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Abstract

In Modal Intervals Revisited Part 1, new extensions to generalized in-
tervals (intervals whose bounds are not constrained to be ordered), called
AE-extensions, have been defined. They provide the same interpretations
as modal intervals and therefore enhance the interpretations of classical
interval extensions (for example, both inner and outer approximations
of function ranges are in the scope of AE-extensions). The construc-
tion of AE-extensions is similar to the cnstruction of classical interval
extensions. In particular, a natural AE-extension has been defined from
Kaucher arithmetic which simplified some central results of modal interval
theory.

Starting from this framework, the mean-value AE-extension is now
defined. It represents a new way to linearize a real function, which is
compatible with both inner and outer approximations of its range. With
a quadratic order of convergence for real-valued functions, it allows one to
overcome some difficulties which were encountered using a precondition-
ing process together with the natural AE-extensions. Some application
examples are finally presented, displaying the application potential of the
mean-value AE-extension.

Keywords: Generalized intervals, Kaucher arithmetic, modal intervals, mean-
value extension
AMS subject classifications: 65G40

1 Introduction

Classical intervals

One fundamental concept of classical interval theory is the extension of real functions
to intervals (see [14, 2, 15]). These extensions are constructed to provide supersets
of the range of real functions over boxes. However, computing the minimal interval
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extension of a real function, i.e. the interval hull of the range of a function over a
box, is an NP-hard problem with respect to the number of variables (see [13]). One
of the main tasks of interval researchers has been to construct computable extensions
which lead to good approximations of functions ranges. Some intensively used interval
extensions are for example natural extensions and mean-value extensions. This latter
has better properties than the natural extension and have been intensively studied (see
[4, 18, 1, 16]). It relies upon a linearization of the function which leads to an interval
linear function whose range contains the range of the original non-linear function.
This provides the mean-value extension with a good behavior when evaluated over
small enough intervals: formally, the mean-value extension has a quadratic order of
convergence. Furthermore it allows one to apply some algorithms dedicated to linear
interval systems to non-linear interval systems.

AE-extensions

Modal interval theory enhances classical interval theory providing richer interpreta-
tions (see [22, 23] for a description of the theory and [3, 19, 20, 7, 8] for some promis-
ing applications of the enhanced interpretations). In particular, both inner and outer
approximations of the function ranges over boxes are in the scope of extensions to
modal intervals. Modal interval theory has been revisited and reformulated in Modal
Intervals Revisited Part 1 (see [5]). New extensions to generalized intervals, called
AE-extensions, have been defined which provide the same enhanced interpretations
as modal interval theory. However, the construction of AE-extensions is similar to
the construction of the extensions to classical intervals. In particular, the natural
AE-extensions have been defined and the order of convergence of AE-extensions has
been introduced. If the natural AE-extension was proved to have a linear order of
convergence in Modal Intervals Revisited Part 1, it was also illustrated that such an
order of convergence was not sufficient in some situations in particular when some
preconditioning process has to be involved.

Contribution

Mean-value AE-extensions are defined. They provide a new way to linearize a nonlinear
function which is compatible with the enhanced interpretations of AE-extensions (in
particular with both inner and outer approximations of the function range over boxes).
Similarly to classical interval mean-value extensions, the mean-value AE-extensions are
proved to have a quadratic order of convergence in the case of real-valued functions
f : Rn −→ R. The usefulness of the mean-value AE-extension is illustrated. Given
a continuously differentiable function f : Rn −→ Rn, the mean-value AE-extension is
used to construct a parallelepiped which is included inside the range of f over a box
x.

Outline of the paper

Basic definitions related to generalized intervals and AE-extensions are presented in
Section 2. Mean-value AE-extensions for real-valued and vector-valued functions are
defined in Section 3. Their order of convergence are investigated in Section 4. The
mean-value AE-extension is used together a preconditioning process to construct a
inner approximation of the range of a function over a box in Section 5.
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Notations

When dealing with sets, the usual set union, set intersection and set difference are
denoted by A ∪B, A ∩B and A\B, respectively and defined by

x ∈ A ∪B ⇐⇒ x ∈ A ∨ x ∈ B

A ∩B = {x ∈ A|x ∈ B} and A\B = {x ∈ A|x /∈ B}.
Intervals, interval functions and interval matrices will be denoted by boldface let-

ters, for example x, f and A. The set of classical intervals is denoted by IR. An
interval x ∈ IRn is equivalently considered as a subset of Rn or as vector of inter-
vals. The interval hull of a subset E of Rn is denoted by �E. The lower and upper
bounds of an interval x are denoted respectively by inf x and supx. The interval join
and meet operations, which are different from the set union and intersection, will be
respectively denoted by the symbols ∨ and ∧ (the join of two intervals is sometimes
called their hull). Given E ⊆ Rn, it will be useful to denote {x ∈ IRn|x ⊆ E} by
IE. The notation for classical intervals will be used for generalized intervals and their
related objects, the set of generalized intervals being denoted by KR (see Section 2.1
for more details). The following notation will be used:

Notation. Sets of indices are denoted by calligraphic letters. Let I = {i1, . . . , in} be
an ordered set of indices with ik ≤ ik+1. Then, the vector (xi1 , . . . , xin)T is denoted
by xI .

This notation is similar to the one proposed in [12]. It will be used with any kind of
objects, for example real vectors, interval vector or function vectors. The involved set
of indices will be ordered with the usual lexicographic order. Intervals of integers are
denoted by [n..m] ⊆ N where n,m ∈ N with n ≤ m. The vector x[1..n] = (x1, . . . , xn)T

will be denoted by the usual notation x when no confusion is possible.
The real functions f : Rn −→ R and f : Rn −→ Rm are respectively called

real-valued functions and vector-valued functions when emphasis has to be put on
this difference. Their derivatives are defined homogeneously in the following way:
f ′(x) ∈ Rm×n is defined by (

f ′(x)
)
ij

=
∂fi
∂xj

(x)

So, if m = 1 then f ′(x) ∈ R1×n is the gradient of f ; if m = n = 1 then f ′(x) ∈ R1×1

is identified with the usual derivative of f . Finally, vectors of Rn (respectively IRn or
KRn) are identified with the column matrices of Rn×1 (respectively IRn×1 or KRn×1).
Therefore, with x, y ∈ Rn, the matrix product xT × y stands for∑

i∈[1..n]

xiyi

2 AE-Extensions of Real Functions

This section presents the generalized intervals and the new formulation of modal in-
terval theory that was proposed in Modal Intervals Revisited Part 1 ([5]). Only results
that are relevant for the developments proposed in the present paper are summarized
in this section.
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2.1 Generalized Intervals

Generalized intervals are intervals whose bounds are not constrained to be ordered,
for example [−1, 1] or [1,−1] are generalized intervals. They have been introduced in
[17, 10, 11] to improve both the algebraic structure and the order structure of classical
intervals. The set of generalized intervals is denoted by KR and is decomposed into
three subsets:

• The set of proper intervals, whose bounds are in increasing order. These proper
intervals are identified with classical intervals. The set of proper intervals is
denoted by the same symbol as the one used for classical intervals, i.e. IR =
{[a, b]|a ≤ b}.

• The set of improper intervals whose bounds in decreasing order. It is denoted
by IR = {[a, b]|a ≥ b}.

• The set of degenerate intervals [a, a], where a ∈ R, which are both proper and
improper. A degenerate interval [a, a] will be identified with the corresponding
real a.

Therefore, from a set of reals {x ∈ R|a ≤ x ≤ b}, one can build the two generalized
intervals [a, b] and [b, a]. It will be useful to change one to the other keeping the
underlying set of reals unchanged using the following operators:

• dual operator: dual [a, b] = [b, a];

• proper projection: pro [a, b] = [min{a, b},max{a, b}];

The operations mid , rad and | . | are defined as in the case of classical intervals.

• mid [a, b] = a+b
2

;

• rad [a, b] = b−a
2

;

• |[a, b]| = max{|a|, |b|}.

