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Abstract

Modal interval theory is an extension of classical interval theory which
provides richer interpretations (including in particular inner and outer
approximations of the ranges of real functions). In spite of its promising
potential, modal interval theory is not widely used today because of its
original and complicated construction.

The present paper proposes a new formulation of modal interval the-
ory. New extensions of continuous real functions to generalized intervals
(intervals whose bounds are not constrained to be ordered) are defined.
They are called AE-extensions. These AE-extensions provide the same
interpretations as the ones provided by modal interval theory, thus en-
hancing the interpretation of the classical interval extensions. The con-
struction of AE-extensions strictly follows the model of classical interval
theory: starting from a generalization of the definition of the extensions
to classical intervals, the minimal AE-extensions of the elementary op-
erations are first built leading to a generalized interval arithmetic. This
arithmetic is proved to coincide with the well known Kaucher arithmetic.
Then natural AE-extensions are constructed similarly to the classical nat-
ural extensions. The natural AE-extensions represent an important sim-
plification of the formulation of the four “theorems of ∗ and ∗∗ interpre-
tation of a modal rational extension” and “theorems of coercion to ∗ and
∗∗ interpretability” of modal interval theory. New proofs are provided
for the interpretation of these natural AE-extensions that correct the one
proposed in the framework of modal intervals.

With a construction similar to classical interval theory, the new formu-
lation of modal interval theory proposed in this paper should facilitate the
understanding of the underlying mechanisms, the addition of new items
to the theory (e.g. new extensions) and its usage. In particular, a new
mean-value extension to generalized intervals will be introduced in the
second part of this paper.

Keywords: Generalized intervals, Kaucher arithmetic, modal intervals
AMS subject classifications: 65G40

∗Submitted: January 19, 2006; Revised: September 10, 2012; Accepted: October 1, 2012.

130

Alexandre@Goldsztejn.com


Reliable Computing 16, 2012 131

1 Introduction

Classical intervals

The modern interval theory was born in the late 50’s aiming reliable computations
using finite precision computers (see [38, 36, 22] and [8, 28] for historical and technical
introductions). Since its birth, the interval theory has been developed and it proposes
today a wide class of useful algorithms independently of the finiteness of computa-
tions, although reliable computations are still today an advantage of interval based
algorithms (see [16, 12]). The fundamental concept of classical interval theory is the
extension of real functions to intervals ([22, 1, 27, 25]). These interval extensions are
defined and constructed so as to provide supersets of the ranges of real functions over
boxes (i.e. cartesian product of intervals): if g is an interval extension of f and x is
box then

{f(x) | x ∈ x} ⊆ g(x).

As a direct application of interval extensions, when dealing with equations f(x) = 0 (or
equivalently with systems of equations) interval extensions have an intrinsic disproving
power: Given an interval extension g of f and a box x, if the interval g(x) does not
contain 0 then it is proved that the range of f over x does not contain 0 too. As
a consequence, the equation f(x) = 0 is proved not to have any solution inside x.
Proving the existence of some solutions to a system of equations can also be done
using interval extensions in conjunction with some existence theorems (e.g. Miranda
theorem or Brouwer fixed point theorem for n × n systems of equations): interval
extensions are then used in order to check rigorously that the hypothesis of these
existence theorems are satisfied (see [23, 24, 15] and [18, 17] for some surveys).

Modal intervals

Modal intervals have been introduced in [6] so as to enhance the interpretation provided
by classical interval theory. Modal intervals extend the classical intervals by coupling
a quantifier to them: a modal interval is couple (x, q) where x is an interval and q
a quantifier (see [6, 34, 35]). Real functions are extended to modal intervals taking
advantage of the quantifier coupled with the intervals, leading to interpretations richer
than the one of the classical interval extensions. In particular, both inner and outer
approximations of the range of real functions over boxes are in the scope of modal
interval extensions. In contrast to the classical interval extensions, which need to be
used in conjunction with some existence theorems to prove the existence of a solution
to a system of equations, modal interval extensions have an intrinsic proving power
when dealing with systems of equations: indeed, modal interval extensions can build
an inner approximation z of the range {f(x) | x ∈ x} and if 0 ∈ z then the equation
f(x) = 0 is proved to have a solution inside x.

The enhanced interpretations offered by modal interval theory have promising
potential applications (see [37, 2, 29, 30, 31, 9, 10]). However, since its birth, modal
interval theory have been used almost only by its creators. This can be explained by
some difficulties that are associated with modal interval theory:

(i) The original construction of modal interval theory is complicated and not similar
to classical interval theory. For example, two kinds of extensions with different
interpretations are present in modal interval theory: the ∗-extensions and the
∗∗-extensions. All interpretation theorems are duplicated to fit both kinds of
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modal extensions, although all interpretations obtained with a given kind of
extension can also be obtained with the other one. This is misleading and e.g.
makes difficult the addition of new components to the theory (for example,
some new extensions). On the other hand, modal interval theory emphases the
central property that f∗∗(x) ⊆ f∗(x), but this property between different kinds
of modal extensions is quite difficult to interpret. Proposition 9.1 (page 161)
shows that this property has a clear interpretation when rephrased using only
one type of extension.

(ii) The quantifiers coupled with intervals in modal intervals do not correspond to
the quantifiers present inside the interpretations of modal interval extensions.
For example, the modal addition

(x, ∃) + (y, ∀) = (z, ∃)

can be interpreted in two different ways: first, the ∗-interpretation of this modal
operation is (

∀x ∈ x
)(
∃z ∈ z

)(
∃y ∈ y

)(
z = x+ y

)
.

Second, the ∗∗-interpretation of this modal operation is(
∀y ∈ y

)(
∀z ∈ z

)(
∃x ∈ x

)(
z = x+ y

)
.

In none of the two interpretations the quantifiers coupled with intervals corre-
spond to the quantifiers met in the interpretations.

The aim of the new formulation proposed here is to rephrase the main results
of modal interval theory but strictly following the construction of classical interval
theory, without introducing pairs of classical intervals, quantifiers, or different kinds
of extensions.

The new formulation of modal interval theory

A new formulation of modal interval theory is proposed in the framework of generalized
intervals (intervals whose bounds are not constrained to be ordered, initially defined
in [26, 13]). This is the main difference with the original formulation of modal interval
theory where pairs of classical intervals and quantifiers are introduced while generalized
intervals are used as some auxiliary objects that ease computations and proofs.

New extensions to generalized intervals are defined which provide the same en-
hanced interpretations as the modal interval extensions. They are called AE-extensions
because the universal quantifiers (All) are constrained to precede the existential ones
(Exist) inside their interpretations1. The AE-extensions of continuous real functions
are built on the model of classical interval extensions: starting from a generalization
of the definition of classical interval extensions, the minimal AE-extensions of the el-
ementary operations (i.e. +, ×, −, /, exp(x),

√
x, etc.) are constructed leading to

a generalized interval arithmetic. This arithmetic is proved to coincide with the well
known Kaucher arithmetic (an extension of classical interval arithmetic to generalized
intervals which has better algebraic properties and which plays a key role in the for-
mal algebraic approach to AE-solution set approximation, [14, 21, 33]). Then, natural
AE-extensions are constructed using generalized interval arithmetic in a similar way

1The use of the symbols “AE” in order to insist on the constrained succession of the
quantifiers was proposed in [33] in the context of AE-solution sets.
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to the classical natural extensions: they consist of evaluating the expression of the
function using generalized interval arithmetic. However, in contrast to the classical
interval evaluation of an expression, the expression of the function has to be modified
before its generalized interval evaluation. A simple algorithm is provided for the modi-
fication of the function expression. The natural AE-extensions represent an important
simplification of the formulations of the four “theorems of ∗ and ∗∗ interpretation of
a modal rational extension” and “theorems of coercion to ∗ and ∗∗ interpretability”
initially proposed in modal interval theory. As a result, the new theory overcomes the
two main drawbacks pointed out above: AE-extensions correspond to ∗-extensions,
and the new theory is developed with no need of ∗∗-extensions.

Some new concepts are also introduced in the new formulation of modal interval
theory: in particular, the concept of minimal AE-extensions (i.e. AE-extensions for
which no more accurate AE-extension exists) and the concept of the order of conver-
gence of an AE-extension (i.e. some bounds on the distance to some minimal AE-
extension) are defined as generalizations of their classical counterparts. They allow to
quantify the quality of AE-extensions. It is well known that the classical interval natu-
ral extension is minimal if the expression of the function contains only one occurrence
of each variable. It is surprising that the natural AE-extension of such function may
not be minimal. This was pointed out in [34] but no explanation has been proposed
for this fact yet. An explanation is now proposed, see Subsection 12.2. Furthermore,
in spite of this lack of minimality, natural AE-extensions are proved to have a linear
convergence and to be minimal in the special case of bilinear functions.

Finally, the new theoretical framework proposed here allows providing some new
proofs for the new formulations of these theorems. These proofs are based on the study
of Skolem functions of quantified propositions, and application of the Brouwer fixed
point theorem to these Skolem functions, see Example 11.3 page 169. This new system
of proofs was necessary as some gaps have been found in the proofs of some central
theorems of modal interval theory (see the counter example in Section B page 177).

Outline of the paper

Generalized intervals and their properties are presented in Section 2. The inclusion be-
tween generalized intervals will play an important role. Its interpretation is presented
in Section 3. The AE-extensions of real relations are defined in Section 4. They rep-
resent a useful language which is used to define the AE-extensions of continuous real
functions in Section 5. The minimality of an AE-extension and its order of conver-
gence are defined in Section 6 and Section 7 respectively. The outward rounding to
the AE-extensions is presented in Section 8. The special case of real-valued functions
is studied in Section 9 where the minimal AE-extension f∗ is defined. From the results
of the previous section are constructed the minimal AE-extensions of the elementary
functions in Section 10 leading to a generalized interval arithmetic. Its relationship
with Kaucher arithmetic is investigated. Then, natural AE-extensions are defined in
Section 11. The quality and the application scope of natural AE-extensions are finally
investigated in Section 12 and 13 respectively.
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Notation

When dealing with sets, the usual set union, set intersection and set difference are
respectively denoted by A

⋃
B, defined by

x ∈ A
⋃
B ⇐⇒ x ∈ A ∨ x ∈ B

A
⋂
B = {x ∈ A|x ∈ B} and A\B = {x ∈ A|x /∈ B}.

Interval notation follows the one proposed in [19]. Intervals and interval functions
will be denoted by boldface letters, e.g. x and f . The set of classical intervals (i.e.
closed, bounded and nonempty intervals) is denoted by IR. Reals and intervals are
identified with real vectors and interval vectors of dimension one, respectively. An
interval x ∈ IRn is equivalently considered as a subset of Rn or as vector of intervals.
The interval hull of a nonempty bounded subset E of Rn is the smallest interval of
IRn which contains E and is denoted by �E. The lower and upper bounds of an
interval (vector) x are denoted respectively by inf x and supx. The interval join
and meet operations, which are different from the set union and intersection, will be
respectively denoted by the symbols ∨ and ∧. Given E ⊆ Rn, it will be useful to
denote {x ∈ IRn|x ⊆ E} by IE. The notations of classical intervals will be used for
generalized intervals and their related objects, the set of generalized intervals being
denoted by KR. The following notation for component numbering of vectors will be
used:

Notation. Sets of indices are denoted by calligraphic letters. Let I = {i1, . . . , in} be
an ordered set of indices with ik ≤ ik+1. Then, the vector (xi1 , . . . , xin)T is denoted
by xI .

This notation is similar to the one proposed in [19]. The involved set of indices
will be ordered with the usual lexicographic order. As illustrated by next example,
the notation can be applied to reals, intervals or functions.

Example. Consider I = {1, 2, 4} and I′ = {(1 1), (1 2), 2, (3 4)}. Then,

fI = (f1, f2, f4)T

xI′ = (x11, x12, x2, x34)T

xI′\{2} = (x11, x12, x34)T

The vector equality is then treated in a natural way: xI = yI′\{2} stands for x1 = y11,
x2 = y12 and x4 = y34.

Intervals of integers are denoted by [n..m] = {n, n+1, . . . ,m−1,m} where n,m ∈ N
with n ≤ m. The vector x[1..n] = (x1, . . . , xn)T will be denoted by the usual notation
x when no confusion is possible.

The real functions f : Rn −→ R and f : Rn −→ Rm are respectively called real-
valued functions and vector-valued functions when emphasis has to be put on this
difference.

2 Generalized Intervals

Generalized intervals are now presented. They are the framework of the new formula-
tion of modal interval theory. Furthermore, both the generalized interval inclusion and
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generalized interval arithmetic (called Kaucher arithmetic) will play some key roles in
the new formulation of modal interval theory.

Classical intervals are closed, bounded and nonempty intervals. They are defined
by two bounds: [a, b] = {x ∈ R | a ≤ x ≤ b}. Generalized intervals extend classical
intervals relaxing the constraint that bounds have to be ordered, e.g. [−1, 1] or [1,−1]
are generalized intervals. They have been introduced in the late 60’s in [26, 13] to im-
prove both the classical interval algebraic structure and the order structure associated
with the classical interval inclusion. The set of generalized intervals is denoted by KR
and is decomposed into three subsets:

• The set of proper intervals whose bounds are ordered increasingly. The proper
intervals are identified with classical intervals, and therefore to the underlying
sets of reals. Therefore, the set of proper intervals is denoted by IR = {[a, b]|a ≤
b}.

• The set of improper intervals whose bounds are orderer decreasingly. It is de-
noted by IR = {[a, b]|a ≥ b}.

• The set of degenerate intervals [a, a] with a ∈ R. These intervals are both proper
and improper and are identified with real numbers.

Therefore, from a set of reals {x ∈ R|a ≤ x ≤ b}, one can build the two generalized
intervals [a, b] and [b, a]. It will be useful to change one to the other keeping unchanged
the underlying set of reals using the following three operations:

• Dual operation: dual [a, b] = [b, a].

• Proper projection: pro [a, b] = [min{a, b},max{a, b}] ∈ IR.

• Improper projection: imp [a, b] = [max{a, b},min{a, b}] ∈ IR.

The classical definitions of midpoint, radius, width and magnitude are extended to
generalized intervals keeping the same formula: given a generalized interval x = [x, x],

mid x =
1

2
(x+ x) ; rad x =

1

2
(x− x) ; |x| = max{|x|, |x|}.

The width is defined as wid x = 2 rad x. Both the radius and the width are positive
for proper intervals and negative for improper intervals. Two generalized intervals are
related by x ≤ y if and only if supx ≤ inf y. Also, x < y stands for supx < inf y.
When dealing with generalized interval vectors, the same componentwise rules as in
classical intervals theory are used. Given a set of indices K with cardK = n and
xK ∈ KRn, the following functions allow to pick up the indices of the proper and
improper components of xK:

• P(xK) = {k ∈ K|xk ∈ IR},

• I(xK) = {k ∈ K|xk /∈ IR}.

