← [−∞,+∞]n

3: while contraction([x0], [x]) < ζ do . contraction([x0], [x]) = min
i∈[1,n]

width([xi])

width([x0i])
4: [x]← [x0]
5: Y← Y ∩ [f]([x]) . Forward propagation
6: [x]← [x0] ∩ [f−1](Y) . Backward propagation
7: end while

8: return [x]

9: end function

From this definition of efficiency, a tolerance threshold ζ is defined in such a way
that the contraction process is stopped as soon as η becomes greater than ζ. Listing
(3) shows an implementation of a forward-backward contractor. Such a contractor can

Reliable Computing 16, 2012 245

be used easily within the classic implementation of SIVIA algorithm on every retrieved
box from list L (line 5 of Algorithm (1)). Note that if the resulting contraction of a
box is an empty set, the contraction over this box stops, and it is considered as a
non-solution box, that is therefore added to the set N.

4.2 Vector Forward-Backward Contractor

To use an interval contractor efficiently within VSIVIA, a vector interval contractor is
required. Therefore, before being bisected and after being evaluated by the inclusion
test (see Algorithm (2)), all the interval boxes from U(¬eps) are contracted in a vector
way. Listing (4) describes a vector implementation of the proposed forward-backward
interval contractor. Logical indexing is used to point to the interval boxes that need
to be further contracted. Also note that the resulting boxes that are reduced to an
empty set by the contractor need to be added to the list N of Algorithm (2).

Algorithm 4 vector Forward-Backward Contractor

Require:
• Y ⊂ IRp×m • L0 ∈ IRn×m • [f] : IRn×m → IRp×m

• [f−1] : IRp×m → IRn×m • ζ > 0

Ensure: L ⊆ L0

1: function vector-frwd-bkwrd-contractor(Y, L0, [f], [f−1], ζ)

2: L← [−∞,+∞]n×m

3: ctrn← [true]m

4: while ctrn 6= false do . ctrn: logical index
5: L(ctrn)← L0(ctrn)
6: Y(ctrn)← Y(ctrn) ∩ [f](L(ctrn)) . vector forward propagation

7: L(ctrn)← L0(ctrn) ∩ [f−1](Y(ctrn)) . vector backward propagation

8: ctrn← (contraction(L0,L) < ζ) . contraction(L0,L) =

 min
i∈[1,n]

width([L(k)i])

width([L0(k)i])
, k ∈ [1,m]

9: end while

10: return L

11: end function

5 Matlab Implementation

To evaluate [f](L), a vector interval arithmetic was implemented in Matlab. Although
the Intlab library [13] could have been used for this purpose, the implemented arith-
metic also incorporates the so-called extended interval arithmetic, or Kaucher arith-
metic [9], which allows using the theory of Modal Interval Analysis [3]. Another
reason for implementing a new vector interval arithmetic was to be able to implement
a vector interval contractor. Following the guidelines stated in Section 2 for writing
efficient code in a HLNO language, the implemented interval arithmetic does not use
any explicit for loops in the Matlab code. Instead of explicit for loops, Matlab logical
indexing and the bsxfun built-in function were employed [11]. To facilitate the writing
of interval arithmetic expressions, a Matlab class representing an interval vector was
implemented. The implemented class has two attributes (lower and upper) consisting
of two vectors of doubles, which represent the lower and upper bounds of an interval
vector. This class overloads all the arithmetic operators to operate easily with interval
vectors. The forward-backward interval contractor does not need to be introduced by
the user because it is automatically generated by the code. A Matlab implementation

246 Herrero et al, Vector Set Inversion in Matlab

of the VSIVIA algorithm including the forward-backward interval contractor is freely
distributed. The source code, a technical documentation, a user manual and several
examples including the ones presented in this paper can be downloaded from [5].

6 Results

To test the performance of of the proposed vector implementation of SIVIA (VSIVIA),
the following problem has been considered. Let the implicit equation in Cartesian
coordinates for a torus radially symmetric about the z-axis be described by(

R−
√
x2 + y2

)2
+ z2 = r2, (11)

where R is the distance from the center of the tube to the center of the torus and r is
the radius of the tube.