The width is defined as wid x = 2 rad x. Both the radius and the width are positive for
proper intervals and negative for improper intervals (and null for degenerate intervals).
Given a set of indices E with cardE = n and a generalized interval xE ∈ KRn, the
following functions allow to pick up the indices of the proper and improper components
of xE :

• P(xE) = {i ∈ E|xi ∈ IR}

• I(xE) = {i ∈ E|xi /∈ IR}

Remark 1. Degenerated components are counted as proper intervals by convention.
The other choice would have been equivalent.

The distance between two generalized intervals x ∈ KR and y ∈ KR is defined in the
following way:

dist(x,y) = max{|x− y|, |x− y|}

As shown in [10, 11], KR then becomes a complete metric space. The generalized inter-
vals are ordered by an inclusion which prolongates the inclusion of classical intervals.
Consider two generalized intervals x = [x,x] and y = [y,y]

x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y
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The generalized interval join and meet are formally the same as their classical coun-
terparts: consider E ⊆ KR bounded set of generalized interval then

(∨E) = [ inf
x∈E

(inf x) , sup
x∈E

(sup x) ]

and (∧E) = [ sup
x∈E

(inf x) , inf
x∈E

(sup x) ].

Remark 2. In the context of generalized intervals, it becomes important to use two dif-
ferent signs for the set intersection and for the interval meet. For example, [0, 1]

⋂
[2, 3] =

∅ whereas [0, 1] ∧ [2, 3] = [2, 1].

The inclusion is related to the dual operation in the following way.

x ⊆ y ⇐⇒ (dual x) ⊇ (dual y)

The so-called Kaucher arithmetic extends classical interval arithmetic. Its definition
can be found in [10, 11] or in [21]. When it is not misunderstanding, the Kaucher
multiplication will be denoted by x y instead of x × y. Kaucher arithmetic has bet-
ter algebraic properties than classical interval arithmetic: The Kaucher addition is a
group. The opposite of an interval x is −dual x, i.e.

x + (− dual x) = x− dual x = [0, 0]

The Kaucher multiplication restricted to generalized intervals which proper projection
do not contains 0 is also a group. The inverse of such a generalized interval x is
1/(dual x), i.e.

x× (1/ dual x) = x/(dual x) = [1, 1]

A useful property of Kaucher arithmetic is its monotonicity with respect to the inclu-
sion: whatever are ◦ ∈ {+,×,−,÷} and x,y,x′,y′ ∈ KR,

x ⊆ x′ ∧ y ⊆ y′ =⇒ (x ◦ y) ⊆ (x′ ◦ y′)

Furthermore, Kaucher arithmetic is linked to the distance between generalized intervals
in the following way: for any intervals x,y,x′,y′ ∈ KR,

dist(xy,xy′) ≤ |x| dist(y,y′)

dist(x + y,x′ + y′) ≤ dist(x,x′) + dist(y,y′)

Generalized interval vectors x ∈ KRn and generalized interval matrices A ∈ KRn×n
are defined like in classical interval theory. The operations mid , rad , | . |, dual and
pro are performed on vectors and matrices elementwise. The metric is extended to
vectors and matrices in the usual way: given x,y ∈ KRn and A,B ∈ KRn,

dist(x,y) = max
i∈[1..n]

dist(xi,yi) and dist(A,B) = max
i∈[1..n]
j∈[1..m]

dist(Aij ,Bij)

Given E ⊆ Rn, it will be useful to denote the set of generalized interval {x ∈
KRn| pro x ⊆ E} by KE. Finally, the distance is used to define a continuity: in
the sequel the local Lipschitz continuity will be useful.

Definition 2.1 (Goldsztejn, [5]). The interval function f : KRn −→ KRm is locally
Lipschitz continuous if and only if for any xref ∈ IRn, there exists λ > 0 which satisfies
for all x,y ∈Kxref ,

dist(f(x),f(y)) ≤ λdist(x,y)
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Remark 3. This definition is naturally specialized to functions f : IRn −→ IRm and
f : Rn −→ Rm considering respectively all x,y ∈ Ixref and all x, y ∈ xref . Also, it
stands for functions f : IRn −→ IRm×p.

Obviously, a function f is locally Lipschitz continuous if and only if all its compo-
nents f i are locally Lipschitz continuous.

2.2 AE-Extensions

The classical interval extensions are defined to compute outer approximations of func-
tions ranges over boxes. The condition range (f,x) ⊆ z can be equivalently stated by
the following quantified proposition:(

∀x ∈ x
)(
∃z ∈ z

)(
z = f(x)

)
AE-extensions are defined allowing more general quantified propositions. The quan-
tifier corresponding to a variable is determined using the proper/improper quality of
the generalized interval corresponding to this variable. The denomination ”AE” is
related to the specific ordering of the quantifier, the universal quantifiers preceding
the existential ones (”A(ll)E(xists)”). The following definition formalizes this idea.

Definition 2.2 (Goldsztejn, [5]). Let f : Rn −→ Rm, x ∈ KRn and z ∈ KRm. The
interval z is interpretable with respect to f and x (or shortly (f,x)-interpretable) if
and only if the following quantified proposition is true:(

∀xP ∈ xP
)(
∀zI′ ∈ pro zI′

)(
∃zP′ ∈ zP′

)(
∃xI ∈ pro xI

)(
z = f(x)

)
(1)

where z = g(x) and P = P(x), I = I(x), P ′ = P(z) and I′ = I(z) are the sets of
indices corresponding respectively to the proper and improper components of x and
z (if one of these sets of indices is empty then the corresponding quantifier block it
canceled).

When m = 1, the quantified proposition (1) can be formulated using a quantifier
which depends on the proper/improper quality of the interval z:(

∀xP ∈ xP
)(
q(z)z ∈ z

)(
∃xI ∈ pro xI

)(
z = f(x)

)
where q(z) = ∃ if z ∈ IR and q(z) = ∀ otherwise. Here are some possible interpreta-
tions of a (f,x)-interpretable interval z in the special case m = 1:

1. When x is proper, z has to be proper and a (f,x)-interpretable interval z
satisfies (

∀x ∈ x
)(
∃z ∈ z

)(
z = f(x)

)
,

i.e. z is an outer approximation of range (f,x).

2. When x is improper, z can be either proper or improper.

(a) If z is improper then it satisfies(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
z = f(x)

)
,

i.e. pro z is an inner approximation of range (f,x).

(b) If z is proper then it satisfies(
∃z ∈ pro z

)(
∃x ∈ pro x

)(
z = f(x)

)
,

i.e. pro z ∩ range (f,pro x) 6= ∅.
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3. When x1 is proper and x2 is improper, z can be either proper or improper.

(a) If z is improper then it satisfies(
∀x1 ∈ x1

)(
∀z ∈ pro z

)(
∃x2 ∈ pro x2

)(
z = f(x)

)
,

i.e. for any fixed z0 ∈ pro z, the interval x1 is inside the projection of the
relation f(x1, x2) = z0 on the axis x1.

(b) If z is proper then it satisfies(
∀x1 ∈ x1

)(
∃z ∈ z

)(
∃x2 ∈ x2

)(
z = f(x)

)
.

When m > 1, some additional interpretations are available. In all cases, the more
interesting interpretations are (1), (2a) and (3a).

The inclusion between generalized intervals provides a way to compare (f,x)-
interpretable intervals: as illustrated by the next example, if two (f,x)-interpretable
intervals z and z′ are related by z ⊆ z′ then z is more accurate than z′ (i.e. z provides
more information than z′).

Example 2.1. Consider the function f(x) = x2 and the proper interval x = [−1, 3].
So range (f,x) = [0, 9]. The proper intervals [−1, 10] and [−2, 11] are both (f,x)-
interpretable. As [−1, 10] ⊆ [−2, 11], the first is more accurate than the second.
Indeed, the first is a more accurate outer approximation of range (f,x) than the second.
Now, the improper intervals [8, 1] and [7, 2] are both (f,dual x)-interpretable: indeed
both pro [8, 1] and pro [7, 2] are inner approximations of range (f,x)). As [8, 1] ⊆ [7, 2],
the first is more accurate than the second. Indeed, pro [8, 1] is a more accurate inner
approximation of range (f,x) than pro [7, 2].