Remark 1. Degenerate components are considered as proper intervals by convention.
Although the other choice would have been coherent, the convention chosen here is
more convenient due to the identification of proper intervals with classical intervals.

Three different structures are attached to the set of generalized intervals: A metric
structure, an order structure associated with the generalized interval inclusion and an
algebraic structure.
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Metric structure

The distance between two generalized intervals x ∈ KR and y ∈ KR is defined in the
following way:

dist(x,y) = max{|x− y|, |x− y|}.
As shown in [13, 14], KR then becomes a complete metric space. This metric is
extended to KRn in the usual way: given x ∈ KRn and y ∈ KRn,

dist(x,y) = max
k∈[1..n]

dist(xk,yk).

A norm is also defined by ||x|| = |x| for x ∈ KR and by ||x|| = maxk∈[1..n] ||xk|| for
x ∈ KRn.

Order structure associated with the generalized interval in-
clusion

The generalized intervals are partially ordered by an inclusion which extends the inclu-
sion of classical intervals. Given two generalized intervals x = [x, x] and y = [y, y], the
inclusion is defined by the same formal expression as the classical interval inclusion:

x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y.

Example 2.1. The following inclusions can be checked using the previous definition:
[−1, 1] ⊆ [−2, 2], [2,−2] ⊆ [1, 3] and [2,−2] ⊆ [1,−1]. The first has a natural inter-
pretation as it coincides with the classical intervals inclusion. The last two will be
interpreted in Section 3.

This inclusion is related to the dual operation in the following way:

x ⊆ y ⇐⇒ (dual x) ⊇ (dual y).

The usual least upper bound and greatest lower bound operations are defined from
the inclusion, leading to the join and meet operations of generalized intervals: given
a bounded set of generalized intervals E ⊆ KR, its join and meet are respectively
denoted by ∨E and ∧E and are respectively defined by(

∀z ∈ KR
)(
z ⊇ (∨E) ⇐⇒ ∀x ∈ E,z ⊇ x

)
and

(
∀z ∈ KR

)(
z ⊆ (∧E) ⇐⇒ ∀x ∈ E,z ⊆ x

)
.

Remark 2. When E contains only two elements x and y, the usual notations x ∨ y
and x ∧ y are used instead of ∨{x,y} and ∧{x,y}.

These two definitions lead to the following equivalent characterizations of the gen-
eralized interval join and meet (which are formally the same as their classical coun-
terparts):

(∨E) = [ inf
x∈E

(inf x) , sup
x∈E

(sup x) ]

and (∧E) = [ sup
x∈E

(inf x) , inf
x∈E

(sup x) ].

Remark 3. In the context of generalized intervals, it becomes important to use two
different signs for the set intersection and for the interval meet. For example,
[0, 1]

⋂
[2, 3] = ∅ whereas [0, 1] ∧ [2, 3] = [2, 1].
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Due to the relationship between the inclusion and the operation dual , we have

∨E = dual ∧{dual x|x ∈ E} and ∧ E = dual ∨{dual x|x ∈ E}

That is e.g. x ∨ y = dual ((dual x) ∧ (dual y)) in the case where E contains two
generalized intervals.

Algebraic structure

In Kaucher[14], continuous real functions are extended to generalized intervals. Given
a continuous real function f : Rn −→ R, its extension to generalized intervals is
denoted by fKR : KRn −→ KR and is defined in the following way:

fKR(x1, . . . ,xn) =
∨∧x1

x1∈pro x1

· · ·
∨∧xn

xn∈pro xn

f(x)

where ∨∧x
=

{
∨ if x ∈ IR
∧ otherwise

In the case where all the interval arguments are proper, only join operations are
involved in the computation and therefore

fKR(x1, . . . ,xn) = range (f,x1, ...,xn) .

In order to differentiate these extensions from the one which will be defined later in
this paper, they will be called the KR-extensions of real functions. In the special cases
of real arithmetic operations, i.e. f(x, y) = x◦y with ◦ ∈ {+,−,×,÷}, KR-extensions
lead to so-called Kaucher arithmetic: these operations between generalized intervals
are defined by x ◦ y = fKR(x,y). Due to the monotonicity properties of these latter
real operations, some simple formula can be derived from the original definition of
KR-extensions, leading to the following expressions:

• x + y = [x+ y, x+ y].

• x− y = [x− y, x− y] = x + (−y) where −y = [−y,−y].

• Kaucher multiplication x× y is described in Table 1.

• Kaucher division x/y of generalized intervals is defined for generalized intervals
x and y such that 0 /∈ (pro y) by x/y = x× [1/y, 1/y].

When restricted to proper intervals, these operations coincide with classical interval
arithmetic. The Kaucher arithmetic operations satisfy

(dual x) ◦ (dual y) = dual (x ◦ y).

We say they commute with the dual operator. This property shows in particular
that operations between improper intervals can be computed using classical interval
arithmetic, e.g.

[2, 1] + [4, 3] = dual ([1, 2] + [3, 4]) = [6, 4].

When proper and improper interval are involved, e.g. [1, 2] + [4, 3] = [5, 5], the intro-
duction of classical inner operations is needed to forecast the result of the generalized
interval operations using classical ones (see [5]). Kaucher arithmetic has better alge-
braic properties than classical interval arithmetic: Kaucher addition is a group. The
opposite of a generalized interval x is −dual x, i.e.

x + (− dual x) = 0.
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Table 1: Kaucher multiplication
x× y y ∈ P y ∈ Z y ∈ −P y ∈ dual Z

x ∈ P [x y, x y] [x y, x y] [x y, x y] [x y, x y]

x ∈ Z [x y, x y]
[min{x y, x y},
max{x y, x y}] [x y, x y] 0

x ∈ −P [x y, x y] [x y, x y] [x y, x y] [x y, x y]

x ∈ dual Z [x y, x y] 0 [x y, x y]
[max{x y, x y},
min{x y, x y}]

where P = {x ∈ KR|0 ≤ x ∧ 0 ≤ x}, −P = {x ∈ KR|0 ≥ x ∧ 0 ≥ x},
Z = {x ∈ KR|x ≤ 0 ≤ x} and dual Z = {x ∈ KR|x ≥ 0 ≥ x}.

Kaucher multiplication restricted to generalized intervals whose bounds are non-null
and share the same sign is also a group. The inverse of a such a generalized interval
x is 1/(dual x), i.e.

x× (1/ dual x) = 1.

Finally, the KR-extensions of exp and ln are easily obtained:

expx = [exp(inf x), exp(supx)]

lnx = [ln(inf x), ln(supx)] for x > 0.

Furthermore, it is easy to check that for any x ∈ KR and y ∈ KR

exp(x + y) = (expx)(expy) and ln expx = x.

If furthermore x > 0 and y > 0 then

ln(xy) = lny + lny.

Thus, the reciprocal bijections ln and exp change the additive group of generalized
intervals into the multiplicative group of generalized intervals, as in the case of real
numbers.

Links between the different structures

The metric and order structures allow the introduction of continuity and monotonicity.
The continuity, which will be useful for the coming developments, is local Lipschitz
continuity. It is defined in the following way:

Definition 2.1. A function f : KRn −→ KRm is locally Lipschitz continuous if and
only if for all xref ∈ IRn, there exists a real γ > 0 such that for any generalized intervals
x,y ∈Kxref ,

dist
(
f(x),f(y)

)
≤ γ dist(x,y)
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Remark 4. This definition is naturally specialized to functions f : IRn −→ IRm and
f : Rn −→ Rm considering respectively all x,y ∈ Ixref and all x, y ∈ xref .

It is shown in Kaucher[14] that KR-extensions of locally Lipschitz continuous real
functions are locally Lipschitz continuous (this holds in particular for Kaucher arith-
metic). Furthermore, Kaucher arithmetic operations are inclusion monotone, i.e.

x ⊆ x′ =⇒ x ◦ y ⊆ x′ ◦ y

In the special cases of addition and multiplication by intervals whose proper projection
does not contain zero, the equivalence holds in place of the implication. Finally, the
metric and norm are related by dist(x,y) = ||x− dual y||.

3 Interpretation of Generalized Interval Inclu-
sions

When restricted to proper intervals, the generalized interval inclusion coincides with
the classical interval inclusion and therefore has a natural interpretation in terms of
sets of reals:

x ⊆ y ⇐⇒ {x ∈ R|x ∈ x} ⊆ {y ∈ R|y ∈ y}

An interpretation in terms of sets of reals is now provided for the other cases of in-
clusion between generalized intervals. The next lemma first proves that the inclusion
between a proper interval and an improper interval is related to the intersection be-
tween the related sets of reals (this property was already pointed out e.g. in [32]).

Lemma 3.1. Let x ∈ IR and y ∈ IR. Then,

x
⋂

y 6= ∅ ⇐⇒ (dual x) ⊆ y

Proof. Clearly, the proper intervals x and y have a non-null intersection if and only
if ¬

(
y < x ∨ x < y

)
. Distributing the negation, one obtains the equivalent condition

y ≥ x ∧ x ≥ y. It remains to notice that (dual x) = [x, x] so using the expression of
inclusion we eventually have (dual x) ⊆ y ⇐⇒ y ≥ x ∧ x ≥ y.

Example 3.1. Consider the intervals x = [−1, 1] and y = [0, 2]. On one hand
x
⋂

y 6= ∅. On the other hand (dual x) ⊆ y, i.e. [1,−1] ⊆ [0, 2], can be checked using
the rules of generalized interval inclusion (0 ≤ 1 and −1 ≤ 2).

The following proposition allows interpretation of all the the cases of inclusion
between generalized intervals in terms of proper intervals, i.e. in terms of sets of real
numbers:

Proposition 3.1. Let x ∈ KR and y ∈ KR. Then, x ⊆ y is equivalent to the
disjunction of the four following conditions:

1. x ∈ IR ∧ y ∈ IR ∧ x ⊆ y

2. x ∈ IR ∧ y ∈ IR ∧ (pro x)
⋂

y 6= ∅

3. x ∈ IR ∧ y ∈ IR ∧ (pro x) ⊇ (pro y)

4. x ∈ IR ∧ y ∈ IR ∧ x = y = [x, x].
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Proof. The inclusion x ⊆ y is equivalent to

(x ∈ IR ∧ y ∈ IR ∧ x ⊆ y) ∨ (x ∈ IR ∧ y ∈ IR ∧ x ⊆ y)

∨ (x ∈ IR ∧ y ∈ IR ∧ x ⊆ y) ∨ (x ∈ IR ∧ y ∈ IR ∧ x ⊆ y)

because a generalized interval is either proper or improper. Therefore the four cases can
be proved independently. (1) This case corresponds to the classical interval inclusion.
(2) One can apply Lemma 3.1 to obtain (pro x)

⋂
y 6= ∅ ⇐⇒ (imp x) ⊆ y. Finally,

since x is improper, (imp x) = x and therefore (pro x)
⋂

y 6= ∅ ⇐⇒ x ⊆ y. (3)
First x ⊆ y ⇐⇒ (dual x) ⊇ (dual y) and remark that, x and y being improper,
(dual x) = (pro x) and (dual y) = (pro y) and therefore (pro y) ⊆ (pro x) ⇐⇒
x ⊆ y. (4) This last case is less interesting. This is a direct consequence of the
definition of inclusion.

An example is now proposed for first three cases of the previous proposition.

Example 3.2.

1. [−1, 1] ⊆ [−2, 2] is interpreted like the classical set inclusion;

2. [2,−2] ⊆ [1, 3] is interpreted as [−2, 2]
⋂

[1, 3] 6= ∅;
3. [2,−2] ⊆ [1,−1] is interpreted as [−1, 1] ⊆ [−2, 2].

The next corollary of cases (2) and (3) of Proposition 3.1 will be useful.

Corollary 3.1. Let x ∈ IR and y ∈ KR. Then,

x ⊆ y ⇐⇒
(
q(y)t ∈ pro y

)(
t ∈ pro x

)
where q(y) = ∃ if y ∈ IR and q(y) = ∀ otherwise.

Proof. First suppose that y ∈ IR. Then, thanks to Proposition 3.1, x ⊆ y ⇐⇒
(pro x)

⋂
y 6= ∅ which is eventually equivalent to

(
∃t ∈ y

)(
t ∈ pro x

)
. Now suppose

that y ∈ IR. Then thanks to Proposition 3.1, x ⊆ y ⇐⇒ (pro x) ⊇ (pro y) which is
eventually equivalent to

(
∀t ∈ pro y

)(
t ∈ pro x

)
.

This section is ended with an informal presentation of the interpretation of the
join and meet operations between generalized intervals. These interpretations are not
detailed here because they will not be used in the sequel. They are direct consequences
of Proposition 3.1 and of the basic definitions of least upper bound and greatest lower
bound.

Example 3.3. The following four cases summarize the possible interpretations of the
generalized interval meet operation:

• [−1, 1]∧ [0, 2] = [0, 1] so the proper interval [0, 1] is the biggest interval included
inside both [−1, 1] and [0, 2]. This corresponds to the interpretation of the
classical interval meet operation.

• [−1, 1] ∧ [2, 3] = [2, 1] so the proper interval [1, 2] is interpreted as the smallest
interval which intersects both [−1, 1] and [2, 3].

• [−1, 1] ∧ [3, 2] = [3, 1] so the proper interval [1, 3] is interpreted as the smallest
interval which both intersects [−1, 1] and contains [2, 3].

• [1,−1]∧[3, 2] = [3,−1] so the proper interval [−1, 3] is interpreted as the smallest
interval which contains both [−1, 1] and [2, 3].



142 A. Goldsztejn, Modal Intervals Revisited

The join and meet being related by

x ∨ y = z ⇐⇒ (dual x) ∧ (dual x) = (dual z)

the interpretations of the join operation between generalized intervals are obtained
thanks to the interpretations of the meet operation.

4 Quantified Propositions and Generalized In-
tervals

This section presents the quantified propositions that will be met in the sequel. These
quantified propositions will be expressed as extensions of real relations to generalized
intervals leading to a convenient language for their manipulation.

4.1 Quantified Propositions in AE-Form

The quantified propositions encountered in the sequel are of the following kind: they
are closed (no free variables), in prenex form (the quantifiers occur in front of the
proposition) and in AE-form (the universal quantifiers precede the existential ones).
Furthermore, the quantifiers act over interval domains. Such quantified propositions
can be written in the following way:(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
φ(xA⋃

E)
)

(1)

where A and E are disjoint sets of indices such that cardA+ card E = n and xA
⋃
E ∈

IRn and φ is a real relation of Rn.

Remark 5. The quantified proposition (1) is actually a short cut for the exact formu-
lation (

∀xA
)(
∃xE

)(
xA ∈ xA =⇒ xE ∈ xE ∧ φ(x)

)
,

where the domains of x and y are respectively Rn and Rm (see e.g. [39]).