Now, consider the set inversion problem that characterises the volume of a torus
with R = 5 and r2 ∈ [1, 2]

P :=

f : (x, y, z) 7→

(
5−

√
x2 + y2

)2
+ z2

[x0] = [−8, 8]× [−8, 8]× [−8, 8]
Y = [1, 2]

(12)

Table (1), shows the computations times (Intel Core 2 Duo E8500 (3.16 GHz) -
4 GB RAM) required for solving the example stated by Equation (7) (ε = 0.01) by
the following implementations of the SIVIA algorithm: the classic SIVIA in Matlab;
the vector SIVIA (VSIVIA) in Matlab; the classic SIVIA in C++; VSIVIA in C++
using the Armadillo linear algebra library [14]; and VSIVIA in Matlab with interval
contractor (ζ = 0.5). From Table (1), the following conclusions can be extracted. The
vector implementation of SIVIA in Matlab (VSIVIA) brings a significant improve-
ment in terms of computation time with respect to the classic SIVIA implementation
in Matlab (classic (Matlab): 336s vs. vector (Matlab): 0.25s)). The VSIVIA im-
plementation in Matlab is comparable to the C++ implementation (classic (C++):
0.25s vs. vector (Matlab): 0.24s). The VSIVIA implementation in C++ using the
Armadillo linear algebra library does not improve the computation time with respect
to the classical implementation of SIVIA in C++ (classic (C++): 0.24 vs. vector
(C++): 0.25 s). The use of an interval contractor within VSIVIA does not bring an
improvement in terms of computation time, although the total number of boxes being
processed by the algorithm is reduced (without contractor: 198, 591 boxes vs. with
contractor: 172, 815 boxes), because the computation time spent by the contractor is
bigger that the time saved by VSIVIA. However, for certain problems, this reduction
in the number of processed boxes can be translated into a reduction on computation
time. Finally, although this test was not carried out, if the rounding mode is con-
sidered in the interval arithmetic library to provide guaranteed numerical results, the
vector implementation can improve the computation time with respect to the classic
implementation because of the reduction on the number of times the rounding mode
needs to be changed (SIVIA: 1, 390, 137 times vs. VSIVIA: 161 times). Note that this
advantage is valid for any programming language.

The Matlab code needed to implement the example stated by Equation (7) is
provided within the distributed Matlab package [5].

Reliable Computing 16, 2012 247

Language Algorithm Computation time # processed boxes

Matlab SIVIA 336 s 198, 591

Matlab VSIVIA 0.25 s 198, 591

C++ SIVIA 0.24 s 198, 591

C++ VSIVIA 0.25 s 198, 591

Matlab VSIVIA+Contractor 0.97 s 172, 815

Table 1: Computation time (Intel Core 2 Duo E8500 (3.16 GHz) - 4 GB RAM)
for solving the example stated by Equation (7) by different implementations of
SIVIA and VSIVIA in Matlab and C++ (ε = 0.01 and ζ = 0.5).

7 Applications

In this section, two applications are introduced in order to show the scope of the pro-
posed SIVIA implementation. The corresponding Matlab code needed to implement
such applications is provided within the distributed Matlab package [5].

7.1 Drug Concentration

Consider the problem of a bolus intravenous injection of a drug into a patient [4]. The
solution of the ODE system that models the pharmacokinetics of the drug distribution
between the central compartment (blood) and the peripheral compartment (tissue) and
the elimination from the central compartment is:

y(t) = a · e−α·t + b · e−β·t. (13)

This expression depends on four parameters a, b, α, β, which can be used to express
the distribution and elimination rates (kel is the elimination rate, and kcp, kpc are
distribution rates) as follows:

kpc =
αβ + bα

a+ b
, kel =

αβ

kpc
, kcp = α+ β − kpc − kel. (14)

For a bolus intravenous injection of 800 mg of a drug into a patient, the data for
the concentration in the central compartment over a period of time are given in Table
(2).

t 0.1 0.25 0.5 0.75 1 1.5 2 2.5 3 4 6 8 10 12

ỹ 16.1 14.3 12.0 10.3 9.0 7.2 6.1 5.2 4.6 3.7 2.5 1.7 1.18 0.81

Table 2: Drug concentration data over time for a bolus intravenous injection of
800 mg of a drug into a patient.