This leads naturally to the following definition for the minimality of (f,x)-interpretable
intervals: the (f,x)-interpretable interval z is minimal if and only if for any (f,x)-
interpretable interval z′,

z′ ⊆ z =⇒ z′ = z

This definition of minimality generalizes its corresponding one in the context of classi-
cal interval extensions. Indeed, if x is proper, then the only minimal (f,x)-interpretable
interval is � range (f,x) (as in the context of classical interval extensions). However,
when x is not proper, there are in general several minimal (f,x)-interpretable inter-
vals. This is illustrated by the next example.

Example 2.2. Let f(x) = Mx withM =

(
1 1
−1 1

)
and x =

(
[1,−1]
[1,−1]

)
∈ IR2

. An im-

proper (f,x)-interpretable interval z ∈ IR is an inner approximation of range (f,pro x),
i.e. it satisfies (

∀z ∈ pro z
)(
∃x ∈ pro x

)(
z = f(x)

)
.

If the inner approximation (pro z) is maximal then z is an minimal (f,x)-interpretable
interval (see [5]). The following improper intervals have a proper projection which is
a maximal inner approximation of range (f,pro x):

zλ =
1

2

(
[1− λ , λ− 1]

[λ+ 1 , −λ− 1]

)
where λ ∈ [−1, 1]. Therefore, they are minimal (f,x)-interpretable and in this case
there is a manifold of minimal (f,x)-interpretable intervals.
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The definition of AE-extensions is constructed from the usual definition of an
extension to classical intervals changing the condition ”range (f,x) ⊆ z” by its gener-
alization to generalized intervals ”z is (f,x)-interpretable”.

Definition 2.3 (Goldsztejn, [5]). Consider a continuous real function f : Rn −→ Rm.
An interval function g : KRn −→ KRm is an AE-extension of f if and only if both
following conditions are satisfied:

1.
(
∀x ∈ Rn

)(
g(x) = f(x)

)
2.
(
∀x ∈ KRn

)(
g(x) is (f,x)-interpretable

)
Also, g is minimal if for all x ∈ KRn the (f,x)-interpretable interval g(x) is minimal.

Remark 4. As in [5], the following simplification will be used: all the functions met in
the sequel will be defined in Rn. When other functions have to be considered, some
attention should be given to the involved definition domains.

This definition is indeed a generalization of the definition of classical interval ex-
tensions as when x is proper, g(x) has to be proper and we have(

∀x ∈ x
)(
∃z ∈ z

)(
z = f(x)

)
,

that is, range (f,x) ⊆ g(x). When dealing with rounded computations, an AE-
extension cannot satisfy (1). An interval function which only satisfies (2) is called
a weak AE-extension. Some questions which are obvious in the context of classical
interval extensions have to be investigated when dealing with AE-extensions. It is
proved in [5] that:

• every continuous function has at least one AE-extension.

• for every AE-extension, there exists an minimal AE-extension which is more
accurate.

Once the minimality has been defined, the quality of AE-extensions can be measured
using the order of convergence. Generalizing its definition in the context of classical
interval extensions, the order of convergence of AE-extensions can be defined in the
following way:

Definition 2.4 (Goldsztejn, [5]). Let f : Rn −→ Rm be a continuous function and
g : KRn −→ KRm be an AE-extension of f . The AE-extension g has a convergence
order α ∈ R, α > 0, if and only if the exists an minimal AE-extension f of f more
accurate that g such that for any xref ∈ IRn, there exists γ > 0 such that for any
x ∈Kxref ,

dist(g(x),f(x)) ≤ γ(||wid x||)α

Remark 5. It is obvious that an AE-extension which has an order of convergence α
has also an order of convergence α′ for any 0 < α′ ≤ α. Also, the usually considered
orders of convergence are integers. An order of convergence 1 is called a linear order
of convergence, and an order of convergence 2 a quadratic order of convergence.

It is proved in [5] that any locally Lipschitz continuous AE-extension has a linear
order of convergence.

The construction of AE-extensions is done in two steps: first, the special case of
real-valued functions is investigated leading to the expressions of the minimal AE-
extensions of a class of elementary functions. Then, the natural AE-extensions of
compound real functions are defined.
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2.3 AE-Extensions of Real-Valued Functions

Any continuous real-valued function f : Rn −→ R has an unique minimal AE-extension
which is denoted by f∗ : KRn −→ KR. From the definition of the minimality of AE-
extensions, f∗ is the only interval function which satisfies for all z ∈ KRn,

z is (f,x)-interpretable ⇐⇒ f∗(x) ⊆ z

From this latter characterization, one can get the following expression of f∗:

f∗(x) = ∨
xP∈xP

∧
xI∈(pro xI)

f(x)

= [ min
xP∈xP

max
xI∈(pro xI)

f(x) , max
xP∈xP

min
xI∈(pro xI)

f(x)]

where P = P(x) et I = I(x).

Remark 6. When P = ∅ or I = ∅, the expressions of f∗ are respectively

f∗(x) = [ max
x∈(pro x)

f(x), min
x∈(pro x)

f(x)] and f∗(x) = [min
x∈x

f(x),max
x∈x

f(x)]

Computing f∗(x) is NP-hard in general. However, it can be easily computed
for simple functions that present good monotonicity properties. In particular, AE-
extensions of elementary functions can be computed from this expression of f∗. The
elementary functions here considered are the following, their definition domain being
the usual ones:

• two variables functions: Ω = { x+ y , x− y , x× y , x/y}

• one variable functions: Φ = { expx, lnx, sinx, cosx, tanx, arccosx, arcsinx,
arctanx, absx, xn, n

√
x}

In the cases of +, −, × and /, it is proved in [5] that f∗ coincides with Kaucher
arithmetic.

Example 2.3. Consider the function f(x, y) = x + y, x ∈ KR and y ∈ KR. Then
z = x + y is the unique minimal (f,x,y)-interpretable interval. For example,

[−1, 1] + [12, 8] = [11, 9]

means that the reals [9, 11] is the largest interval z which satisfies(
∀z ∈ z

)(
∀x ∈ [−1, 1]

)(
∃y ∈ [8, 12]

)(
z = x+ y

)
The minimal AE-extensions of monotonic one variable elementary function are eas-

ily computed: for example, exp(x) = [exp(inf x), exp(supx)] and, for pro x ⊆ [−1, 1],
arccos(x) = [arccos(supx), arccos(inf x)]. In the cases of non monotonic functions,
the algorithms dedicated to the computation of classical interval extensions can be
used with only minor modifications regarding rounded computations.

Remark 7. Not all continuous functions can be considered as elementary functions.
See [5] for the condition which has to be satisfied by the elementary functions. For
example the two variable function f(x, y) = 1 − (x − y)2 cannot be considered as an
elementary function.
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2.4 The Natural AE-Extension

The interval evaluation f(x) of an expression f of a function f using the minimal AE-
extensions of the involved elementary functions is (f,x)-interpretable provided that
each variable has only one occurrence inside the expression.

Example 2.4. Consider the function f(u, v, w) = u(v+w) and the intervals u = [1, 2],
v = [−1, 1] and w = [20, 8]. The expression of f involving only one occurrence of each
variable, the interval z = u(v + w) = [19, 18] is (f,u,v,w)-interpretable, that is, the
following quantified proposition is true:(

∀u ∈ u
)(
∀v ∈ u

)(
∀z ∈ pro z

)(
∃w ∈ pro w

)(
z = f(u, v, w)

)
(2)

Such special cases of expressions are sufficient for the coming developments. The
construction of the natural AE-extensions of more general functions is described in [5]
and needs some modifications of the expressions f (some operations pro have to be
inserted before all but one occurrences of each variable). Now, two properties of the
interval evaluation of an expression containing only one occurrence of each variable are
provided. First, in the special case of bilinear functions f(x, y) = xT × y, the interval
evaluation is minimal, i.e. f∗(x,y) = xT × y. Second, Proposition 2.1 will play a key
role in the following developments. Skolem functions of quantified propositions like(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
φ(xA

⋃
E)
)

(3)

where A and E are disjoint sets of indices such that cardA+ card E = n and xA⋃
E ∈

IRn and φ is a real relation of Rn, are defined using an analogy with first order logic
Skolem functions (see e.g. [24]): a Skolem function of (3) is a function

sE : xA −→ xE s.t. xE = sE(xA) =⇒ φ(xA⋃
E).

Remark 8. It is implied that the previous implication stands for all xA ∈ xA.