It will be convenient to define Skolem functions of quantified propositions like (1).
Using an analogy with first order logic Skolem functions (see e.g. [39]), a Skolem
function of (1) is a function

sE : xA −→ xE s.t. xE = sE(xA) =⇒ φ(xA
⋃
E).

Remark 6. It is implied that the previous implication stands for all xA ∈ xA.

Obviously, the quantified proposition (1) is true if and only if it has a Skolem
function.

Example 4.1. Consider the relation φ(x) of R2 defined by φ(x) ⇐⇒ x21 + x22 − 9 =
0. The quantified proposition

(
∀x1 ∈ [−1, 1]

)(
∃x2 ∈ [2, 4]

)(
φ(x)

)
has the following

Skolem function: s2 : [−1, 1] −→ [2, 4] defined by s2(x1) =
√

9− x21. Indeed x2 =
s(x1) implies φ(x). As a consequence, the previous quantified proposition is true.

An important topic in the sequel will be to prove that a quantified proposition has
a continuous Skolem function. This can be understood as the possibility to choose
the existentially quantified variables continuously with respect to the values of the
universally quantified variables.
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4.2 AE-Extensions of Real Relations

Given a real relation φ of Rn, its extension to generalized intervals is now defined. The
AE-extensions of real relations are introduced because they represent a useful language
for the description of the quantified propositions like (1) and of their properties.

Definition 4.1. Let φ be a relation of Rn. The AE-extension of φ is denoted by the
same symbol φ and is defined for x ∈ KRn by

φ(x) ⇐⇒
(
∀xI ∈ pro xI

)(
∃xP ∈ xP

)(
φ(x)

)
where P = P(x) and I = I(x) are respectively the set of indices of proper and
improper components of x.

Remark 7. The general notation which is used in the definition 4.1 also stands for the
cases where P = ∅ or I = ∅. These cases correspond respectively to

(
∀x ∈ x

)(
φ(x)

)
and

(
∃x ∈ x

)(
φ(x)

)
.

When restricted to proper intervals, the definition proposed here does not exactly
coincide with the definition proposed in [4, 3] where an implication is involved in
place of the equivalence. The following examples illustrate the interpretations of AE-
extensions of real relations.

Example 4.2. Consider the relation φ(x) of R2 defined by φ(x) ⇐⇒ x21 +x22−9 = 0
and the generalized interval x = ([1,−1], [2, 4])T . Then φ(x) is equivalent to the
quantified proposition

(
∀x1 ∈ [−1, 1]

)(
∃x2 ∈ [2, 4]

)(
φ(x)

)
and is true as shown in

Example 4.1.

The next example illustrates the way AE-extensions of real relations will be related
to interval extensions of real functions in the next section.

Example 4.3. Consider a continuous function f : Rn −→ Rm and two intervals
x ∈ KRn and z ∈ IRm. Denote by φ(x, z) the real relation of Rn+m defined by
φ(x, z) ⇐⇒ f(x) = z. Now, if x is proper then the evaluation φ(dual x,z) is
equivalent to the following quantified proposition:

(
∀x ∈ x

)(
∃z ∈ z

)(
f(x) = z

)
.

Indeed, dual x is improper so x is universally quantified and z is proper so z is
existentially quantified. Therefore, φ(dual x,z) is equivalent to range (f,x) ⊆ z. Now,
if x is improper then dual x is proper and φ(dual x,z) is equivalent to the following
quantified proposition:

(
∃x ∈ pro x

)(
∃z ∈ z

)(
f(x) = z

)
, i.e. range (f,x)

⋂
z 6= ∅.

The central role played by the generalized interval inclusion in the coming devel-
opments is due to its strong relationship with the AE-extensions of real relations. This
important relationship is described by the following proposition:

Proposition 4.1. Let φ be a relation of Rn, x ∈ KRn and y ∈ KRn. Then

x ⊆ y ∧ φ(x) =⇒ φ(y).

Proof. Define the following sets of indices:

P = P(x)
⋂
P(y) ; I = I(x)

⋂
I(y) ; K = [1..n]\(P

⋃
I).

We suppose that the three previously defined set of indices are not empty (the other
cases are similar and simpler). Thanks to Proposition 3.1, we know that the inclusion
x ⊆ y implies
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• k ∈ P implies xk ⊆ yk and therefore xP ⊆ yP

• k ∈ I implies pro yk ⊆ pro xk and therefore pro yI ⊆ pro xI

• k ∈ K implies xk ∈ IR, yk ∈ IR and (pro xk)
⋂

yk 6= ∅ and therefore
(pro xK)

⋂
yK 6= ∅

φ(x) is true if and only if
(
∀xI ∈ pro xI

)(
∀xK ∈ pro xK

)(
∃xP ∈ xP

)(
φ(x)

)
and φ(y)

is true if and only if
(
∀xI ∈ pro yI

)(
∃xK ∈ yK

)(
∃xP ∈ yP

)(
φ(x)

)
. We just have

to prove that the former implies the latter. This is obviously true because xP ⊆ yP ,
pro yI ⊆ pro xI and (pro xK)

⋂
yK 6= ∅.

Example 4.4. Consider the relation φ(x) of R2 defined by φ(x) ⇐⇒ x21 +x22−9 = 0
and x = ([1,−1], [2, 4])T and y = ([0.9,−0.9], [1.9, 4.1])T . Then both x ⊆ y and
φ(x) are true, so φ(y) is true by Proposition 4.1. Indeed, the quantified proposition(
∀x1 ∈ [−1, 1]

)(
∃x2 ∈ [2, 4]

)(
φ(x)

)
clearly implies the quantified proposition

(
∀x1 ∈

[−0.9, 0.9]
)(
∃x2 ∈ [1.9, 4.1]

)(
φ(x)

)
.

Finally, the next two propositions are technical results which will be useful in the
sequel.

Proposition 4.2. Let φ be a relation of Rn and x ∈ KRn be a generalized interval.
When �{x ∈ (pro x)|φ(x)} is defined (i.e. when {x ∈ (pro x)|φ(x)} is nonempty),
denote this interval by a. Then the three following implications are true:

(i) φ(x) =⇒ {x ∈ (pro x)|φ(x)} 6= ∅

(ii) φ(x) =⇒ (imp a) ⊆ x

(iii) φ(x) =⇒ φ(x ∧ a).

Proof. Define the set of indices P = P(x) and I = I(x). Suppose that both P and I
are not empty, the other cases being similar and simpler.

(i) As φ(x) is true the following quantified proposition holds:(
∀xI ∈ pro xI

)(
∃xP ∈ xP

)(
φ(x)

)
. (2)

Choose x̃I ∈ pro xI . By the previous quantified proposition, there exists x̃P ∈ xP
such that φ(x̃) holds. Therefore x̃ ∈ {x ∈ (pro x)|φ(x)} which concludes the proofs of
the first assertion.

(ii) On one hand, the definition of a obviously implies a ⊆ pro x and hence
aP ⊆ xP . Therefore (imp aP) ⊆ xP . On the other hand, define uI = inf xI and
vI = sup xI so by the quantified proposition (2) there exists uP ∈ xP and vP ∈ xP
such that φ(u) and φ(v). Therefore, u ∈ a and v ∈ a and finally u ∨ v ⊆ a. Now
by construction (u ∨ v)I = pro xI so (pro xI) ⊆ aI . This implies (dual aI) ⊆
(dual pro xI) and because aI is proper and xI is improper (imp aI) ⊆ xI .

(iii) Denote x∧a by z. We have proved previously that aP ⊆ xP and (pro xI) ⊆
aI the latter implying xI ⊆ aI because xI is improper. Therefore zP = aP and zI =
xI . Now as φ(x) is true the quantified proposition corresponding to its interpretation
(i.e. (2)) has a Skolem function, i.e. there exists a function sP : pro xI −→ xP such
that xP = sP(xI) =⇒ φ(x). Now, by construction of a, for any xI ∈ xI , φ(x) implies
xP ∈ aP . Therefore the actual range of s is a subset of aP . As a consequence, the
quantified proposition that corresponds to the interpretation of φ(z) has a Skolem
function and φ(z) is finally true.
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The next proposition needs the following lemma which is a direct consequence
of the fact that the distance between proper intervals corresponds to the Hausdorff
distance between the corresponding sets of reals:

dist(x,y) = max{ max
y∈y

min
x∈x

dist(x, y) , max
x∈x

min
y∈y

dist(x, y) }

where the distance between reals is dist(x, y) = maxk∈[1..n] |xk − yk|.

Lemma 4.1. Let z(k) ∈ IRp be a sequence of intervals which converges to z ∈ IRp.
Then both following statements are true.

(i) Any sequence (z(k))k∈N which satisfies z(k) ∈ z(k) has at least one accumulation
point and all its accumulation points are in z.

(ii) For any z ∈ z, there exists a convergent sequence (z(k))k∈N which satisfies z(k) ∈
z(k) whose limit is z.

Proof. (i) The sequence z(k) being convergent, it is also bounded. Therefore, any
sequence z(k) ∈ z(k) is bounded. This latter hence have at least one accumulation
point thanks to the Bolzano-Weierstrass theorem. By the definition of the Hausdorff
distance and because z(k) ∈ z(k), we have whatever is k ∈ N

dist(z(k),z) ≥ max
z∈z(k)

min
y∈z

d(z, y) ≥ min
y∈z

dist(z(k), y) ≥ 0. (3)

As the sequence z(k) converges to z, we also have limk→∞ dist(z(k),z) = 0. Therefore,
using the inequalities (3), we obtain

lim
k→∞

min
y∈z

dist(z(k), y) = 0.

As a direct consequence of the definition of an accumulation point z∗ of the sequence
z(k), we have miny∈z dist(z∗, y) = 0. Finally, as z is closed inside Rn, we have z∗ ∈ z.

(ii) Whatever is k ∈ N, the interval z(k) being closed inside Rn, there exists
z(k) ∈ z(k) which satisfies

dist(z(k), z) = min
y∈z(k)

dist(y, z).

Similarly to the first case, we can prove that

lim
k→∞

min
y∈z(k)

dist(y, z) = 0.

Finally, limk→∞ dist(z(k), z) = 0 so we have constructed a sequence z(k) ∈ z(k) which
converges to z.

Recall that by definition, given a set E and a subset F of E, F is closed inside E
if and only if any point of E which is the limit of a converging sequence of points of
F is also in F .

Proposition 4.3. Let φ be a relation of Rn. If the graph of φ is closed inside Rn then
the graph of the AE-extension of φ is closed inside KRn.
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Proof. Consider any convergent sequence of intervals (x(k))k∈N such that φ(x(k)) holds
for all k ∈ N. We just have to prove that φ(x(∞)) holds, where x(∞) stands for
the limit of the sequence (x(k))k∈N. We first pick up a subsequence (y(k))k∈N of
(x(k))k∈N whose elements have constant componentwise proper/improper qualities.
This is indeed possible, otherwise there would exists only a finite number of intervals
for each possible 2n proper/improper qualities of the components, that is a finite
number of x(k), which is absurd. As the subsequence converges to the same limit that
the original sequence we just have to prove that φ(y∞) is true. Now, y(∞) has the same
componentwise proper/improper qualities that the elements y(k) because both IR and
IR are closed inside KR. Define P = P (y(k)) = P (y(∞)) and I = I(y(k)) = I(y(∞)).
We suppose that both P and I are not empty, the other cases being similar and simpler.
Then, for all k ∈ N, the following proposition is true:(

∀xI ∈ pro y
(k)
I
)(
∃xP ∈ y

(k)
P
)(
φ(x)

)
. (4)

Now, by Lemma 4.1, for any xI ∈ pro y
(∞)
I , there exists a sequence x

(k)
I ∈ pro y

(k)
I

which converges to xI . Then using the quantified proposition (4), for all k ∈ N
there exists x

(k)
P ∈ y

(k)
P such that φ(x(k)). The sequence (x(k))k∈N has at least one

accumulation point x∗ ∈ pro y(∞) by Lemma 4.1. Obviously, we have x∗I = xI .
Furthermore, φ(x∗) holds because the graph of φ is closed inside Rn. Therefore, we
have eventually proved the following quantified proposition:(

∀xI ∈ pro y
(∞)
I
)(
∃xP ∈ y

(∞)
P
)(
φ(x)

)
.

Therefore that φ(y(∞)) is true.

5 AE-Extensions of Continuous Real Functions

The AE-extensions of continuous real functions are now defined. Their richer interpre-
tations with respect to the classical interval extensions are obtained taking advantage
of the additional degree of freedom offered by the proper/improper quality of gener-
alized intervals.

5.1 Definition of AE-Extensions of Real Functions

The definition of extensions to classical intervals is first reformulated using AE-ext-
ensions of real relations. This new formulation of the definition of classical interval
extensions will be applicable to generalized intervals, leading to the definition of AE-
extensions. First recall the definition of extensions to classical intervals.

Definition 5.1 (Neumaier [25]). Consider a continuous real function f : Rn −→ Rm.
An interval function g : IRn −→ IRm is an interval extension of f if and only if both
following conditions are satisfied:

1.
(
∀x ∈ Rn

) (
g(x) = f(x)

)
2.
(
∀x ∈ IRn

) (
range (f,x) ⊆ g(x)

)
Also, an interval function that only satisfies 2. is called a weak interval extension of
f .

Remark 8. The following simplification is used: all the functions met in the sequel
will be defined in Rn. When other functions have to be considered (for example 1/x
or ln(x)) some attention should be given to the assocated domains of definition.
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As illustrated by Example 4.3, the condition range (f,x) ⊆ g(x) is equivalent to
the quantified proposition (

∀x ∈ x
)(
∃z ∈ g(x)

)(
f(x) = z

)
.

This quantified proposition is also equivalent to φ(dual x, g(x)) where φ is the real
relation defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z. Therefore, the definition of the
extensions to classical intervals can be reformulated in the following way:

Definition 5.2 (Reformulation of Definition 5.1). Consider a continuous real function
f : Rn −→ Rm. An interval function g : IRn −→ IRm is an interval extension of f if
and only if both following conditions are satisfied:

1.
(
∀x ∈ Rn

) (
g(x) = f(x)

)
2.
(
∀x ∈ IRn

) (
φ(dual x, g(x))

)
where the real relation φ(x, z) is defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z. Also, an
interval function that only satisfies 2. is called a weak interval extension of f .

The definition of AE-extensions of real functions is eventually obtained extending
the previous definition to generalized intervals.

Definition 5.3. Consider a continuous real function f : Rn −→ Rm. A generalized
interval function g : KRn −→ KRm is an AE-extension of f if and only if both following
conditions are satisfied:

1.
(
∀x ∈ Rn

) (
g(x) = f(x)

)
2.
(
∀x ∈ KRn

) (
φ(dual x, g(x))

)
where the real relation φ(x, z) is defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z. Also, an
interval function that only satisfies 2 is called a weak AE-extension of f .