Considering a relative ±5% error in the data ỹ, we aim at identifying the set of
parameters (a, α, b, β) such that the model expressed by Equation (13) is consistent
with the data set from Table (2). Such a problem can be stated as the following set
inversion problem:

X =
{

(a, b, α, β) ∈ ([a], [b], [α], [β]) | ŷ(t) = a · e−α·t + b · e−β·t
}
, (15)

248 Herrero et al, Vector Set Inversion in Matlab

which can be solved by the SIVIA algorithm.
Assuming that (a, α, b, β) ∈ [1, 100] × [0, 10] × [1, 100] × [0, 1], with a ε = 10−3

(relative), VSIVIA solves the problem in 8.6 seconds (Intel Core 2 Duo E8500 (3.16
Ghz) - 4 GB RAM) with a total of 465, 629 boxes processed. The corresponding inner
and outer approximation is given by the following bounding boxes:

Inner(
⋃

[x]∈S

[x]) = [8.15, 11.16]× [0.95, 1.82]× [6.70, 8.55]× [0.17, 0.20], (16)

Outer(
⋃

[x]∈E

[x]) = [5.44, 11.64]× [0.14, 2.06]× [6.12, 11.54]× [0.16, 1.00]. (17)

If a forward-backward contractor with a relative ζ = 0.5 is used within VSIVIA,
the inner and outer approximations expressed by Equation (18) are obtained in 21.4
seconds and a total of 414, 421 boxes processed. The corresponding inner and outer
approximation is given by the following bounding boxes:

Inner(
⋃

[x]∈S

[x]) = [8.05, 11.24]× [0.94, 1.86]× [6.68, 8.61]× [0.17, 0.21], (18)

Outer(
⋃

[x]∈E

[x]) = [6.36, 11.49]× [0.16, 1.98]× [6.35, 10.67]× [0.16, 1.00]. (19)

The use of an interval contractor does not represent any improvement in the com-
putation time, but it reduces the number of processed boxes by 19%. Also note that
the approximation of the solution set obtained with the contractor is slightly better
than the one obtained without the contractor.

7.2 U.S. Census

Consider the census problem [4] that models the time variation of a population with
limited growth, taking into account overcrowding and depletion of resources. It as-
sumes that the relative growth rate is not constant: the growth rate decreases as
the population approaches some fixed upper bound called the carrying capacity. The
mathematical model is the logistic equation

1

y
· dy
dt

= k · (L− y), y(0) = y0, (20)

where y is the population, and L is the carrying capacity. The solution to this equation,
obtained through the separation of variables method, is:

y =
L · y0

y0 + (L− y0) · e−r·t , (21)

Given census data over a time period, one use of the model is to estimate the carrying
capacity L. Table (3) gives the U.S. Census over the years 1790 to 1900, normalized
to 0. Each data is subject to an error of 1.

We aim at identifying the set of parameters L, r and y0 such that the model
expressed by Equation (21) is consistent with the data set from Table (3). Assuming
that (L, r, y0) ∈ [1, 1000] × [0.00, 10] × [0.1, 100], with a ε = 10−4 (relative), VSIVIA
solves this problem in 26 seconds and a total of 1, 741, 497 boxes processed. The
corresponding inner and outer approximation is given by the following bounding boxes:

Reliable Computing 16, 2012 249

t 0 10 20 30 40 50

ỹ 3.929 5.308 7.239 9.638 12.866 17.069

t 60 70 80 90 100 110 120

ỹ 23.191 31.433 39.818 50.155 62.947 75.994 91.9

Table 3: U.S. Census data over time

Inner(
⋃

[x]∈S

[x]) = [169.9, 253.8]× [0.029, 0.034]× [3.53, 4.52], (22)

Outer(
⋃

[x]∈E

[x]) = [163.6, 265.8]× [0.028, 0.034]× [3.38, 4.58]. (23)

If a forward-backward contractor with a ζ = 0.5 is used within VSIVIA, the inner
and outer approximations expressed by Equation (18) is obtained in 48 seconds and a
total of 1, 081, 693 boxes processed. The corresponding inner and outer approximation
is given by the following bounding boxes:

Inner(
⋃

[x]∈S

[x]) = [170.2, 253.7]× [0.028, 0.034]× [3.54, 4.51] (24)

Outer(
⋃

[x]∈E

[x]) = [164.7, 262.7]× [0.028, 0.034]× [3.41, 4.56]. (25)

An interval contractor does not represent any improvement in the computation time,
but it reduces the number of processed boxes by 38%. Also note the approximation of
the solution set obtained with the contractor is slightly better than the one obtained
without the contractor.