Example 2.5. The quantified proposition (2) is true. Therefore it has a Skolem
function, i.e. a function s : (u,v, pro z)T −→ pro w that satisfies w = s(u, v, z) =⇒
z = f(u, v, w).

Proposition 2.1 (Goldsztejn, [5]). Let f : Rn −→ R be a continuous function and f
an expression of this function involving elementary functions of Ω and Φ where each
variable has only one occurrence. For any x[1..n] ∈ KRn, define x0 = f(x[1..n])
where the evaluation is done using Kaucher arithmetic. Furthermore define the sets
of indices A = P(x[1..n])

⋃
I(x{0}) and E = I(x[1..n])

⋃
A(x{0}) (so that A contains

the indices of the universally quantified variable and E contains the indices of the
existentially quantified ones). Then both A and E are nonempty and the quantified
proposition (

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
f(x[1..n]) = x0

)
has a continuous Skolem function (and is therefore true).

Example 2.6. Proposition 2.1 proves that the quantified proposition (2) has a con-
tinuous Skolem function.
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3 The Mean-Value AE-Extension

The mean-value AE-extension is first defined for continuously differentiable functions
f : Rn −→ R in Subsection 3.2. Then AE-extensions of continuously differentiable
functions f : Rn −→ Rm are defined in Subsection 3.3. First of all, an improved
mean-value theorem is needed.

3.1 An Improved Mean-Value Theorem

Given a continuously differentiable function f : R −→ R, x ∈ IR, x̃ ∈ x and ∆ ⊇
range (f ′,x), the mean-value theorem (see appendix A) entails the following quantified
proposition (

∀x ∈ x
)(
∃δ ∈ ∆

)(
f(x) = f(x̃) + δ(x− x̃)

)
The next proposition provides a stronger property: it proves that this quantified propo-
sition has a continuous Skolem function.

Proposition 3.1. Let f : Rn −→ R be a continuously differentiable function, x ∈ IRn,
x̃ ∈ x and ∆ ∈ IRn such that for all k ∈ [1..n],

∆k ⊇ range

(
∂f

∂xk
,x1, . . . ,xk, x̃k+1, . . . , x̃n

)
Then, the quantified proposition(

∀x ∈ x
)(
∃δ ∈ ∆

)(
f(x) = f(x̃) + δT (x− x̃)

)
has a continuous Skolem function (and is therefore true).

Proof. We have to prove that there exists a continuous function s : x −→ ∆ which
satisfies f(x) = f(x̃) + s(x)T × (x− x̃). To this end, the function f(x[1..n]) is written
in following way:

f(x[1..n]) = f(x̃[1..n]) +
∑

k∈[1..n]

gk(x[1..n]), (4)

with

• g1(x[1..n]) = f(x1, x̃[2..n])− f(x̃[1..n])

• gk(x[1..n]) = f(x[1..k], x̃[k+1..n])− f(x[1..k−1], x̃[k..n]) for k ∈ [2..n− 1]

• gn(x[1..n]) = f(x[1..n])− f(x[1..n−1], x̃n).

Example. For n = 2, the previous expression becomes

f(x[1..2]) = f(x̃[1..2]) + g1(x[1..2]) + g2(x[1..2])

= f(x̃[1..2]) +
(
f(x1, x̃2)− f(x̃[1..2])

)
+
(
f(x[1..2])− f(x1, x̃2)

)
.

Example. For n = 3, the previous expression becomes

f(x[1..3]) = f(x̃[1..3]) + g1(x[1..3]) + g2(x[1..3]) + g2(x[1..3])

= f(x̃[1..3]) +
(
f(x1, x̃2, x̃3)− f(x̃[1..3])

)
+
(
f(x1, x2, x̃3)− f(x1, x̃2, x̃3)

)
+
(
f(x[1..3])− f(x1, x2, x̃3)

)
.
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Let us define sk(x) in the following way:

sk(x) =
gk(x)

xk − x̃k
if xk 6= x̃k

and

sk(x) =
∂f

∂xk
(x[1..k−1], x̃[k..n]) otherwise.

Three claims has to be proved.
Claim 1: f(x) = f(x̃) +s(x)T × (x− x̃). Thanks to (4) we just have to prove that

gk(x) = sk(x)(xk − x̃k) for all x ∈ x. On one hand, if xk 6= x̃k then

sk(x)(xk − x̃k) =
gk(x)

xk − x̃k
(xk − x̃k) = gk(x).

On the other hand, if xk = x̃k then gk(x) = 0 = sk(x)× 0.
Claim 2: sk in continuous inside x. Let us consider x ∈ x and prove that sk is

continuous at x. On one hand, if xk 6= x̃k then sk is a composition of continuous func-
tions and is therefore continuous. On the other hand, if xk = x̃k we consider a sequence
x(i) which converges to x. Then, we have by definition sk(x) = ∂f

∂xk
(x[1..k−1], x̃[k..n])

and thanks to the mean-value theorem

sk(x(i)) =
f(x

(i)

[1..k], x̃[k+1..n])− f(x
(i)

[1..k−1], x̃[k..n])

x
(i)
k − x̃k

=
∂f

∂xk
(x[1..k−1], ξ

(i)
k , x̃[k+1,n])

with ξ
(i)
k ∈ x

(i)
k ∨ x̃k. As x

(i)
k converges to x̃k, the sequence ξ

(i)
k also converges to x̃k.

Therefore, sk(x(i)) converges to sk(x) because ∂f
∂xk

is continuous. As a consequence,
sk is eventually continuous at x.

Claim 3: sk(x) ∈ ∆k. On one hand, if xk 6= x̃k then the mean-value theorem
proves that for any x ∈ x,

f(x[1..k], x̃[k+1..n])− f(x[1..k−1], x̃[k..n])

xk − x̃k
∈ range

(
∂f

∂xk
, x[1..k−1], xk ∨ x̃k, x̃[k+1..n]

)
⊆ ∆k

On the other hand, if xk = x̃k then sk(x) ∈ ∆k by definition of sk.

Remark 9. The use of the expression

∆k ⊇ range

(
∂f

∂xk
,x1, . . . ,xk, x̃k+1, . . . , x̃n

)
instead of

∆k ⊇ range

(
∂f

∂xk
,x

)
was initially proposed in [6], in the context of classical intervals extensions. The second
expression, which is simpler, will be used in the sequel to simplify the proposed state-
ments. It can be replaced by the first expression with no influence on the statements
then providing significant improvements in the computations.

Remark 10. Obviously, the hypothesis x̃ ∈ x can be changed to x̃ ∈ Rn provided that

∆k ⊇ range

(
∂f

∂xk
,x1, . . . ,xk, x̃k+1, . . . , x̃n

)
is changed to

∆k ⊇ range

(
∂f

∂xk
,x1 ∨ x̃1, . . . ,xk ∨ x̃k, x̃k+1, . . . , x̃n

)
.
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3.2 The Mean-Value AE-Extension of Real-Valued Func-
tions

The mean-value AE-extension is first illustrated on the special case of a one variable
function. Given a continuously differentiable function f : R −→ R, x ∈ IR, x̃ ∈ pro x
and ∆ ⊇ range (f ′, pro x), define the interval z by

z = f(x̃) + ∆(x− x̃) (5)

which is improper (multiplication by an improper interval which contains 0 leads to an
improper interval which contains 0). Therefore, to prove that z is (f,x)-interpretable,
the validity of the following quantified proposition has to be proved:(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
z = f(x)

)
(6)

On one hand, the expression (5) corresponds to the natural AE-extension of the func-
tion m(x, δ) = f(x̃) + δ(x − x̃) evaluated at x ∈ IR and ∆ ∈ IR. Therefore the
quantified proposition(

∀δ ∈ ∆
)(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
z = m(x, δ)

)
(7)

has a continuous Skolem function by Proposition 2.1. I.e. there exists a continuous
function s′ : (∆, pro z)T −→ pro x that satisfies x = s′(δ, z) =⇒ z = m(x, δ). On the
other hand, Proposition 3.1 proves that the quantified proposition(

∀x ∈ pro x
)(
∃δ ∈ ∆

)(
f(x) = m(x, δ)

)
(8)

also has a continuous Skolem function. I.e. there exists a continuous function s′′ :
pro x −→ ∆ which satisfies δ = s′′(x) =⇒ f(x) = m(x, δ). In order to prove (6), the
continuous function s : (pro x, pro z)T −→ pro x is constructed in the following way:
s(x, z) = s′(s′′(x), z). One can easily check that it satisfies

x = s(x, z) =⇒
(
∃δ ∈ ∆

)(
x = s′(δ, z) ∧ δ = s′′(x)

)
=⇒

(
∃δ ∈ ∆

)(
z = m(x, δ) ∧ f(x) = m(x, δ)

)
=⇒ z = f(x)

(9)

Now, for each z ∈ pro z, the continuous function s( . , z) has pro x as domain and
pro x as co-domain. So, by the Brouwer fixed point theorem (see appendix A) it has
a fixed point x ∈ pro x. Therefore, the following quantified proposition is true:(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
x = s(x, z)

)
Finally, thanks to (9), the previous quantified proposition entails (6) and z is proved
to be (f,x)-interpretable. The next theorem generalizes the previous argumentation
to any continuously differentiable functions f : Rn −→ R and to any interval argument
x ∈ KRn.