Informally, when all involved intervals are proper, the definition of AE-extensions
coincides with the one of interval extensions. When an improper interval is involved
in place of a proper one, the related quantifier is changed, taking attention to keep the
order AE inside the quantified proposition so obtained.

Formally, defining z = g(x), g is an AE-extension of f if and only if the following
quantified proposition is true:(

∀xP ∈ xP
)(
∀zI′ ∈ pro zI′

)(
∃zP′ ∈ zP′

)(
∃xI ∈ pro xI

)(
f(x) = z

)
where P = P(x), I = I(x), P ′ = P(z) and I′ = I(z). In the special case of real-
valued function, i.e. f : Rn −→ R, the previous quantified proposition can be written
using the dependent quantifier introduced in Corollary 3.1 (page 141):(

∀xP ∈ xP
)(
q(z)z ∈ pro z

)(
∃xI ∈ pro xI

)(
f(x) = z

)
where q(z) is defined by q(z) = ∃ if z ∈ IR and q(z) = ∀ otherwise. The block

(
q(z)z ∈

pro z
)

is written at the center of the proposition in order to keep the succession AE in

the proposition whatever is the quantifier q(z), i.e. whatever is the proper/improper
quality of z.

The aim of the developments proposed hereafter is to construct generalized inter-
vals g(x) that satisfy these latter propositions and to study their properties. Such
generalized intervals g(x) are displayed by the following definition:
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Definition 5.4. Consider a continuous real function f : Rn −→ Rm, x ∈ KRn and
z ∈ KRm. The interval z is said to be interpretable with respect to f and x (or shortly
(f,x)-interpretable) if and only if φ(dual x,z) is true, where the real relation φ(x, z)
is defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z.

As a consequence of this definition, AE-extensions of f are defined so as to con-
struct (f,x)-interpretable intervals. The next subsection provides some examples of
interpretations of (f,x)-interpretable intervals.

5.2 Some Interpretations of AE-Extensions

The AE-extensions can be used for many purposes: they can either be used to com-
pute inner or outer approximations of functions ranges over boxes, or prove that a
box is inside the projection of a relation f(x) = z0. Some examples of these inter-
pretations are now provided. A continuous function f : R2 −→ R and two intervals
x ∈ KR and y ∈ KR are considered in this section. The interpretations of some
(f,x,y)-interpretable intervals z ∈ KR are investigated. Also, these examples will
show that the generalized interval inclusion allows comparing the accuracy of (f,x,y)-
interpretable intervals. This use of the generalized interval inclusion will be formalized
in Section 6.

Suppose that x ∈ IR and y ∈ IR

In this case, z has to be proper. If z was not proper, i.e. was improper and non-
degenerate, a quantified proposition(

∀x ∈ x
)(
∀y ∈ y

)(
∀z ∈ pro z

)(
f(x, y) = z

)
would have to be true, with pro z non-degenerate, which is absurd (see Proposition
5.1 for a formal argument). Therefore z is (f,x,y)-interpretable if and only if(

∀x ∈ x
)(
∀y ∈ y

)(
∃z ∈ z

)(
f(x) = z

)
,

that is z ⊇ range (f,x,y). Consider two (f,x)-interpretable intervals z and z′ related
by z′ ⊆ z. So, both following quantified propositions are true:(

∀x ∈ x
)(
∀y ∈ y

)(
∃z ∈ z

)(
f(x, y) = z

)
(
∀x ∈ x

)(
∀y ∈ y

)(
∃z ∈ z′

)(
f(x, y) = z

)
.

It can be noticed that, because z′ ⊆ z, the first quantified proposition provides less
information than the second one (because the second implies the first). So z′ can be
considered as more accurate than z. In this case, the comparison between (f,x,y)-
interpretable intervals is similar to the classical interval extension context.

Suppose that x ∈ IR and y ∈ IR

In this case, a (f,x,y)-interpretable interval can either be proper or improper. Con-
sider two (f,x,y)-interpretable intervals z ∈ IR and z′ ∈ IR. So, both following
quantified propositions are true:(

∃z ∈ z
)(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
f(x, y) = z

)
(
∀z ∈ pro z′

)(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
f(x, y) = z

)
.
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So, z
⋂

range (f,pro x, pro y) 6= ∅ and pro z′ ⊆ range (f,pro x, pro y) are the two
possible interpretations of a (f,x,y)-interpretable interval in this case. Now, consider
a third (f,x,y) interpretable interval z′′ ∈ IR and suppose that z′′ ⊆ z′ ⊆ z. So, the
next quantified proposition is also true.(

∀z ∈ pro z′′
)(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
f(x, y) = z

)
.

On one hand, z′′ ⊆ z′ implies pro z′ ⊆ pro z′′ and therefore the second quantified
proposition provides less information than the third one (because the third implies
the second). On the other hand, z′ ⊆ z implies pro z′

⋂
z 6= ∅ and therefore the

first quantified proposition provides less information than the second one (because the
second implies the first). So, the interval z′′ can be considered as more accurate than
z′, and z′ as more accurate than z. The inclusion between generalized intervals can
be used to model the accuracy of (f,x,y)-interpretable intervals.

Suppose that x ∈ IR and y ∈ IR

In this case, a (f,x)-interpretable interval can be either proper or improper. As before,
consider two (f,x)-interpretable intervals z ∈ IR and z′ ∈ IR. So, both following
quantified propositions are true:(

∀x ∈ x
)(
∃z ∈ z

)(
∃y ∈ pro y

)(
f(x, y) = z

)
(
∀x ∈ x

)(
∀z ∈ pro z′

)(
∃y ∈ pro y

)(
f(x, y) = z

)
.

If the first one does not offer any interesting interpretation, the second means that
the interval x is a subset of the projection of the relation f(x, y) = z0 on the x-axis
whatever is z0 ∈ pro z′. As in the previous case, if z′ ⊆ z then pro z′

⋂
z 6= ∅ and

therefore the first quantified proposition provides less information than the second.
Once more, the inclusion between generalized intervals can be used to model the
accuracy of (f,x,y)-interpretable intervals.

5.3 Some properties of AE-extensions

Some general properties of AE-extensions are now investigated. First of all, the next
proposition states formally that when restricted to proper interval arguments AE-
extensions coincide with the extensions to classical intervals, i.e. the image of a proper
interval is a proper interval that contains the range of the function.

Proposition 5.1. Let f : Rn −→ Rm be a continuous function, x ∈ IRn a proper
interval and z ∈ KRm. The interval z is (f,x)-interpretable if and only if

z ⊇ � range (f,x) ,

which implies in particular that z is proper.

Proof. z ⊇ � range (f,x) obviously implies that z is (f,x)-interpretable. It remains
to prove that if z is (f,x)-interpretable then z ⊇ � range (f,x). By definition, z
satisfies (

∀x ∈ x
)(
∀zI ∈ pro zI

)(
∃zP ∈ zP

)(
f(x) = z

)
.

The latter quantified proposition obviously implies the following one:(
∀x ∈ x

)(
∀zI ∈ pro zI

)(
fI(x) = zI

)
.
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Now, suppose that zI is not degenerate. So there exists zI ∈ pro zI and z′I ∈ pro zI
which satisfies zI 6= z′I . So, for any x ∈ x we have fI(x) = zI and fI(x) = z′I , which
is absurd. So zI is degenerate and thus also proper. Therefore z has to be proper.
As it is also (f,x)-interpretable, it satisfies

(
∀x ∈ x

)(
∃z ∈ z

)(
f(x) = z

)
, that is

z ⊇ � range (f,x).

Then, a question arises: does any continuous real function have at least one AE-
extension? The next proposition provides a positive answer to this question.

Proposition 5.2. Let f : Rn −→ Rm be a continuous function and r : KRn −→ IRm
defined by r(x) = � range (f,pro x). Then, r is an AE-extension of f .

Proof. First notice that r(x) = f(x) for all x ∈ Rn. Denote the relation f(x) = z
by φ(x, z) and consider any x ∈ KRn. As r(x) = � range (f,pro x), the following
quantified proposition is true:(

∀x ∈ pro x
)(
∃z ∈ r(x)

)(
f(x) = z

)
.

That is, φ(imp x, r(x)) holds (as dual (pro x) = imp x). Now, as the inclusion
(imp x) ⊆ (dual x) holds for any x ∈ KRn, the Proposition 4.1 can be applied so
as to prove that φ(dual x, r(x)) holds. Therefore, the generalized interval r(x) is
(f,x)-interpretable.

Example 5.1. Consider a two variables function f and two generalized intervals
x1 ∈ IR and x2 ∈ IR. Define z = � range (f,x1, pro x2). Then, by construction of z
the quantified proposition(

∀x1 ∈ x1

)(
∀x2 ∈ pro x2

)(
∃z ∈ z

)(
f(x) = z

)
is true. It obviously implies(

∀x1 ∈ x1

)(
∃x2 ∈ pro x2

)(
∃z ∈ z

)(
f(x) = z

)
.

Therefore, the interval z is (f,x1,x2)-interpretable.

Finally, the next proposition gives a lower bound (in the sense of the inclusion) for
any AE-extension. It will be useful for the coming developments.

Proposition 5.3. Let f : Rn −→ Rm be a continuous function, x ∈ KRn and z ∈
KRm be a (f,x)-interpretable. Then imp r(x) ⊆ z holds, where
r(x) = � range (f,pro x).

Proof. Denote the relation f(x) = z by φ(x, z). By definition, the interval z is (f,x)-
interpretable implies that φ(dual x,z) is true. Then, define y by y = �{(x, z) ∈
(pro x, pro z)|φ(x, z)}, which is well defined by the first assertion of Proposition 4.2.
We obviously have y ⊆ (pro x, r(x)). As r(x) and y are proper, dualizing both sides
of this inclusion raises

(
imp x, imp r(x)

)
⊆ imp y. Furthermore, applying the second

assertion of the Proposition 4.2, we prove the φ(dual x,z) =⇒ (imp y) ⊆ (dual x,z).
Combining both previous inclusions raises

(
imp x, imp r(x)

)
⊆ (dual x,z), which

eventually implies
(
imp r(x)

)
⊆ z (notice that imp x ⊆ dual x is true whatever is

x).
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6 Minimal AE-Extensions

In the context of classical interval extensions, if two extensions g and h of a real
function f are related by the inclusion g(x) ⊆ h(x), then g is more accurate than
h. This is justified because once g(x) is evaluated, h(x) does not give any additional
information. Or equivalently, because if g is an interval extension of f then any
interval function h which satisfies g(x) ⊆ h(x) is also an extension of f . Subsection
5.2 has illustrated that this comparison between the accuracy of two classical interval
extensions can be carried to AE-extensions, leading to the following definition:

Definition 6.1. Let f : Rn −→ Rm be a continuous real function and x ∈ KRn.
Consider two (f,x)-interpretable intervals z ∈ KRm and z′ ∈ KRm. Then z is more
accurate than z′ if and only if z ⊆ z′. Also, z is strictly more accurate than z′ if
furthermore z 6= z′.

This definition is justified by the following proposition, which generalizes the in-
formal ideas presented in Subsection 5.2:

Proposition 6.1. Let f : Rn −→ Rm be a continuous real function and x ∈ KRn.
Consider a (f,x)-interpretable intervals z ∈ KRm and an interval z′ ∈ KRm. If
z ⊆ z′ then z′ is also (f,x)-interpretable.

Proof. Define the relation φ by φ(x, z) ⇐⇒ f(x) = z. So, the interval z is (f,x)-
interpretable if and only if φ(dual x,z) is true and the interval z′ is (f,x)-interpretable
if and only if φ(dual x,z′) is true. Now, as z ⊆ z′ and because dual x ⊆ dual x,
we have (dual x,z)T ⊆ (dual x,z′)T . Therefore, the Proposition 4.1 proves that
φ(dual x,z) =⇒ φ(dual x,z′). Finally, if z is (f,x)-interpretable then z′ is also
(f,x)-interpretable.

Example 6.1. Consider f(x, y) = x + y and x = [−1, 1] and y = [5, 2]. The inter-
val z = [4, 3] can be proved to be (f,x,y)-interpretable2. Therefore, the following
quantified proposition is true:(

∀x ∈ x
)(
∀z ∈ [3, 4]

)(
∃y ∈ y

)(
x+ y = z

)
Using the generalized interval inclusion, one can raise less accurate (f,x,y)-interpretable
intervals. E.g. z ⊆ [3.9, 3.1] so the following quantified proposition is true:(

∀x ∈ x
)(
∀z ∈ [3.1, 3.9]

)(
∃y ∈ y

)(
x+ y = z

)
Clearly the latter quantified proposition provides less information than the former.
Also z ⊆ [3.9, 3.1] ⊆ [3.5, 5] so the following quantified proposition is true:(

∀x ∈ x
)(
∃z ∈ [3.5, 5]

)(
∃y ∈ y

)(
x+ y = z

)
Once more, the latter quantifier proposition provides less information than the firsts
two.

Once Definition 6.1 is stated, a definition of minimal AE-extensions can be pro-
posed in the following natural way: an AE-extension is minimal if and only if there
does not exist any AE-extension which would be strictly more accurate.

2Actually, z = x + y using Kaucher arithmetic. See Section 10 where Kaucher arithmetic
is proved to raise (f,x,y)-interpretable intervals.
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Definition 6.2. Let f : Rn −→ Rm be a continuous function and x ∈ KRn. A (f,x)-
interpretable interval z ∈ KRm is minimal if and only if for any (f,x)-interpretable
interval z′ ∈ KRm,

z′ ⊆ z =⇒ z′ = z.

An AE-extension g : KRn −→ KRm of f is minimal if and only if for all x ∈ KRn the
(f,x)-interpretable interval g(x) is minimal.

In the special cases where x is either proper or improper, the minimality of the
AE-extensions is related to the minimality (respectively maximality) of the outer (re-
spectively inner) approximations of the range of the extended function:

Proposition 6.2. Let f : Rn −→ Rm be a continuous function and x ∈ KRn and
z ∈ KRm.

(i) Suppose x ∈ IRn. In this case, the interval z is a minimal (f,x)-interpretable
interval if and only if z = � range (f,x), i.e. the unique minimal outer approx-
imation of range (f,x).

(ii) Suppose x ∈ IRn. In this case, if the interval z is improper and pro z is an
maximal inner approximation of the range of f over pro x then z is an minimal
(f,x)-interpretable interval.

Proof. (i) As proved in Subsection 5.2, if x is proper then z is (f,x)-interpretable if
and only if it is both proper and an outer approximation of range (f,x). Therefore, z
is a minimal (f,x)-interpretable interval if and only if z = � range (f,x).

(ii) Consider any (f,x)-interpretable interval z′ ∈ KRm which satisfies z′ ⊆ z. We
just have to prove that z′ = z. Due to z′ ⊆ z ∈ IR, z′ is also improper. Therefore,
pro z′ is an inner approximation of range (f,pro x) and pro z ⊆ pro z′. So by the
maximality of the inner approximation pro z, we get pro z′ = pro z, and eventually
z′ = z.