8 Conclusions

In this paper, we have demonstrated that a novel vector implementation of the Set
Inversion via Interval Analysis (SIVIA) algorithm in a high-level, numerically oriented
programming (HLNO) language implementation, such as Matlab, can be as efficient
as a C++ implementation. We also have proven that the use of interval contractors,
used to reduce the complexity of SIVIA, can be integrated easily within the presented
vector implementation of SIVIA (VSIVIA). However, in terms of computation time,
the use of interval contractors was not proven to be effective for the treated problems,
although the number of bisections carried of by VSIVIA+Contractor were less than
VSIVIA alone. It is important to remark that the enclosures of the solution set
achieved by the VSIVIA+Contractor algorithm were tighter than the achieved ones
by the VSIVIA algorithm alone. Although not presented in this paper, the proposed
vector implementation has the potential to reduce the computational cost of changing
the rounding model when a guaranteed interval arithmetic is considered. This is
because the VSIVIA algorithm significantly reduces the number of times the rounding
modes needs to be changed.

250 Herrero et al, Vector Set Inversion in Matlab

Due to the popularity of HLNO programming languages in many scientific and en-
gineering communities, the proposed implementation will facilitate and promote the
use of SIVIA algorithm in these communities. Even if the current implementation has
been implemented in Matlab, it could be ported easily to any other HLNO program-
ming language such as Scilab or Octave. The source code of a Matlab implementation,
as well as a technical documentation, a user manual and several examples are freely
distributed.

The VSIVIA+Contractor algorithm is being adapted to solve constrained global
optimisations problems, and the use of local optimisation algorithms is being consid-
ered in order to speed up the computations without losing global optimality. The
utilisation of a guaranteed interval arithmetic library, such as Intlab, is being consid-
ered for a future release of the Matlab implementation.

References

[1] F. Benhamou, F. Goualard, L. Granvilliers, and J.F. Puget. Revising hull and
box consistency. In Proc. ICLP, Conf. on Logic Programming, pages 230–244,
1999.

[2] Ernest Davis. Constraint propagation with interval labels. Artificial Intelligence,
32(3):281–331, 1987.

[3] E. Gardenes, M.A. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, and A. Trepat.
Modal intervals. Reliable Computing, 7(2):77–111, 2001.

[4] L. Granvilliers, J. Cruz, and P. Barahona. Parameter estimation using interval
computations. SIAM Journal on Scientific Computing, 26(2):591–612, 2004.

[5] P. Herrero. Pau Herrero’s Research Page. Imperial College London, http://

www3.imperial.ac.uk/people/p.herrero-vinias/research, Online; accessed
8-October-2012.

[6] L. Jaulin, M. Kieffer, I. Braems, and E. Walter. Guaranteed nonlinear esti-
mation using constraint propagation on sets. International Journal of Control,
74(18):1772–1782, 2001.

[7] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and Robotics.
Springer-Verlag, London, 2001.

[8] L. Jaulin and E. Walter. Set inversion via interval analysis for nonlinear bounded-
error estimation. Automatica, 29(4):1053–1064, 1993.

[9] E Kaucher. Interval analysis in the extended interval space IR. Computing,
Supplementum 2:33–49, 1980.

[10] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

[11] Mathworks. Matlab Information. Mathworks, http://www.mathworks.com/, On-
line; accessed 13-July-2012.

[12] R. E. Moore and C. T. Yang. Interval analysis I. Technical Document LMSD-
285875, Lockheed Missiles and Space Division, Sunnyvale, CA, USA, 1959.

[13] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, De-
velopments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,
Dordrecht, 1999. http://www.ti3.tu-harburg.de/rump/.

Reliable Computing 16, 2012 251

[14] C. Sanderson. Armadillo Web Page. NICTA, Australia, http://arma.

sourceforge.net/, Online; accessed 13-July-2012.

[15] S. Tornil-Sin, V. Puig, and T. Escobet. Set computations with subpavings in
MATLAB: the SCS toolbox. In IEEE International Symposium on Computer-
Aided Control System Design - Part of 2010 IEEE Multi-Conference on Systems
and Control), pages 1403–1408, Yokohama, Japan, 2010.