Theorem 3.1. Let f : Rn −→ R be a continuously differentiable function, x ∈ KRn,
c : IRn −→ Rn such that c(x) ∈ x and g : IRn −→ IR1×n be an interval extension of
f ′, i.e.

g1k(pro x) ⊇ range

(
∂f

∂xk
, pro x

)
.

Then, the interval function h defined by

h(x) = f(c(x)) + g(pro x)× (x− c(x))

is an AE-extension of f and is called a mean-value AE-extension of f .
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Proof. First of all, for any x ∈ Rn we have c(x) = x and therefore h(x) = f(x) +
g(pro x)×(x−x) = f(x). Then, for any x[1..n] ∈ KRn, define ∆[1..n] = g(pro x[1..n])

T ∈
IRn and x̃[1..n] = c(x[1..n]) and x0 := h(x[1..n]). We therefore have

x0 = f(x̃[1..n]) + ∆T × (x− x̃) (10)

Furthermore define the set of indices A = P(x[1..n])∪I(x0) and E = I(x[1..n])∪P(x0).
So, we have to prove that the following quantified proposition is true:(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
x0 = f(x[1..n])

)
(11)

On one hand, by the expression (10), x0 is the generalized interval evaluation of the
real function

m(x[1..n], δ[1..n]) := f(x̃[1..n]) + δT × (x− x̃)

evaluated at x[1..n] and ∆[1..n]. As the expression of m involves only one occurrence of
each variable we can apply Proposition 2.1 which proves that there exists a continuous
function

s′E : (pro xA,∆[1..n])
T −→ pro xE

which satisfies

xE = s′E(xA, δ[1..n]) =⇒ x0 = m(x[1..n], δ[1..n]) (12)

On the other hand, as g is an interval extension of f ′ we have ∆T ⊇ range (f ′,pro x)
and we can apply Proposition 3.1 which proves that there exists a continuous function

s′′[1..n] : pro x[1..n] −→ ∆[1..n]

which satisfies

δ[1..n] = s′′[1..n](x[1..n]) =⇒ f(x[1..n]) = g(x[1..n], δ[1..n]) (13)

Now, we construct the continuous function sE : pro xA∪E −→ pro xE composing s′

and s′′ in the following way (notice that A ∪ [1..n] ⊆ A ∪ E):

sE(xA∪E) = s′E
(
xA, s

′′
[1..n](x[1..n])

)
(14)

Let us prove that

xE = sE(xA∪E) =⇒ x0 = f(x[1..n]) (15)

By the equation (14), sE(xA∪E) = xE implies

δ[1..n] = s′′[1..n](x[1..n]) ∧ xE = s′E(xA, δ[1..n])

Now, by (12) and (13), this latter implies

f(x[1..n]) = g(x[1..n], δ[1..n]) ∧ x0 = g(x[1..n], δ[1..n])

That is eventually x0 = f(x[1..n]). Finally, thanks to the Brouwer fixed point theorem,
for each value of xA ∈ pro xA, the function sE(xA, .) : pro xE −→ pro xE has a fixed
point. That is, (

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
sE(xA∪E) = xE

)
which entails (11) thanks to the implication (15).
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Remark 11. Similarly to the classical mean-value extension, if the interval function g is
not defined for all x ∈ IRn then the domain definition of the mean-value AE-extension
has to be adapted.

The next example illustrates the way the mean-value AE-extension computes inner
and outer approximations of the range of a continuously differentiable function.

Example 3.1. Consider the real function f(x) = x2 and the interval x = [1, 1.2]. As
f is strictly increasing over x, the exact range range (f,x) can be computed in the
following:

range (f,x) = [f(x), f(x)] = [1, 1.44]

Consider the interval ∆ = [2, 2.4] which satisfies ∆ ⊇ range (f ′,x). When evaluated
at x, the mean-value AE-extension leads to

range (f,x) ⊆ f(x̃) + ∆(x−mid x) = [0.97, 1.45]

which is an outer approximation of the range of the original function f . When evalu-
ated at dual x, the mean-value AE-extension leads to

f(x̃) + ∆(dual x−mid x) = [1.41, 1.01]

The interval pro [1.41, 1.01] = [1.01, 1.41] is indeed included inside [1, 1.44].

Theorem 3.1 has proved that the interval

z = f(x̃) + g(pro x)× (x− x̃)

is (f,x)-interpretable. As f∗ is the unique minimal AE-extension of f , this is equiva-
lently stated by f∗(x) ⊆ z. It will be useful for several purposes to build an interval
which is included inside f∗(x). The next proposition provides such a construction.

Proposition 3.2. Let f : Rn −→ R be a continuously differentiable function, x ∈
KRn, x̃ ∈ x and g : IRn −→ IR1×n be an interval extension of f ′. Define the interval

z = f(x̃) +
(
dual g(pro x)

)
× (x− x̃)

Then, z ⊆ f∗(x).

Proof. Define the continuous real function

m(x, δ) = f(x̃) + δT × (x− x̃)

The interval z is then the natural AE-extension of m evaluated at x and dual ∆,
where ∆ = g(pro x)T ∈ IRn. As proved in [5], this natural AE-extension is minimal.
Therefore, we have z = m∗

(
x, dual ∆

)
. The interval z′ := f∗(x) is (f,x)-interpretable

so the following quantified proposition is true:(
∀xP ∈ xP

)(
q(z′)z ∈ pro z′

)(
∃xI ∈ pro xI

)(
z = f(x)

)
Now, by Proposition 3.1 the following quantified proposition is also true:(

∀x ∈ pro x
)(
∃δ ∈ ∆

)(
f(x) = m(x, δ)

)
Both previous quantified propositions obviously entail the following one:(

∀xP ∈ xP
)(
q(z′)z ∈ z′

)(
∃xI ∈ pro xI

)(
∃δ ∈ g(pro x)

)(
z = m(x, δ)

)
Therefore, the interval z′ = f∗(x) is

(
m,x, dual ∆

)
-interpretable, which implies

m∗
(
x, dual g(y)

)
⊆ f∗(x)

That is, z ⊆ f∗(x).
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3.3 Mean-Value AE-Extensions of Vector-Valued Real
Functions

Given a continuously differentiable vector-valued function f : Rn −→ Rm and an
interval x ∈ KRn, the mean-value AE-extensions of the real-valued functions fi are
now used in order to construct a (f,x)-interpretable interval z ∈ KRm, i.e. z satisfies(

∀xA ∈ xA
)(
∀zA′ ∈ pro zA′

)(
∃zE′ ∈ zE′

)(
∃xE ∈ pro xE

)(
z = f(x)

)
(16)

where A = P (x), E = I(x), E′ = P (z) and A′ = I(z). This construction is similar
to the case of the natural AE-extensions for vector-valued functions presented in [5].
For i ∈ [1..m] consider some mean-value AE-extensions hi of the real-valued function
fi. The interval z naively defined by zi = hi(x) is not (f,x)-interpretable in general
because the conjunction∧

i∈[1..m]

(
∀xA ∈ xA

)(
q(zi)zi ∈ pro zi

)(
∃xE ∈ pro xE

)(
zi = fi(x)

)
(17)

where q(zi) = ∃ if i ∈ P ′ and q(zi) = ∀ if i ∈ I ′, does not implies (16) in general.