Remark 9. The counterpart of the case (ii) of Proposition 6.2 is false. I.e. there exists
some quantified proposition(

∀z1 ∈ z1

)(
∃z2 ∈ z2

)(
∃x1 ∈ x1

)(
∃x2 ∈ x2

)(
z = f(x)

)
where neither z1 can be enlarged nor z2 can be retracted keeping the truth of the
proposition. Therefore minimal (f,x)-interpretable intervals with x ∈ IRn can be
non-improper.

Proposition 6.2 allows the construction of some minimal AE-extension of a one
variable real-valued function f : R −→ R.

Example 6.2. Consider the function exp(x). As it is a one variable function, the
interval x ∈ KR is either proper or improper and the Proposition 6.2 can be applied
for any interval argument x. Define the interval function exp∗ : KR −→ KR in the
following way:

• if x ∈ IR, then

exp∗(x) = range (exp,x) = [exp(x), exp(x)].

• if x ∈ IR, then

exp∗(x) = dual range (exp, pro x) = [exp(x), exp(x)].
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The general expression of exp∗ is therefore exp∗(x) = [exp(x), exp(x)]. Then Proposi-
tion 6.2 proves that exp∗ is a minimal AE-extension of exp. It will be proved in Section
9 that there does not exist any other minimal AE-extension of the function exp. In
the same way, one can compute a minimal AE-extension of lnx: for any x ∈ KR such
that x > 0, we have ln∗ x = [lnx, lnx].

Remark 10. It can be noticed that the minimal AE-extensions of exp and ln coincide
with their extensions defined by Kaucher (see Subsection 2 page 138). This coincidence
will be proved to happen for any one variable function in Section 10. In this case, both
extensions f∗ and fKR will be denoted by the symbol f .

A question then arises: does always exist a minimal AE-extension which is more
accurate than a given AE-extension? The next proposition gives a positive answer to
this question. First of all, the next technical result is needed.

Lemma 6.1. Let E ⊆ KRn be non-empty, closed and bounded. Then E contains
at least one inclusion minimal element, i.e. an element which is not included in any
other element of E.

Proof. Consider the order preserving homeomorphism σ : KRn −→ R2n introduced in
[32], i.e.

σ(x) = (− inf x1, ...,− inf xn, supx1, ..., supxn).

As σ is order preserving, if x∗ is a minimal element of σ(E) then σ−1(x∗) is a minimal
element of E. E being closed in the complete space KRn and bounded, it is compact.
Finally as σ is continuous, σ(E) is compact and nonempty. Therefore, σ(E) have at
least one minimal element .

Proposition 6.3. Let f : Rn −→ Rm be a continuous function and g be an AE-
extension of f . Then there exists an minimal AE-extension of f which is more accurate
than g.

Proof. We just have to prove that for any x ∈ KRn, there exists a minimal (f,x)-
interpretable interval which is more accurate than g(x). So, consider any x ∈ KRn
and define E = {z|z ⊆ g(x)} and F = {z ∈ KRm|φ(dual x,z)} where φ(x, z) ⇐⇒
f(x) = z. Therefore, the intervals of E

⋂
F are both (f,x)-interpretable and more

accurate than g(x). On one hand, E is obviously closed. On the other hand, the
graph of φ is closed inside Rn because f is continuous and therefore F is closed
thanks Proposition 4.3 (page 145). Therefore, E

⋂
F is closed. Furthermore, E

⋂
F

is bounded thanks to Proposition 5.3 (page 150) which proves that z ∈ E
⋂
F implies

dual � range (f,pro x) ⊆ z ⊆ g(x). Finally, E
⋂
F is not empty because g(x) ∈

E
⋂
F . Therefore, we can apply Lemma 6.1 which proves that E

⋂
F has at least one

minimal element, which is an minimal (f,x)-interpretable interval by definition of E
of F .

In particular, Proposition 6.3 proves that any box included inside the range of
a continuous function range (f,x) can be extended to a box which is a maximal
inner approximation. It may happen that a function has several different minimal
AE-extensions, in particular when the AE-extensions are used to compute inner ap-
proximations of the ranges of vector-valued functions. The next proposition gives a
sufficient condition for an interval function to be the unique minimal AE-extension of
a continuous real function.



154 A. Goldsztejn, Modal Intervals Revisited

Proposition 6.4. Let f : Rn −→ Rm be a continuous function and x ∈ KRn. The
interval z ∈ KRm is the unique minimal (f,x)-interpretable interval if and only if for
any z′ ∈ KRm,

z′ is (f,x)-interpretable ⇐⇒ z ⊆ z′.

Proof. (=⇒) Suppose that z is the unique minimal (f,x)-interpretable interval. On
one hand, by the Proposition 6.1, we have z ⊆ z′ implies that z′ is (f,x)-interpretable.
On the other hand, consider any z′ which is (f,x)-interpretable. Then, by the Proposi-
tion 6.3, there exists an minimal (f,x)-interpretable interval z′′ ∈ KRm which satisfies
z′′ ⊆ z′. Finally, z′′ = z because z is the unique minimal (f,x)-interpretable interval
and we have proved z ⊆ z′.
(⇐=) Suppose that z′ is (f,x)-interpretable if and only if z ⊆ z′. In particular, z ⊆ z
implies that z is (f,x)-interpretable. Consider any (f,x)-interpretable z′ ∈ KRn
which satisfies z′ ⊆ z. By hypothesis z ⊆ z′ because z′ is (f,x)-interpretable. So
we have z′ = z. Therefore, by the definition of z minimality, z is minimal. Finally
consider any minimal (f,x)-interpretable z′ ∈ KRn. As z′ is (f,x)-interpretable, we
have by hypothesis z ⊆ z′ and, because z′ is supposed to be minimal, the definition
of minimality implies z = z′.

In particular, the previous proposition will be used in Section 9 in order to prove
that any continuous real-valued function f : Rn −→ R has an unique minimal AE-
extension. The next proposition provides an interesting property which is available
when the uniqueness of the minimal (f,x)-interpretable interval is proved: like in
the case of classical interval extensions (where minimal extensions are always unique)
one can construct a (f,x)-interpretable interval intersecting two (f,x)-interpretable
intervals.

Proposition 6.5. Let f : Rn −→ Rm be a continuous function and x ∈ KRn. Suppose
that z∗ ∈ KRm is the unique minimal (f,x)-interpretable interval and consider two
(f,x)-interpretable intervals z,z′ ∈ KRm. Then the interval z ∧ z′ is also (f,x)-
interpretable (and is obviously more accurate than z and z′).

Proof. By Proposition 6.4, we have both z∗ ⊆ z and z∗ ⊆ z′. Therefore, z∗ ⊆ z ∧ z′

which eventually implies that z ∧ z′ is (f,x)-interpretable.

Note that this property is generally not true when there is no unique minimal
(f,x)-interpretable interval, e.g. when x, z and z′ are improper so pro z and pro z′

are inner approximations of range (f,pro x) while pro (z ∧ z′) = (pro z) ∨ (pro z′) is
generally not an inner approximation of range (f,pro x).

Finally, the next proposition is a technical result which will be used in Section 7.
First, the following lemma has to be established:

Lemma 6.2. Let f : Rn −→ Rm be a continuous function, x ∈ KRn and z be an min-
imal (f,x)-interpretable interval. Then, z ⊆ r(x) where r(x) = � range (f,pro x).

Proof. Denote the relation f(x) = z by φ(x, z). Therefore φ(dual x,z) holds because
z is (f,x)-interpretable. Define y = �{(x, z) ∈ (pro x, pro z)|φ(x, z)}, which is well
defined thanks to the first assertion of Proposition 4.2 (page 144). Obviously, y ⊆
(pro x, r(x)). Now, by the third assertion of Proposition 4.2, we have φ(dual x,z) =⇒
φ
(
y ∧ (dual x,z)

)
, and by the Proposition 4.1 (page 143), φ

(
y ∧ (dual x,z)

)
=⇒

φ
(
(pro x, r(x)) ∧ (dual x,z)

)
. Now, because dual x ⊆ pro x, we have (dual x) ∧

(pro x) = dual x and therefore φ(dual x,z∧r(x)), i.e. z∧r(x) is (f,x)-interpretable.
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Furthermore, z ∧ r(x) ⊆ z so by the minimality of z, we have z ∧ r(x) = z. This
eventually implies z ⊆ r(x).

Proposition 6.6. Let f : Rn −→ Rm be a locally Lipschitz continuous function and f
be one minimal AE-extension of f . Then for all xref ∈ IRn, there exists γ ∈ R, γ > 0,
such that for any x ∈Kxref ,

||wid f(x)|| ≤ γ||wid x||.

Proof. By Proposition 5.3 (page 150) and Lemma 6.2 we have

imp r(x) ⊆ f(x) ⊆ r(x),

where r(x) = � range (f,pro x). These two inclusion obviously imply

|| rad f(x)|| ≤ || rad r(x)||. (5)

Now, it is proved in [14] that if f is locally Lipschitz continuous then so is r(x) (this
is a particular case of Theorem 2.6 proved there). Therefore, for all xref ∈ IRn, there
exists a γ ∈ R, γ > 0 such that for any x ∈Kxref and any y ∈Kxref ,

dist(r(x), r(y)) ≤ γ dist(x,y).

Choose y = mid x ∈Kxref and notice that dist(x,mid x) = || rad x|| so as to obtain
dist(r(x), f(mid x)) ≤ γ|| rad x||. Finally, notice that || rad r(x)|| ≤ dist(r(x), z)
obviously holds for any z ∈ Rn and hence in particular for z = f(mid x). Therefore,
thanks to (5), we have proved || rad f(x)|| ≤ γ|| rad x||, which is equivalent to the
statement of the proposition.

7 Order of Convergence of AE-Extensions

In the context of classical interval extensions, the quality of an extension is character-
ized through its order of convergence. This notion is carried to AE-extensions.

Definition 7.1. Let f : Rn −→ Rm be a continuous function and g : KRn −→ KRm
be an AE-extension of f . The AE-extension g has a convergence order α ∈ R, α > 0,
if and only if there exists a minimal AE-extension f of f more accurate that g such
that for any xref ∈ IRn, there exists γ > 0 such that for any x ∈Kxref ,

||wid g(x)− wid f(x)|| ≤ γ(||wid x||)α.

Remark 11. It is obvious that an AE-extension which has an order of convergence α has
also an order of convergence α′ for any 0 < α′ ≤ α. Also, the usually considered orders
of convergence are integers. An order of convergence 1 is called a linear convergence,
and an order of convergence 2 a quadratic order of convergence.

Remark 12. For any AE-extension g of f , the existence of at least one minimal AE-
extension of f which is more accurate than g was established by Proposition 6.3.
Therefore, the statement of the previous definition cannot fail due to a lack of minimal
AE-extensions. Also, if the existence of an unique minimal AE-extension is assumed,
the definition of the order of convergence of AE-extensions coincides with its usual
definition in the context of classical interval theory.
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In the context of classical interval extensions, the order of convergence is related
to the distance to the minimal extension. So as to extend this property to the AE-
extensions, the following lemma is first established:

Lemma 7.1. Let z ∈ KRm and z′ ∈ KRm be such that z′ ⊆ z. Then,

1

2
||wid z − wid z′|| ≤ dist(z,z′) ≤ ||wid z − wid z′||.

Proof. The inclusion z′ ⊆ z implies 0 ⊆ z − dual z′ and therefore u := z − dual z′

is proper and contains 0. Then notice that both ||wid z − wid z′|| = ||wid (z −
dual z′)|| = ||wid u|| and dist(z,z′) = ||u||. Finally the following inequality obviously
hold for any proper interval that contains 0: || rad u|| ≤ ||u|| ≤ ||wid u||. This
corresponds to the statement of the lemma.

The order of convergence of an AE-extension is now proved to be related to the
distance to some minimal AE-extension.

Proposition 7.1. Let f : Rn −→ Rm be a continuous function and g : KRn −→ KRm
be an AE-extension of f . The AE-extension g has a convergence order α ∈ R, α > 0,
if and only if there exists an minimal AE-extension f of f more accurate that g such
that for any xref ∈ IRn, there exists γ > 0 such that for any x ∈Kxref ,

dist(g(x),f(x)) ≤ γ(||wid x||)α.

Proof. Suppose that g has an order of convergence α, that is there exists an minimal
AE-extension f more accurate than g such that for all xref , there exists γ, for all
x ∈Kxref ,

||wid g(x)− wid f(x)|| ≤ γ(||wid x||)α.
Then, by the Lemma 7.1, dist(g(x),f(x)) ≤ ||wid g(x) − wid f(x)|| which proves
that the property stated by the present proposition is true. Now suppose that this
property is true, that is there exists an minimal AE-extension f more accurate than
g such that for all xref , there exists γ, for all x such that pro x ⊂ xref ,

dist(g(x),f(x)) ≤ γ(||wid x||)α.

Then, by the Lemma 7.1, 1
2
||wid g(x) − wid f(x)|| ≤ dist(g(x),f(x)) which shows

that g has an order of convergence α using the definition 7.1 with γ′ = 2γ.

Finally, next proposition states that any locally Lipschitz continuous AE-extension
has a linear convergence. This property generalizes a well known property of classical
intervals extensions.

Proposition 7.2. Let f : Rn −→ Rm be a continuous function and g : KRn −→ KRm
be an AE-extension of f . If g is locally Lipschitz continuous then it has a linear
convergence.

Proof. First of all, it is easy to check that if g is locally Lipschitz continuous, then so is
f (because f(x) = g(x) for all x ∈ Rn). Then pick up a minimal AE-extension f more
accurate than g (which exists thanks to Proposition 6.3). We use the local Lipschitz
continuity of g and Proposition 6.6 (page 155) so as to prove that for all xref ∈ IRn,
there exists γ > 0 and γ′ > 0 such that for all x ∈Kxref and all y ∈Kxref ,

||wid f(x)|| ≤ γ||wid x|| and dist(g(x), g(y)) ≤ γ′ dist(x,y).
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Then choosing y = [mid x,mid x] ⊆ xref , we obtain

dist(g(x), g(mid x)) ≤ γ′|| rad x||

We have || rad g(x)|| ≤ dist(g(x), g(mid x)) (because g(mid x) is degenerate) and
therefore || rad g(x)|| ≤ γ′|| rad x||. Now define γ′′ = max{γ, γ′}. Therefore, we have
proved that

||wid f(x)|| ≤ γ′′||wid x|| and ||wid g(x)|| ≤ γ′′||wid x||.

So, we have ||wid g(x)−wid f(x)|| ≤ 2γ′′||wid x|| (the worth case happening when
wid g(x) = −wid f(x)).

8 Outward Rounding for AE-Extensions

When using computers, one has to deal with the finiteness of the real numbers repre-
sentation. This leads to incorrect computations. In the context of classical intervals
theory, outward rounding is compatible with semantic of the interval extensions and
therefore allows conducting reliable computations using a finite precision for numbers
representation. In the context of AE-extensions, it is now proved that outward round-
ing can be used in a similar way. Similarly to the classical interval extensions, the
outward rounding of AE-extensions is proceeded in two steps:

1. outward rounding of the interval arguments

2. outward rounding of the AE-extension

The outward rounding of an interval x ∈ KRn is denoted by ♦x and satisfies by
definition x ⊆ ♦x. On the one hand, the outward rounding of a proper interval
enlarges the involved set of reals: for example ♦[−1, 1] could be equal to [−1.1, 1.1].
On the other hand, the outward rounding of an improper interval retracts the involved
set of reals: for example ♦[1,−1] could be equal to [0.9,−0.9]. It can also happen
that the outward rounding changes the proper/improper quality of an interval: for
example ♦[0.05,−0.05] could be equal to [−0.05, 0.05]. The outward rounding of an
AE-extension g is denoted by g♦ and satisfies by definition g(x) ⊆ g♦(x) for any x ∈
KRn. The next proposition proves that this outward rounding process is compatible
with the interpretations of the AE-extensions.

Proposition 8.1. Let f : Rn −→ Rm be a continuous function and g : KRn −→ KRm
be an AE-extension of f . Then, the interval function h : KRn −→ KRm defined by
h(x) = g♦(♦x) is a weak AE-extension of f .

Proof. Denote the relation f(x) = z by φ(x, z). Then, as g is an AE-extension of f ,
the interval g(♦x) is (f,♦x)-interpretable for all x ∈ KRn, that is

φ(dual ♦x, g(♦x))

is true. As dual ♦x ⊆ dual x and g(♦x) ⊆ g♦(♦x) we can apply Proposition 4.1
which proves that

φ(dual x, g♦(♦x))

is true (for example, ∀x ∈ ♦x,∃z ∈ g(♦x), z = f(x) implies ∀x ∈ x,∃z ∈ ♦g(♦x), z =
f(x)). Therefore, h(x) is (f,x)-interpretable.
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The weak AE-extension g♦(♦x) involves only representable numbers, and hence
can be used in the context of a finite representation of real numbers. The next example
illustrates how the minimal AE-extension of ln can be rounded.

Example 8.1. One wants to compute some inner and outer approximations of

range (ln,x) = [1, 2]

with x = [e, e2] using a two decimals precision. Consider first the outer approximation:
to compute an outer approximation of the range, a rounded approximation of ln∗(x)
has to be computed. First x is rounded to ♦[e, e2] = [2.71, 7.39]. Then, the rounded
AE-extension gives

♦ ln∗(♦x) = ♦[0.99694863... , 2.0001277...] = [0.99, 2.01],

which is indeed an outer approximation of the range. Now consider the inner ap-
proximation: so as to compute an inner approximation of the range, a rounded ap-
proximation of ln∗(dual x) has to be computed. First, dual x = [e2, e] is rounded
to ♦[e2, e] = [7.38, 2.72]. Notice that the outward rounding of an improper interval
computes an inner rounding on its proper projection: the underlying set of reals has
been retracted by the outward rounding. Then, the rounded AE-extension leads to

♦ ln∗(♦(dual x)) = ♦[1.9987736... , 1.0006319...] = [1.99, 1.01].

Once more, the outward rounding of an improper interval computes an inner rounding
of its proper projection, and the final result is indeed an inner approximation of the
range.

Finally, the AE-extensions which will be met in the sequel will be composed of
several interval functions. Suppose that an AE-extension g is obtained through the
composition of some interval functions gk. Suppose that these interval functions are
increasing with respect to the inclusion. Then, the interval function obtained through
the composition of the outward rounded interval functions g♦

k is obviously an outward
rounding of g. Therefore, rounding compound AE-extensions can be done rounding
the interval functions met in its composition.

Now, an outward rounded AE-extension can also be obtained if the expression of
g contains non-increasing interval functions provided that their arguments are leaves
of the g expression. For example, consider g(x) = (pro x) + (pro x). Although the
interval function pro is not increasing, the interval function g♦(x) = (pro ♦ x) +♦

(pro ♦ x) is an outward rounding of the function g. Indeed, (pro ♦ x) ⊇ (pro x)
because pro ♦ x is an outward rounding of pro . As + is increasing,

(pro x) + (pro x) ⊆ (pro ♦ x) + (pro ♦ x),

and because +♦ is an outward rounding of +,

(pro ♦ x) + (pro ♦ x) ⊆ (pro ♦ x) +♦ (pro ♦ x).

All AE-extensions proposed in this paper fulfill this hypothesis and thus can easily be
rounded.
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9 The Minimal AE-Extension f ∗ of Real-Valued
Functions

The special case of real valued functions, i.e. f : Rn −→ R, is now investigated. The
next theorem proves that the lattice operations of generalized intervals gives rise to a
useful expression of the unique minimal AE-extension of a real-valued function.

Theorem 9.1. Let f : Rn −→ R be a continuous function and x ∈ KRn. Then,
z ∈ KR is (f,x)-interpretable if and only if

∨
xP∈xP

∧
xI∈(pro xI)

f(x) ⊆ z, (6)

where P = P(x) and I = I(x) (if one of these sets of indices is empty, the corre-
sponding operation is simply canceled in (6)).

Proof. We have to prove that whatever is z ∈ KR, the following quantified proposition(
∀xP ∈ xP

)(
q(z)z ∈ pro z

)(
∃xI ∈ pro xI

)(
f(x) = z

)
(7)

is true if and only if (6) is true, the quantifier q(z) being defined like in Corollary
3.1. We suppose that both P and I are not empty, the other cases being similar and
simpler. For any values of xP ∈ xP , the set

{
z ∈ R|

(
∃xI ∈ xI

)(
f(x) = z

)}
is an

interval because f is continuous. This interval is denoted by r(xP ,xI) and we have
both

r(xP ,xI) = ∨
xI∈(pro xI)

f(x) and dual r(xP ,xI) = ∧
xI∈(pro xI)

f(x).

Now,
(
∃xI ∈ pro xI

)(
f(x) = z

)
is equivalent to z ∈ r(xP ,xI). So the quantified

proposition (7) is equivalent to(
∀xP ∈ xP

)(
q(z)z ∈ pro z

)(
z ∈ r(xP ,xI)

)
.

Applying the corollary 3.1, we have(
q(z)z ∈ pro z

)(
z ∈ r(xP ,xI)

)
⇐⇒ z ⊇ (dual r(xP ,xI)).

Therefore, the quantified proposition (7) is equivalent to(
∀xP ∈ xP

)(
z ⊇ (dual r(xP ,xI))

)
.

Finally, by the definition of the least upper bound, this is equivalent to

z ⊇ ∨
xP∈xP

(dual r(xP ,xI)),

which concludes the proof.

As direct consequence of Proposition 6.4 (page 154), the interval

∨xP∈xP ∧xI∈(pro xI f(x)

is the unique minimal (f,x)-interpretable interval. The same notation f∗ as in [34] is
kept:
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Definition 9.1. Let f : Rn −→ R be a continuous function. The generalized interval
function f∗ : KRn −→ KR is defined in the following way:

f∗(x) = ∨
xP∈xP

∧
xI∈(pro xI)

f(x)

= [ min
xP∈xP

max
xI∈(pro xI)

f(x) , max
xP∈xP

min
xI∈(pro xI)

f(x)],

where P = P(x) et I = I(x).

Remark 13. When P = ∅ or I = ∅, the expressions of f∗ are respectively

f∗(x) = [ max
x∈(pro x)

f(x), min
x∈(pro x)

f(x)] and f∗(x) = [min
x∈x

f(x),max
x∈x

f(x)].

However, the use of the general expressions of Definition 9.1 in all cases is allowed in
the sequel.

The next three examples illustrate some computations and some interpretations of
f∗.

Example 9.1. Consider the function f(x, y) = x2 + y2 and the proper intervals
x = [−3, 3] et y = [4, 6]. Then,

f∗(x,y) = [min
x∈x

min
y∈y

f(x, y) , max
x∈x

max
y∈y

f(x, y)]

= [min
x∈x

x2 + y2 , max
x∈x

x2 + y2]

= [0 + y2 , x2 + y2]

= [16 , 9 + 36] = [16, 45].

As f∗ is the unique minimal AE-extension of f , the previous computation proves that
z = [16, 45] is the smallest interval that satisfies(

∀x ∈ x
)(
∀y ∈ y

)(
∃z ∈ z

)(
x2 + y2 = z

)
.

Example 9.2. In the same situation as in the previous example, compute now

f∗(dual x,dual y) = [max
x∈x

max
y∈y

f(x, y) , min
x∈x

min
y∈y

f(x, y)]

= [45, 16].

As f∗ is the unique minimal AE-extension of f , the previous computation proves that
z = pro [45, 16] = [16, 45] is the largest interval that satisfies(

∀z ∈ z
)(
∃x ∈ x

)(
∃y ∈ y

)(
x2 + y2 = z

)
.

Example 9.3. In the same situation as the two previous examples, now compute

f∗(x, dual y) = [min
x∈x

max
y∈y

f(x, y) , max
x∈x

min
y∈y

f(x, y)]

= [min
x∈x

x2 + y2 , max
x∈x

x2 + y2]

= [0 + y2 , x2 + y2]

= [36 , 9 + 16] = [36, 25].

As f∗ is the unique minimal AE-extension of f , the previous computation proves that
z = pro [36, 25] = [25, 36] is the largest interval that satisfies(

∀z ∈ z
)(
∀x ∈ x

)(
∃y ∈ y

)(
x2 + y2 = z

)
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Computing f∗ is NP-hard with respect to the number of variables, as the exact
computation of the range of a function over a box is a special case of computing
f∗ and is NP-hard (see [20]). As in the context of the classical interval extensions,
approximations of f∗ will be constructed in the following way:

1. f∗ is computed for a set of elementary functions, leading to a generalized interval
arithmetic. This arithmetic will be proved to coincide with Kaucher arithmetic
(Section 10).

2. Some natural AE-extensions (generalized interval evaluations of some expres-
sion) are defined using generalized interval arithmetic (Section 11).

Before going to these developments, an important property of the AE-extension
f∗ is shown. First, notice that in the case of a real function f : Rn −→ R the minimal
outer approximation and the maximal inner approximation of its range are equal.
In terms of AE-extensions, this property is written x ∈ IRn implies f∗(dual x) =
dual f∗(x). A natural question that arises is the generalization of this property to
arbitrary generalized intervals. The following proposition shows that an inclusion holds
in general instead of an equality.

Proposition 9.1. Let f : Rn −→ R be a continuous function and x ∈ KRn. Then

f∗(dual x) ⊆ dual f∗(x). (8)

Proof. By definition of f∗:

f∗(x) = ∨
xP∈xP

∧
xI∈(pro xI)

f(x)

f∗(dual x) = ∨
xI∈(pro xI)

∧
xP∈xP

f(x)

Since dual reverses the generalized interval lattice operations,

dual f∗(x) = ∧
xP∈xP

∨
xI∈(pro xI)

f(x)

The inclusion between the latter two is an unusual property of lattices: Performing
intersection before union yields a small element than the reverse order.

Proposition 9.1 has several consequences. In particular, this implies that at least
one of f∗(dual x) or f∗(x) has to be improper (both being strictly proper leading
to a contradiction). We obtain the following non trivial property: In general for a
continuous two variables function and arbitrary bounded intervals x,y ∈ IR, at least
one of the following propositions has to hold:(

∃z ∈ R
)(
∀x ∈ x

)(
∃y ∈ y

)(
f(x, y) = z

)
(
∃z ∈ R

)(
∀y ∈ y

)(
∃x ∈ x

)(
f(x, y) = z

)
.

The commutation with the dual operator can also be used to study the minimality
of AE-extensions. These developments are not presented here (see Proposition IV.18
and Proposition IV.19 page 149 of [7] for more details), the minimality of the natural
AE-extension of bilinear function being proved directly in Theorem 12.2 (page 173).
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10 AE-Extensions of Elementary Functions

The elementary functions considered here are the following, their definition domain
being the usual ones:

• two variables functions: Ω = { x+ y , x− y , x× y , x/y}
• one variable functions: Φ = { expx, lnx, sinx, cosx, tanx, arccosx, arcsinx,

arctanx, absx, xn, n
√
x}.

In the cases of these simple functions, the minimal AE-extension f∗ can be computed
formally, leading to a generalized interval arithmetic. However the explicit compu-
tations of these expressions will not be presented: using some properties of Kaucher
arithmetic, the expressions of f∗ are proved to raise the same results than the expres-
sions of fKR for these operations.

Also, some properties of the minimal AE-extensions of these elementary functions
are stated through Proposition 10.1 and Proposition 10.2. These important proper-
ties will be used in the next section in order to investigate the generalized interval
evaluation of an expression.

One variable elementary functions

In the case of one variable elementary functions, the definitions of f∗ and fKR coincide:

f∗(x) = fKR(x) =
∨∧x

x∈pro x
[f(x), f(x)]

That is,

• if x ∈ IR then

f∗(x) = [min
x∈x

f(x),max
x∈x

f(x)] = range (f,x) ;

• if x ∈ IR then

f∗(x) = [ max
x∈pro x

f(x), min
x∈pro x

f(x)] = dual range (f,pro x) .

In the sequel, both interval extensions f∗ and fKR of the elementary functions of Φ
will be denoted by the symbol of the original function.

Example 10.1. Few minimal AE-extension are presented.

• exp(x) = [exp(x), exp(x)]

• ln(x) = [ln(x), ln(x)] is defined if both x > 0 and x > 0

•
√
x = [

√
x,
√
x] is defined if both x ≥ 0 and x ≥ 0.

In general, the algorithms dedicated to the computation of the classical interval
arithmetic are easily adapted to compute generalized interval arithmetic: only the
rounding process has to be adapted.

Now that the AE-extensions of the elementary functions are built, one additional
property is needed for the coming developments: each quantified proposition that
corresponds to the interpretation of theses minimal AE-extensions must have a con-
tinuous Skolem function. This is formally stated by the next proposition.
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Proposition 10.1. Let f be an elementary function of Φ and x{0,1} ∈ KR2 that
satisfies x0 = f∗(x1). Define the following sets of indices: A = P(x{1})

⋃
I(x{0})

and E = I(x{1})
⋃
P(x{0}) (so that A contains the indices of the universally quantified

variables and E contains the indices of the existentially quantified ones). Then both A
and E are nonempty (so either A = {0} and E = {1} or A = {1} and E = {0}) and
the quantified proposition(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
x0 = f(x1)

)
has a continuous Skolem function.

Proof. Provided in Appendix C page 178.