Example 3.2. Consider f : R3 −→ R2 and x1 ∈ IR and x2,x3 ∈ IR. Suppose that
both z1 = h1(x1,x2,x3) and z2 = h2(x1,x2,x3) are improper. Then both following
quantified propositions are true:(

∀x1 ∈ x1

)(
∀z1 ∈ pro z1

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z1 = f1(x)

)
and (

∀x1 ∈ x1

)(
∀z2 ∈ pro z2

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z1 = f2(x)

)
However, their conjunction does not imply(

∀x1 ∈ x1

)(
∀z ∈ pro z

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z = f(x)

)
in general. So z ∈ IR2

is not (f,x)-interpretable in general.

In order to entail (16), the previous computations have to be modified in such
a way that each variable which is existentially quantified inside (16) is existentially
quantified in exactly one quantified proposition of the conjunction (17) and universally
quantified in all the others. This is done in the same way as the natural AE-extension:
an operation pro is inserted in before all but one occurrences of each variable. In
the case of the mean-value AE-extension, each component has one occurrence of each
variable. Therefore, the choice of the occurrence which is not preceded of an operation
pro is done choosing one component of the vector-valued interval function.

Example 3.3. Like in the previous example, consider f : R3 −→ R2 and x1 ∈ IR and
x2,x3 ∈ IR. The following intervals are computed:

z1 = h1(x1, pro x2,x3) and z2 = h2(pro x1,x2, pro x3).

Suppose that both z1 and z2 are improper. Then both following quantified proposi-
tions are true (notice that x1 being proper we have (pro x1) = x1):(

∀x1 ∈ x1

)(
∀x2 ∈ pro x2

)(
∀z1 ∈ pro z1

)(
∃x3 ∈ pro x3

)(
z1 = f1(x)

)
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and (
∀x1 ∈ x1

)(
∀x3 ∈ pro x3

)(
∀z2 ∈ pro z2

)(
∃x2 ∈ pro x2

)(
z2 = f2(x)

)
Under some additional hypothesis which are be fulfilled if the hi are the mean-value
AE-extensions of the functions fi, their conjunction implies(

∀x1 ∈ x1

)(
∀z ∈ pro z

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z = f(x)

)
Therefore, z ∈ IR2

is (f,x)-interpretable.

This can be formalized introducing an integral function π : [1..n] −→ [1..m] which
associates to the variable xj for j ∈ [1..n] the index of the AE-extension hi for i ∈ [1..m]
in which it will be existentially quantified (i.e. it will not be preceded by an operation
pro ). Then, AE-extensions hi are used to construct z in the following way:

zi = hi(y)

where for j ∈ [1..n] we have yj = xj if i = π(j) and yj = pro xj otherwise. The proper
components of x being not sensitive to the operation pro , the interval z satisfies∧

i∈[1..m]

(
∀xA∪Ai ∈ xA∪Ai

)(
q(zi)z ∈ pro zi

)(
∃xEi ∈ pro xEi

)(
z = f(x)

)
(18)

where Ei = E ∩ π−1(i) and Ai = E\Ei. Now, as each existentially quantified variable
appears in one and only one quantified proposition of the previous conjunction and
this latter is likely to entail the quantified proposition (16).

Example 3.4. In previous example, the function π is defined by

π : (1→ 1 ; 2→ 2 ; 3→ 1).

The implication ”(18)=⇒(16)” is true because the hi are the mean-value AE-
extensions of the functions fi (see [5] for a counter example for this implication when
other AE-extensions are used). Similarly to the proof of the interpretation of the natu-
ral AE-extension of vector-valued functions, the proof of the implication ”(18)=⇒(16)”
involves the Brouwer fixed point theorem (see Appendix A). In order to formulate the
mean-value AE-extensions of vector valued functions in a compact form, the following
specific matrix/vector product is first defined.

Definition 3.1. Let A ∈ KRm×n, x ∈ KRn and π : [1..n] −→ [1..m]. The matrix
product A ∗π x ∈ KRn is then defined in the following way: for all i ∈ [1..m],

(A ∗π x)i =
∑

j∈π−1(i)

Aijxj +
∑

j∈([1..n]\π−1(i))

Aij(pro x)

A special case will be met several times: if m = n and π = id then the product
A ∗π x is simply denoted by A ∗ x. In this case, its definition is simplified to

(A ∗ x)i = Aiixi +
∑

j∈([1..n]\{i})

Aij(pro xj)

Now, the mean-value AE-extension for vector valued function can be defined.
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Theorem 3.2. Let f : Rn −→ Rm be a continuously differentiable function, x ∈ KRn,
c : IRn −→ Rn such that c(x) ∈ x and π : [1..n] −→ [1..m]. Consider an interval
extension extension g : IRn −→ IRm×n of f ′. Then the interval function h defined by

h(x) = f(x̃) + g(pro x) ∗π (x− c(x))

is an AE-extension of f and is called a mean-value AE-extension of f .

Proof. First of all, whatever is x ∈ Rn we have h(x) = f(x)+g(pro x)×(x−x) = f(x)
because c(x) = x. Now consider any x[1..n] ∈ KRn and define the interval matrix
∆ = g(pro x[1..n]) and x̃[1..n] = c(x[1..n]). to obtain homogeneous notations, the
evaluation of h is done in the following way:

x[n+1..n+m] = f(x̃[1..n]) + ∆ ∗π (x[1..n] − x̃[1..n]) (19)

We have to prove that x[n+1..n+m] is (f,x[1..n])-interpretable. Define the sets of indices
A = P (x[1..n]) ∪ I(x[n+1..n+m]) and E = I(x[1..n]) ∪ P (x[n+1..n+m]). So, we have to
prove that the following quantified proposition is true:(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
f(x[1..n]) = x[n+1..n+m]

)
(20)

Consider any i ∈ [1..m]. The ith line of the equality (19) is

xn+i = fi(x̃) +
∑

j∈[1..n]

∆ij(y
(i)
j − x̃)

where y
(i)
j = xj if π(j) = i and y

(i)
j = pro xj otherwise. This corresponds to the

mean-value AE-extension of the function fi evaluated at y(i). Define Ei = E ∩ π−1(i)

and Ai = E\Ei. We know that y
(i)
j is proper if and only if either xj is proper or

j ∈ Ai or equivalently, y
(i)
j is improper if and only if j ∈ Ei. Using the same reasoning

as in the proof of Theorem 3.1, we obtain for each i ∈ [1..m] a continuous function

sEi : xA∪Ai −→ xEi

which satisfies
xEi = sEi(xA∪Ai) =⇒ xn+i = fi(x[1..n]).

Thank to the definition of π, one can check the for any i ∈ [1..m] and i′ ∈ [1..m] such
that i 6= i′, we have Ei ∩ Ei′ = ∅, and that ∪{Ei|i ∈ [1..m]} = E. We also have
∪{A ∪ Ai|i ∈ [1..m]} = A ∪ E . So, the function sE : xA∪E −→ xE is well defined,
continuous and furthermore satisfies

sE(xA∪E) = xE =⇒
∧

i∈[1..m]

xEi = sEi(xA∪Ai)

=⇒
∧

i∈[1..m]

xn+i = fi(x[1..n])

=⇒ x[n+1..n+m] = f(x[1..n]).

Finally, thank to the Brouwer fixed point theorem, for any xA ∈ xA the function
sE(xA, .) : xE −→ xE has a fixed point. That is,(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
sE(xA∪E) = xE

)
which concludes the proof.
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In the case m = 1, Theorem 3.2 coincides with Theorem 3.1. In this case, there is
only one possible integral function π which is π(i) = 1 for all i ∈ [1..n] and

g(pro x) ∗π (x− c(x)) = g(pro x)× (x− c(x)).

Therefore, Theorem 3.2 can be used in general to define the mean-value AE-extensions.
Also, if x ∈ IRn then

g(pro x) ∗π (x− c(x)) = g(x)× (x− c(x))

and the mean-value AE-extension coincides with the classical interval mean-value ex-
tension.