Example 10.2. Consider f(x) = x2 and x = [2,−1] and z = x2 = [4, 0]. So the
following quantified proposition is true:(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
f(x) = z

)
,

that is pro z ⊆ range (f,pro x). Proposition 10.1 proves that there exists a continu-
ous function s : pro z −→ pro x which satisfies x = s(z) =⇒ z = f(x). This function
is s(z) =

√
x and indeed range (s, pro z) ⊆ pro x and x =

√
z =⇒ x2 = z.

Remark 14. There exist continuous one variable real functions which does not satisfy
Proposition 10.1 (e.g. consider the function f(x) = x3−x and the interval x = [1,−1]).
Therefore, before adding a new elementary function to Φ, one has to check that it
satisfies Proposition 10.1.

Two variable elementary functions

In the case of two variables elementary functions, the expressions of f∗(x,y) and
fKR(x,y) coincide in the following cases:

• x ∈ IR and y ∈ IR
• x ∈ IR and y ∈ IR
• x ∈ IR and y ∈ IR.

It remains to investigate the case where x ∈ IR and y ∈ IR. In this case, the expres-
sions of f∗ and fKR are

f∗(x,y) = ∨x∈x ∧y∈(pro y) f(x, y) ; fKR(x,y) = ∧y∈(pro y) ∨x∈x f(x, y).

These two expressions lead to different results in general. However, it is now proved
that they are equal in the cases of the elementary functions of Ω. Given an operation
◦ ∈ Ω, the operation of Kaucher arithmetic is denoted by ◦KR and the minimal AE-
extension by ◦∗. First consider a function ◦ ∈ {+,×}. If x ∈ IR and y ∈ IR, then by
the definitions of f∗ and fKR, the expression of x ◦∗ y coincides with the expression
of y ◦KR x. Finally, because ◦KR is commutative, we have

x ◦∗ y = y ◦KR x = x ◦KR y.

In the case of the subtraction, we have x −KR y = (−y) +KR x which is proved to be
equal to x−∗ y in the following way:

(−y) +KR x = ∨v∈(−y) ∧x∈(pro x) v + x

= ∨y∈y ∧x∈(pro x) (−y) + x = x−∗ y.
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Finally, in the case of the division, we have x/KRy = (1/y)×KRx which is proved to be
equal to x/∗y in the same way that previously. Therefore, the AE-extensions of the
elementary functions of Ω coincide with their KR-extensions. Their expressions are
given in Section 2. In the sequel, both interval extensions ◦∗ and ◦KR of the elementary
functions of Ω will be denoted by the symbol of the original function ◦.

Like in the cases of one variable elementary functions, each quantified proposition
that corresponds to the interpretation of theses minimal AE-extensions must have a
continuous Skolem function. This is formally stated by the next proposition.

Proposition 10.2. Let ◦ ∈ Ω and x{0,1,2} ∈ KR3 such that x0 = x1 ◦x2. Define the
following sets of indices: A = P(x{1,2})

⋃
I(x{0}) and E = I(x{1,2})

⋃
P(x{0}) (so

that A contains the indices of the universally quantified variables and E contains the
indices of the existentially quantified ones). Then both A and E are nonempty and the
quantified proposition(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
x0 = x1 ◦ x2

)
has a continuous Skolem function.

Proof. Provided in Appendix C page 178.

Example 10.3. Consider f(x, y) = x+ y and x = [1,−1], y = [0, 1] and z = x+y =
[1, 0]. The following quantified proposition is therefore true:(

∀x ∈ pro x
)(
∀z ∈ pro z

)(
∃y ∈ y

)(
x+ y = z

)
The previous proposition provides a stronger statement: it proves that there exists a
continuous function s : (y,pro z)T −→ pro x which satisfies x = s(y, z) =⇒ z =
f(x, y). In this case, the function s can easily be computed: s(y, z) = z − y. Indeed
range (s,y, pro z) = pro z − y = [−1, 1] and x = z − y =⇒ z = x+ y.

Remark 15. There exist continuous two variables real functions which do not satisfy
the previous proposition. For example, consider the function

f(x, y) = 1− (x− y)2

and the generalized interval ([1,−1], [1,−1])T . Therefore, before adding a new elemen-
tary function to Φ, one has to check that it satisfies Proposition 10.2 (see Appendix
B for a false assertion entailed by the use of some elementary functions that do not
satisfy Proposition 10.2).

11 Natural AE-extensions

The natural AE-extensions consist in evaluating the expression of the function (or
a closely related expression) for generalized interval arguments using Kaucher arith-
metic. The natural AE-extensions are constructed in two steps:

1. In the case of continuous functions f : Rn −→ Rm whose expression contains
only one occurrence of each variable, the generalized interval evaluation is proved
to raise (f,x)-interpretable intervals (Subsection 11.1).

2. In the case of continuous functions f : Rn −→ Rm, multiple occurrences of vari-
ables are taken into account: the expression of the function has to be modified
before its evaluation with generalized interval arguments (Subsection 11.2).
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11.1 Generalized Interval Evaluation of an Expression Con-
taining Only One Occurrence of Each Variable

An introducing example is first investigated. Consider the function f(x) = (x1 +
x2)(x3 + x4) and the generalized interval x = ([−2, 2], [1,−1], [−1, 1], [2,−2])T . The
generalized interval evaluation of the expression of f is decomposed in the following
way: t1 = x1 + x2 = [−1, 1] and t2 = x3 + x4 = [1,−1]. Finally z = t1 × t2 = [0, 0].
From t1 = x1 + x2, the following quantified proposition is true:(

∀x1 ∈ x1

)(
∃t1 ∈ t1

)(
∃x2 ∈ pro x2

)(
x1 + x2 = t1

)
. (9)

From t2 = x3 + x4, the following quantified proposition is true:(
∀x3 ∈ x1

)(
∀t2 ∈ pro t2

)(
∃x4 ∈ pro x4

)(
x3 + x4 = t2

)
. (10)

Finally from z = t1 × t2 the following quantified proposition is true:(
∀t1 ∈ t1

)(
∃t2 ∈ pro t2

)(
t1 × t2 = 0

)
. (11)

Now, from (10) and (11), the following quantified proposition is entailed:(
∀x3 ∈ x1

)(
∀t1 ∈ t1

)(
∃x4 ∈ pro x4

)(
∃t2 ∈ pro t2

)(
x3 + x4 = t2 ∧ t1 × t2 = 0

)
.

(12)

Finally from (12) and (9), the following quantified proposition is entailed:(
∀x1 ∈ x1

)(
∀x3 ∈ x1

)(
∃x4 ∈ pro x4

)(
∃x2 ∈ pro x2

)(
∃t1 ∈ t1

)(
∃t2 ∈ pro t2

)(
x3 + x4 = t2 ∧ t1 × t2 = 0 ∧ x1 + x2 = t1

)
,

that is

(
∀x1 ∈ x1

)(
∀x3 ∈ x1

)(
∃x4 ∈ pro x4

)(
∃x2 ∈ pro x2

)(
f(x) = 0

)
. (13)

Therefore, the interval z = [0, 0] is proved to be (f,x)-interpretable. Now, in addition
to the (f,x)-interpretability of z, the quantified proposition (13) must be proved to
have a continuous Skolem function, i.e. there exists a continuous function s{2,4} :
x{1,3} −→ pro x{2,4} that satisfies x{2,4} = s{2,4}(x{1,3}) =⇒ f(x) = 0. In the context
of this introducing example, such a function s{2,4} is constructed in the following way:
applying Proposition 10.2 to t1 = x1 + x2, t2 = x3 + x4 and z = t1 × t2 respectively
proves that the quantified propositions (9), (10) and (11) have some continuous
Skolem functions, i.e. proves the existence of the following continuous functions:

s′{t1,x2} : x1 −→ (t1,pro x2)T s.t. (t1, x2) = s′{t1,x2}(x1) =⇒ t1 = x1 + x2
s′x4 : (pro t2,x3)T −→ pro x4 s.t. x4 = s′x4(t2, x3) =⇒ t2 = x3 + x4
s′t2 : t1 −→ pro t2 s.t. t2 = s′t2(t1) =⇒ t1 × t2 = 0

The function s{2,4} : x{1,3} −→ pro x{2,4} is then constructed in the following way:

s2(x{1,3}) = s′x2(x1)
s4(x{1,3}) = s′x4

(
s′t2
(
s′t1(x1)

)
, x3
) (14)

As a consequence of these definitions, x{2,4} = s{2,4}(x{1,3}) implies the existence
of t1 ∈ t1 and t2 ∈ pro t2 such that x4 = s′x4(t2, x3) and t2 = s′t2(t1) and (t1, x2) =
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s′{t1,x2}(x1). Using the properties satisfied by these three Skolem functions, one obtains
t1 = x1 + x2 and t2 = x3 + x4 and t1 × t2 = 0, that is f(x[1..4]) = 0. The function
s{2,4} is therefore a continuous Skolem function of the quantified proposition (13).

The next proposition generalizes this introducing example. It will play a key role
in the construction of AE-extensions.

Proposition 11.1. Let f : Rn −→ R be a continuous function and f an expression
of this function involving elementary functions of Ω and Φ where each variable has
only one occurrence. For any x[1..n] ∈ KRn, define x0 = f(x[1..n]) where the
evaluation is done using Kaucher arithmetic. Furthermore define the sets of indices
A = P(x[1..n])

⋃
I(x{0}) and E = I(x[1..n])

⋃
A(x{0}) (so that A contains the indices

of the universally quantified variable and E contains the indices of the existentially
quantified ones). Then both A and E are nonempty and the quantified proposition(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
f(x[1..n]) = x0

)
has a continuous Skolem function (and is therefore true).

Proof. The proof is conducted by induction over the expression f. First, by the propo-
sitions 10.1 and 10.2, the present proposition is true for any elementary functions of
Ω and Φ. Therefore, it only remains to prove the induction step of the proposition.
Consider the two continuous functions g : Rm −→ R and h : Rm

′
−→ R (whose ex-

pressions are respectively g and h) that satisfy the proposition. We just have to prove
that their composition also satisfies the proposition (the hypothesis that each variable
has only one occurrence is implicitly used here: this composition of two functions does
not allow any dependences between some variables). Their composition f is defined
using a special numbering of the variables in order to consider the temporary variable
in a homogeneous way: the function f : Rm+m′−1 −→ R is defined by

f(xN ) = g
(
x[1..m−1], h(x[m+1..m+m′])

)
where N = [1..m− 1]

⋃
[m+ 1..m+m′].

Example. Defining f(x{1,3,4}) = g(x1, h(x{3,4})) allows to decompose the evaluation
into x0 = g(x{1,2}) and x2 = h(x{3,4}).

Then consider any xN ∈ KRm+m′−1, and define x0 = f(xN ) and
xm = h(x[m+1..m+m′]) so that x0 = g(x[1..m]). Also define the sets of indices A =
P(xN )

⋃
I(x{0}) and E = I(xN )

⋃
P(x{0}). We have to prove on one hand that

both A and E are nonempty and on the other hand that there exists a continuous
function

sE : pro xA −→ pro xE s.t. xE = sE(xA) =⇒ x0 = f(xN ). (15)

Applying the induction hypothesis, we get two continuous functions s′E′ : pro xA′ −→
pro xE′ and s′′E′′ : pro xA′′ −→ pro xE′′ which satisfy respectively

xE′ = s′E′(xA′) =⇒ x0 = g(x[1..m])

and
xE′′ = s′′E′′(xA′′) =⇒ xm = h(x[m+1..m+m′]),

where A′ and E ′ (respectively A′′ and E ′′) are the subsets of [0..m] (respectively
[m..m+m′]) defined like in the statement of the proposition applied to the evaluation
x0 = g(x[1..m]) (respectively xm = h(x[m+1..m+m′])):
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• A′ = P(x[1..m])
⋃
I(x{0});

• E ′ = I(x[1..m])
⋃
P(x{0});

• A′′ = P(x[m+1..m+m′])
⋃
I(x{m});

• E ′′ = I(x[m+1..m+m′])
⋃
P(x{m}).

Two cases have to be studied: either xm ∈ IR or xm ∈ IR. On one hand, if xm ∈ IR
then A = (A′\{m})

⋃
A′′ and E = E ′

⋃
(E ′′\{m}). On the other hand, if xm ∈ IR

then A = A′
⋃

(A′′\{m}) and E = (E ′\{m})
⋃
E ′′. Therefore, as A′, E ′, A′′ and E ′′

are nonempty by induction hypothesis, A and E are also nonempty in both cases. It
remains to construct the function sE :

1. If xm ∈ IR then A = (A′\{m})
⋃
A′′ and E = E ′

⋃
(E ′′\{m}) and sE is defined

by
sE′(xA) = s′E′(yA′)

where yA′ is defined by yA′\{m} = xA′\{m} and ym = s′′m(xA′′), and

sE′′\{m}(xA) = s′′E′′\{m}(xA′′).

2. If xm ∈ IR then A = A′
⋃

(A′′\{m}) and E = (E ′\{m})
⋃
E ′′ and sE is defined

by
sE′\{m}(xA) = s′E′\{m}(xA′)

and
sE′′(xA) = s′′E′′(yA′′)

where yA′′ is defined by ym = s′m(xA′) and yA′′\{m} = xA′′\{m}.

In both cases, the following implication holds:

xE = sE(xA) =⇒
(
∃xm ∈ pro xm

)(
xE′ = s′E′(xA′) ∧ xE′′ = s′′E′′(xA′′)

)
.

In the first case, xm = s′′m(xA′′) and in the second case, xm = s′m(xA′). Therefore,
thanks to the definitions of s′ and s′′, xE = sE(xA) implies(

∃xm ∈ pro xm
)(
x0 = g(x[1..m]) ∧ xm = h(x[m+1,m+m′])

)
.

This eventually implies xE = sE(xA) =⇒ x0 = f(xN ). Therefore, the function s
satisfies (15).

The next corollary will be useful for the proof of Theorem 11.1. It generalizes
Proposition 11.1 to vector-valued functions.

Corollary 11.1. Let f[1..m](x[1..n]) : Rn −→ Rm be a continuous function and f[1..m]

an expression of this function involving elementary functions of Ω and Φ where each
variable has only one occurrence3. Consider x[1..n] ∈ KRn and evaluate x0k =
fk(x[1..n]). Define M0 = {(0, 1), . . . , (0,m)} and A = P(x[1..n])

⋃
I(M0) and E =

I(x[1..n])
⋃
P(M0). Then the quantified proposition(
∀xA ∈ pro xA

)(
∃xE ∈ pro xE

)(
f[1..m](x[1..n]) = xM 0

)
has a continuous Skolem function.

Remark 16. The vectorial equality f[1..m](x[1..n]) = xM 0
means fk(x[1..m]) = x0k for

all k ∈ [1..m].

Proof. The proof is trivial. One just has to apply Proposition 11.1 to each x0k =
fk(x[1..n]).