Example 3.5. Consider the function

f(x) =

(
81x21 + x22 + 18x1x2 − 100
x21 + 81x22 + 18x1x2 − 100

)
Consider the following interval extension of its derivative:

A =

(
162(pro x1) + 18(pro x2) 2(pro x2) + 18(pro x1)
2(pro x1) + 18(pro x2) 162(pro x2) + 18(pro x1)

)
Then, we can build the following mean-value AE-extension of f :

h(x) = f(mid x) + A ∗ (x−mid x)

That is explicitly(
f1(mid x) + A11(x1 −mid x1) + A12(pro x2 −mid x2)
f2(mid x) + A21(pro x1 −mid x1) + A22(x2 −mid x2)

)
If x = ([1.1, 0.9], [1.1, 0.9])T the mean-value AE-extension leads to

h(x) = ( [14,−14] , [14,−14] )T

and so proves that pro h(x,y) ⊆ range (f,pro x, pro y). As a consequence, there
exists x ∈ pro x such that f(x) = 0. Indeed, f(1, 1) = 0.

4 On the Quality of the Mean-Value AE-Exten-
sion

In the particular case of real-valued functions, the mean-value extension has a quadratic
order of convergence. However, in the general case, its order of convergence is linear.

Theorem 4.1. With the notations of Theorem 3.2, suppose that furthermore g is
locally Lipschitz continuous. Then,

• the mean-value AE-extension has a linear order of convergence.

• if m = 1, i.e. in the special case of Theorem 3.1, the mean-value AE-extension
has a quadratic order of convergence.
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Proof. The mean value extension is a composition of: the minimal AE-extensions of +
and ×, the operation pro and the interval extension g of f ′. All are locally Lipschitz
continuous (see [5]). Therefore, their composition is also locally Lipschitz continuous.
As a consequence, the mean-value AE-extension has a linear order of convergence
(Proposition 7.2 [5]).

Now, we study the special case m = 1. Denote g(pro x)T by ∆ ∈ IRn and define
both

z = h(x) = f(x̃) + ∆T × (x− x̃) and z′ = f(x̃) + (dual ∆)T × (x− x̃)

By Theorem 3.1 and Proposition 3.2, we have z′ ⊆ f∗(x) ⊆ z. Thanks to Lemma
2.5 of [11], this implies dist(f∗(x),z) ≤ dist(z,z′). Therefore, it remains to bound
the distance between z and z′. Using the relations between the distance, the Kaucher
addition and multiplication, we have

dist(z,z′) = dist
(
∆T × (x− x̃) , (dual ∆)T × (x− x̃)

)
≤

∑
i∈[1..n]

dist
(
∆i × (xi − x̃i), (dual ∆i)× (xi − x̃i)

)
≤

∑
i∈[1..n]

|xi − x̃i| dist(∆i, dual ∆i)

Now, as x̃ ∈ x, we have |xi − x̃i| ≤ |wid xi| ≤ ||wid x||. Furthermore, it is obvious
that dist(∆i,dual ∆i) = wid ∆i ≤ ||wid ∆||. Therefore we have

dist(z,z′) ≤ n ||wid x|| ||wid ∆||

Now, as g : IRn −→ IR1×n is locally Lipschitz continuous, so is g′ : IR −→ IRn defined
by g′(x) = g(x)T . And because pro is locally Lipschitz continuous, the composition
g′ ◦ pro : KRn −→ IRn is also locally Lipschitz continuous (with these notations we
have ∆ = g′ ◦ pro (x)). So, for all xref ∈ IRn, there exists γ > 0 such that whatever is
y ∈Kxref , we have

dist(∆, g′ ◦ pro (y)) ≤ γ dist(x,y)

So, choose y = mid x ∈ xref . On one hand, we have

|| rad ∆|| ≤ dist(∆, g′ ◦ pro (mid x))

because g′ ◦ pro (mid x) ∈ R. On the other hand, we have dist(x,mid x) = || rad x||.
So we have || rad ∆|| ≤ γ|| rad x|| which is equivalent to ||wid ∆|| ≤ γ||wid x||.
Therefore, dist(z,z′) ≤ nγ||wid x||2. Finally, we have therefore proved that, for all
xref ∈ IRn, there exists γ′ = nγ such that

dist(h(x), f∗(x)) ≤ γ′||wid x||2

where γ′ does not depend on the choice of the box xref , which correspond to quadratic
order of convergence.

The next example illustrates that the mean-value AE-extension does not have a
quadratic order of convergence for m > 1.

Example 4.1. Consider the function

f(x) =

(
x1 + 0.1x2
0.1x1 + x2

)
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which derivative is

f ′(x) =

(
1 0.1

0.1 1

)
Denote this matrix by ∆. Consider the integral function π : [1..2] −→ [1..2] defined
by π(1) = 2 and π(2) = 1. The corresponding mean-value AE-extension of f is

g(x) = f(mid x) + ∆ ∗π (x−mid x)

= f(mid x) +

(
(pro x1 −mid x1) + 0.1(x2 −mid x2)
0.1(x1 −mid x1) + (pro x2 −mid x2)

)
Define the intervals xε = ([ε,−ε], [ε,−ε])T , so

g(xε) = ([−0.9ε, 0.9ε], [−0.9ε, 0.9ε])T

Denote this interval by zε. This latter interval is (f,xε)-interpretable, that is the
following quantified proposition is true.(

∃z ∈ zε
)(
∃x ∈ pro xε

)(
f(x) = z

)
Now, in order to investigate the order of convergence of this mean-value AE-extension,
we consider an minimal (f,xε)-interpretable interval z∗ε which is more accurate than
zε. As x is improper, at least one component of z∗ε is improper (because a proper
interval cannot be minimal if x is improper). Therefore, we have

dist(zε,z
∗
ε ) ≥ || rad zε|| = 0.9||wid xε||

Finally, we have
dist(zε,z

∗
ε )

||wid xε||2
≥ 0.9 ||wid xε||
||wid xε||2

=
0.9

||wid xε||
This ratio is not upper bounded if ε → 0, that is if wid xε → 0. Therefore, this
mean-value AE-extension does not have a quadratic convergence order.

This example also illustrates that the choice of the function π is important for
the quality of the AE-extension: the choice π(1) = 1 and π(2) = 2 would give a
much more accurate mean-value AE-extension. However, a efficient choice for π is not
always possible, as illustrated in [5]. In such cases, a preconditioning step is necessary.
The use of some preconditioning process together with the mean-value AE-extension
is illustrated in the next section.

5 Inner Approximation of the Range of Contin-
uous Vector-Valued Real Functions

The mean-value AE-extension is now used to build an inner approximation of a con-
tinuous function f : Rn −→ Rn under the form of a skew box, i.e. under the form of
the image of a box through a linear map. To this end, the mean-value AE-extension
is associated to a preconditioning process. First of all, the following lemma is needed.

Lemma 5.1. Let d ∈ IR and x ∈ IR such that mid x = 0.

1. if 0 /∈ d then wid
(
d(dual x)

)
= −〈d〉 (wid x) where 〈d〉 is the mignitude of the

interval x, i.e. 〈d〉 = min{|d|, |d|}.
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2. wid
(
d x
)
= |d|(wid x)

Proof. Just apply the expressions of Kaucher arithmetic in the following way.
1. On one hand, if d > 0 then d(dual x) = [dx,dx] = 〈d〉 (dual x). On the other
hand, if d < 0 then d(dual x) = [dx,dx] = 〈d〉 (dual x) (the last equality being a
consequence of x = −x and d = −〈d〉). Finally, wid (〈d〉 (dual x)) = −〈d〉 (wid x).
2. d x = [−|d|x, |d|x]. Therefore, wid

(
d x
)
= |d|(wid x).

Theorem 5.1. Let f : Rn −→ Rn be a continuously differentiable function, x ∈ IRn,
x̃ ∈ x and C ∈ Rn×n be a non-singular matrix. Furthermore consider an interval
matrix A ∈ IRn×n which satisfies ∀x ∈ x, f ′(x) ∈ A. Define the interval

u = Cf(x̃) + (CA) ∗ dual (x− x̃) (21)

If u is improper, then

{C−1u|u ∈ pro u} ⊆ range (f,x)

If furthermore u is strictly improper then A is regular (and even strongly regular).

Proof. As C is non-singular, f(x) = z is equivalent to Cf(x) = Cz. Now the equation
(21) corresponds to the mean-value AE-extension of the function Cf evaluated at
dual x (the Jacoby matrix of the function Cf is Cf ′(x)). Therefore, if u is improper,
then the following proposition holds.(

∀u ∈ pro u
)(
∃x ∈ x

)(
u = Cf(x)

)
Notice that u = Cf(x) is equivalent to C−1u = f(x). Therefore, the previous quanti-
fied proposition is equivalent to the following one.(

∀z ∈ {C−1u|u ∈ pro u}
)(
∃x ∈ x

)(
z = f(x)

)
that is {C−1u|u ∈ u} ⊆ range (f,x). It remains to study the regularity of the interval
matrix A. Suppose that u is strictly improper and denote CA by A′. The ith line of
the equation (21) is

ui = (Cf(x̃))i + A′ii(dual xi − x̃i) +
∑
j 6=i

A′ij(xj − x̃j) (22)

Suppose that for some i ∈ [1..n] we have 0 ∈ A′ii. By the definition of the Kaucher
multiplication, a proper interval which contains 0 multiplied by an improper interval
which proper projection contains 0 gives [0, 0]. So, we have A′ii(dual xi− x̃i) = 0 and
therefore ui ∈ IR. This latter is in contradiction with the hypothesis that u is strictly
improper, therefore we have 0 /∈ A′ii for all i ∈ [1..n]. Similarly, we have wid x > 0.
Now, applying the lemma 5.1 to (22) we obtain

wid ui = 0−
〈
A′ii
〉

(wid xi) +
∑
j 6=i

|A′ij |(wid xj)

Regrouping these componentwise equalities, we get

wid u = −
〈
A′
〉

(wid x)

where 〈A′〉 is the comparison matrix of A′. Therefore, as −wid u > 0, there exists a
non null positive vector v = (wid x) such that 〈A′〉 v ≥ 0, which corresponds to the
definition of a M-matrix. As 〈A′〉 is a M-matrix, A′ = CA is a H-matrix and A is
finally a strongly regular matrix ([15] theorem 4.1.2 and its corollary).
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Figure 1: Inner approximation of the range of a vector-valued function.

Example 5.1. Consider the function

f(x) =

(
x61 + x62 + x1x2
x61 − x62 − x1x2

)
and the interval x = ([0.99, 1.01], [0.99, 1.01])T . Consider the following interval exten-
sion of f ′:

A =

(
6x5

1 + x2 6x5
2 + x1

6x5
1 − x2 −6x5

2 − x1

)
⊇
{
f ′(x) | x ∈ x

}
.

Choosing C = (mid A)−1 and x̃ = mid x, the application of Theorem 5.1 leads to

u ≈ ([0.18, 0.16], [0.27, 0.25])T .

As u is improper, Theorem 5.1 proves that following skew box is an inner approxima-
tion of range (f,x):

{(mid A)u | u ∈ pro u} .
The exact range (continuous line) and the previous skew box (dotted line) are displayed
on Figure 1.

Now, an existence test is derived from Theorem 5.1 in a simple way.

Corollary 5.1. Let f : Rn −→ Rn be a continuously differentiable function, x ∈ IRn
be non degenerate box, x̃ ∈ x and C ∈ Rn×n be a non-singular matrix. Furthermore
consider an interval matrix A ∈ IRn×n which satisfies ∀x ∈ x, f ′(x) ⊆ A. Define the
interval

u = Cf(x̃) + (CA) ∗ dual (x− x̃)

If u ⊆ 0 then there exists x ∈ x such that f(x) = 0. If furthermore u is strictly
improper then there is only one solution inside x.

Proof. The inclusion u ⊆ 0 is equivalent to u is improper and 0 ∈ pro u. Theorem
5.1 therefore entails

{C−1u|u ∈ pro u} ⊆ range (f,x) (23)
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Now, 0 ∈ pro u entails 0 ∈ {C−1u|u ∈ pro u} which finally entails 0 ∈ range (f,x).
Therefore, there exists x ∈ x such that f(x) = 0. The uniqueness is proved noticing
that u strictly improper entails A is strongly regular. Then, the regularity of the
interval matrix A entails the uniqueness of the solution ([15] theorem 5.1.6).

Surprisingly, this existence test is equivalent to existence test associated to the
classical Hansen-Sengupta operator. Indeed, the componentwise expression of the test
of the corollary 5.1 is

(Cf(x̃))i + (CA)ii(dual xi − x̃i) +
∑
j 6=i

(CA)ij(xj − x̃j) ⊆ 0

Now using the rules of Kaucher arithmetic, this is equivalent to

−(Cf(x̃))i −
∑
j 6=i

(CA)ij(xj − x̃j) ⊆ dual
(
(CA)ii

)
(xi − x̃i)

which is eventually equivalent to

x̃i −
1

(CA)ii

(
(Cf(x̃))i +

∑
j 6=i

(CA)ij(xj − x̃j)
)
⊆ xi

because 0 /∈ pro (CA)ii. This last expression corresponds to the existence test associ-
ated to the classical Hansen-Sengupta operator (see [15]). This link gives new lights
on the existence test associated to the Hansen-Sengupta operator. Indeed, when this
latter succeeds, it means that it has been proved that the following quantified propo-
sitions are true:(

∀x2 ∈ x2

)(
∀x3 ∈ x3

)
· · ·
(
∀xn ∈ xn

)(
∃x1 ∈ x1

)(
f1(x) = 0

)(
∀x1 ∈ x2

)(
∀x3 ∈ x3

)
· · ·
(
∀xn ∈ xn

)(
∃x2 ∈ x2

)(
f2(x) = 0

)
...

...(
∀x1 ∈ x2

)(
∀x2 ∈ x2

)
· · ·
(
∀xn−1 ∈ xn−1

)(
∃xn ∈ xn

)(
fn(x) = 0

)
So that all these quantified propositions are true, the function f has to be close to
the identity. This explains why the Hansen-Sengupta existence test generally needs a
midpoint inverse preconditioning to succeed.

6 Conclusion

In Modal Interval Revisited Part 1 ([5]), a new formulation of modal interval theory
has been proposed: new extensions to generalized intervals, called AE-extensions, have
been defined which enhance the interpretations of extensions to classical intervals.
Thanks to this new framework, a new linearization process is proposed under the form
of the mean-value AE-extension. This linearization process is compatible with both
inner and outer approximation of functions ranges over boxes.

The advantages of the mean-value AE-extension in front of the natural AE-extension
(and therefore on the modal rational extensions) are the same than the advantages
of the classical mean-value extension in front of the classical natural extension: on
one hand, it is more accurate for small intervals (its quadratic order of convergence
has been established for real-valued functions). On the other hand, thanks to the lin-
earization process it provides, it allows to apply to non-linear systems the algorithms
dedicated to linear systems.
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The usefulness of the mean-value AE-extension has been illustrated: some inner
approximation of the range of continuously differentiable functions f : Rn −→ Rn over
some small boxes has been constructed. Also, the well-known existence and uniqueness
test associated to the classical Hansen-Sengupta operator has been easily derived from
the mean-value AE-extension.

Future work

The newly introduced linearization process is compatible with inner approximation
of non-linear AE-solution sets and this has to be investigated. Also, the mean-value
AE-extension has been defined only for continuously differentiable functions. The
introduction of slopes in place of derivatives should allow extending the scope of the
mean-value AE-extension to non-differentiable functions like abs(x) or max(x, y) and
obtaining more accurate computations.
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A Existence Theorems from Real Analysis

The mean value-theorem is usually stated in the following way.

Theorem (The mean-value theorem). Let f : R −→ R be differentiable, a ∈ R and
b ∈ R. Then, there exists c ∈ a ∨ b which satisfies

f(b) = f(a) + f ′(c)(b− a)

The Brouwer fixed point theorem is a famous classical existence theorem (see for
example [9] or [15]).

Theorem (Brouwer fixed point theorem). Let E ⊆ Rn be nonempty, compact and
convex, and f : E −→ E be continuous. Then, there exists x ∈ E such that f(x) = x.
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