3Each variable should have one occurrence over the whole expression of the vectorial func-
tion, thus the function components cannot share variables here.
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11.2 Natural AE-Extensions

This subsection is dedicated to the construction of natural AE-extensions of vector-
valued functions f = (f1, . . . , fm)T . This construction also stands for real-valued
functions. In contrast with the classical interval natural extensions, the expression of
the function f has to be modified before applying a generalized interval evaluation.
Some examples are now presented in order to introduce Theorem 11.1. The following
example displays a situation where multiple occurrences can be handle without any
modification of the function expression (these situations actually correspond to the
classical interval extensions, i.e. to expressions evaluated with proper arguments).

Example 11.1. Consider f(x) = x − x and x = [−1, 1]. The generalized interval
evaluation raises z = x − x = [−2, 2]. Clearly z is (f,x)-interpretable, i.e. the
quantified proposition

(
∀x ∈ x

)(
∃z ∈ z

)(
f(x) = z

)
is true. In order to prove this

interpretation, one has to use Proposition 11.1. To this end, he has to consider the
auxiliary expression f̃(x1, x2) = x1 − x2 where each occurrence is considered as an
independent variable. We have z = f̃(x,x). As f̃ contains only one occurrence of each
variable, one can apply Proposition 11.1 which proves that the following quantified
proposition is true: (

∀x1 ∈ x
)(
∀x2 ∈ x

)(
∃z ∈ z

)(
f̃(x1, x2) = z

)
.

Finally, restricting (x1, x2)T to the diagonal of (x,x)T one validates the quantified
proposition

(
∀x ∈ x

)(
∃z ∈ z

)(
f̃(x, x) = z

)
. It remains to notice that f̃(x, x) = f(x).

An example is now presented which shows that a generalized interval evaluation
without any modification of the expression does not raise interpretable generalized
intervals in general.

Example 11.2. Consider f(x) = x − x and x = [1,−1]. The generalized interval
evaluation raises z = x − x = [2,−2]. If z was (f,x)-interpretable then the quanti-
fied proposition

(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
f(x) = z

)
would be true. This quantified

proposition is actually false. Let us enlighten the reason why this generalized interval
evaluation fails to provide a (f,x)-interpretable interval. As in Example 11.1 the aux-
iliary expression f̃(x1, x2) = x1−x2 has to be used in order to apply Proposition 11.1.
Following the argument presented in Example 11.1, the generalized interval evaluation
z = f̃(x,x) allows using Proposition 11.1 to validate the quantified proposition(

∀z ∈ pro z
)(
∃x1 ∈ pro x

)(
∃x2 ∈ pro x

)(
f̃(x1, x2) = z

)
.

This quantified proposition does not imply
(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
f̃(x, x) = z

)
in general (because the two occurrences of x cannot be linked anymore through a
diagonal argument) and this explains why z is not (f,x)-interpretable.

In view of the previous example, the problem that prevents from using the general-
ized interval evaluation with expressions that contains multiple occurrence of variable is
the impossibility of linking two occurrences that are both existentially quantified. The
idea to overcome this difficulty is to change the quantifier associated with one occur-
rence so that the quantified proposition

(
∀x1 ∈ x

)(
q(z)z ∈ z

)(
∃x2 ∈ x

)(
f̃(x1, x2) = z

)
is actually validated by the generalized interval evaluation. Then one will be in po-
sition to prove that z is (f,x)-interpretable. This process is illustrated by the next
example.
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Example 11.3. In the situation of Example 11.2, the auxiliary expression g(x) =
pro x − x is now considered. The generalized interval evaluation now raises z =
g(x) = [−1, 1] − [1,−1] = [0, 0]. Therefore we have to prove that the quantified
proposition (

∀z ∈ pro z
)(
∃x ∈ pro x

)(
f(x) = z

)
(16)

is true. Notice that z = f̃(pro x,x). Therefore, applying Proposition 11.1 to the
evaluation f̃(pro x,x) = z one proves that the quantified proposition(

∀x1 ∈ pro x
)(
∀z ∈ pro z

)(
∃x2 ∈ pro x

)(
f̃(x1, x2) = z

)
has a continuous Skolem function, i.e. on proves the existence of a continuous func-
tion s : pro z × pro x −→ pro x that satisfies x2 = s(z, x1) =⇒ f̃(x1, x2) = z. Now
fix any value z ∈ pro z (in the case of this example, pro z contains only one real)
so s(z, .) now has pro x as domain and pro x has co-domain. Therefore one can
apply the Brouwer fixed point theorem (see Appendix A) that proves the existence
of x ∈ pro x such that s(z, x) = x. As this holds for any z ∈ pro z the following
quantified proposition is true:(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
s(z, x) = x

)
.

Finally, s(z, x) = x implies z = f̃(x, x) which implies z = f(x). Therefore the quanti-
fied proposition (16) is proved to hold.

The next theorem generalizes the previous arguments providing the construction
of natural AE-extensions.

Theorem 11.1. Let f[1..m] : Rn −→ Rm be a continuous function and f[1..m] an
expression of f[1..m] involving elementary functions from Ω and Φ. Define the expres-
sion g[1..m] from f[1..m] by inserting the operation pro before all but one occurrences
of each variable (see Example 11.4 and Example 11.5). Then the interval function
x[1..n] 7−→ g[1..m](x[1..n]) is an AE-extension of f[1..m] which is called a natural AE-
extension of f .

Proof. Denote [1..n] and [1..m] by N and M respectively. First, we clearly have
gM (xN ) = fM (xN ) for all x ∈ Rn because pro x = x and the AE-extension h of
any elementary function h satisfies h(x) = h(x). It remains to prove that gM (xN ) is
(fM ,xN )-interpretable for all xN ∈ KRn. Consider any xN ∈ KRn and define for
all k ∈M the interval x0k = gk(xN ). We have to prove that the following quantified
proposition is true:(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
fM (xN ) = xM 0

)
(17)

where M0 = {(0, k)|k ∈M}, A = P(xN )
⋃
I(xM 0

) and E = I(xN )
⋃
P(xM 0

).

Remark 17. The sets of indices M and M0 have the same cardinality. Therefore the
equality fM (xN ) = xM 0

is well defined and means fi(xN ) = x0i for all i ∈ [1..m].

In order to use Corollary 11.1, each occurrence of each variable has to be considered
as an independent variable. To this end, define the auxiliary expression f̃M as the
expression obtained from fM considering as independent variables each occurrence
of each variable. Denote the number of occurrences of the variable xi by ni and
the jth occurrence of the variable xi by xij . Define the set of indices K = {(i, j) ∈
N2|i ∈ [1..n], j ∈ [1..ni]}. Provided that all occurrences of each variable has the
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same value in the evaluation of f̃M then the latter equals to f. In order to formalize

this idea, define σK : Rn −→ R
∑
ni by σij(xN ) = xi. As a consequence, we have

fM (xN ) = f̃M
(
σK(xN )

)
for all xN ∈ Rn.

The choice of one occurrence of each variable made in the statement of the propo-
sition (where no operation pro is inserted) can now be formalized by a function
π : N −→ K. Define xK ∈ KR

∑
ni by xij = xi if xi is proper or π(i) = (i, j) and

xij = pro xi otherwise. As a consequence of these definitions we have gM (xN ) =

f̃M (xK) and therefore f̃M (xK) = xM 0
.

Now, as f̃M is compound elementary functions from Ω and Φ and contains only

one occurrence of each variable, we can apply Corollary 11.1 to the evaluation f̃(xK) =
xM 0

which proves the existence of a continuous function sKE that satisfies

sKE : pro xKA −→ pro xKE s.t. xKE = sKE (xKA) =⇒ xM 0
= f̃M (xK)

where KA = P(xK)
⋃
I(xM 0

) and KE = I(xK)
⋃
P(xM 0

).

Denote KA
⋃
KE (which is equal to K

⋃
M0) by L and define the function σ′L :

pro xA⋃
E −→ pro xL by σ′M 0

(xA⋃
E) = xM 0

(so σ′0k(xA⋃
E) = x0k and the co-

domain of σ0k(xA
⋃
E) is indeed pro x0k) and σ′K(xA

⋃
E) = σK(xN ) (so σ′ij(xA

⋃
E) =

xi by definition of σK and the co-domain of σij(xA
⋃
E) is pro xi which equals pro xij

by definition of xij). Let us display two properties of σ′L: fix any xA
⋃
E ∈ pro xA

⋃
E

then

Claim one: f̃M (σ′K(xA
⋃
E)) = fM (xN ). Indeed,

f̃M (σ′K(xA⋃
E)) = f̃M (σK(xN )) by definition of σ′K and fM (xN ) = f̃M

(
σK(xN )

)
as seen previously.

Claim two: σ′KE (xA⋃
E) = xE . By definition, E = I(xN )

⋃
P(xM 0

) and KE =
I(xK)

⋃
P(xM 0

). Let us denote temporarily I(xN ) = {e1, . . . , es} (where ek ∈ N)

and P(xM 0
) = {m1, . . . ,mt} (where mk ∈ N2). By definition of xK, xij is improper

if and only if i ∈ I(xN ) (i.e. xi is existentially quantified) and π(i) = (i, j) (i.e. xij is
the occurrence of xi which is not preceded by an operation pro in the expression of g).
As a consequence, we have I(xK) = {π(e1), . . . , π(es)}. Respecting the lexicographic
order, we have E = {m1, . . . ,mt, e1, . . . , es} and KE = {m1, . . . ,mt, π(e1), . . . , π(es)}.
Therefore, writing the equality σ′KE (xA

⋃
E) = xE componentwise, we just have to

prove that σ′mk
(xA⋃

E) = xmk for k ∈ [1..t] and σ′π(ek)(xA
⋃
E) = xek for k ∈ [1..s].

This is actually true because of the definitions of σ′L and σK.

Now define s′E : pro xA⋃
E −→ pro xE by s′E(xA

⋃
E) = sKE

(
σ′KA(xA

⋃
E)
)
. Now

as by construction A
⋂
E = ∅, fixing xA to any value in pro xA the function s′E then

has pro xE as domain and pro xE as co-domain. Therefore we can apply the Brouwer
fixed point theorem (see Appendix A) that proves the existence of xE ∈ pro xE such
that s′E(xA

⋃
E) = xE . As this holds for any xA ∈ pro xA, the following quantified

proposition is true:(
∀xA ∈ pro xA

)(
∃xE ∈ pro xE

)(
s′E(xA

⋃
E) = xE

)
. (18)

We now finally prove that s′E(xA
⋃
E) = xE implies xM 0

= fM (xN ). Suppose that

s′E(xA
⋃
E) = xE . Then by definition of s′E we have sKE (σ′KA(xA

⋃
E)) = xE . As

by Claim two xE = σ′KE (xA
⋃
E), we have sKE (σ′KA(xA

⋃
E)) = σ′KE (xA

⋃
E). Us-

ing the property satisfied by sKE we obtain σ′M 0
(xA⋃

E) = f̃M (σ′K(xA⋃
E)). As

σ′M 0
(xA⋃

E) = xM 0
by definition of σ′L, we have xM 0

= f̃M (σ′K(xA⋃
E)). That is
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xM 0
= fM (xN ) thanks to Claim one. Therefore, the quantified proposition (18)

implies the quantified proposition (17).

A real functions has several natural AE-extensions, depending on the way the
operations pro are inserted. This is illustrated by the following two examples.

Example 11.4. Consider the function f(x, y) = xy+x(x+y). The following interval
functions are natural AE-extensions of f :

xy + (pro x)(pro x + pro y) ; x(pro y) + (pro x)(pro x + y)

(pro x)y + x(pro x + pro y) ; (pro x)(pro y) + x(pro x + y)

(pro x)y + (pro x)(x + pro y) ; (pro x)(pro y) + (pro x)(x + y)

Example 11.5. Consider the function f(x, y) = (xy , x(x + y))T . Its natural AE-
extensions are(

xy , (pro x)(pro x + pro y)
)T

;
(
x(pro y) , (pro x)(pro x + y)

)T(
(pro x)y , x(pro x + pro y)

)T
;
(
(pro x)(pro y) , x(pro x + y)

)T(
(pro x)y , (pro x)(x + pro y)

)T
;
(
(pro x)(pro y) , (pro x)(x + y)

)T
If the expression of f contains only one occurrence of each variable then no oper-

ation pro is inserted. E.g. the natural AE-extension of f(x[1..n], y[1..n]) =
∑
xkyk is

f(x[1..n],y[1..n]) =
∑

xkyk. Finally, the set of elementary functions Ω and Φ cannot
be extended without taking care that the new functions satisfy Proposition 10.1 and
Proposition 10.2. This is illustrated by the counter example presented in Appendix B
(page 177).

12 On the Quality of the Natural AE-Extension

Two theoretical results on the quality of natural AE-extensions are now provided.

12.1 Order of Convergence

First, the order of convergence of natural AE-extensions is investigated. The statement
of Theorem 12.1 is an extension of a well known results in classical interval theory.

Lemma 12.1. The operation pro : KR −→ KR is Lipschitz continuous, and therefore
locally Lipschitz continuous.

Proof. It is clear that dist(pro x,pro y) ≤ dist(x,y), that is, pro is Lipschitz contin-
uous.

Theorem 12.1. The natural AE-extensions have a linear convergence excepted if its
expression contains some n

√
x which has to be evaluated at 0 (see next remark).

Proof. In this case, the natural AE-extension is composed on one hand of elementary
AE-extensions which are locally Lipschitz continuous (see [14]) and on the other hand
of the operation pro which is also locally Lipschitz continuous. So the natural AE-
extension is locally Lipschitz continuous. This eventually implies a linear convergence
thanks to the Proposition 7.2.
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Remark 18. As pointed out in [25], the elementary functions n
√
x are not locally

Lipschitz continuous inside [0,+∞[ because they have an infinite derivative at 0 (how-
ever, they are locally Lipschitz continuous inside ]0,+∞[). Therefore, a natural AE-
extension which involves such an elementary function which has to be evaluated at 0
may not have a linear convergence. Check for example that the natural AE-extension
of f(x) =

√
absx does not have a linear convergence inside xref = [−1, 1].

12.2 Minimality

Contrary to the classical interval natural extension, an expression which contains only
one occurrence of each variable does not compute a minimal (f,x)-interpretable in-
terval in general. The next example is taken from [34].

Example 12.1. Consider f(x) = (x1 + x2)(x3 + x4) and the generalized interval
x = ([−2, 2], [1,−1], [−1, 1], [2,−2])T . In this case, f∗(x) = [1.5,−1.5] so the quantified
proposition(

∀x1 ∈ x1

)(
∀x3 ∈ x3

)(
∀z ∈ [−1.5, 1.5]

)(
∃x2 ∈ pro x2

)(
∃x4 ∈ pro x4

)(
f(x) = z

)
is true. The natural AE-extension leads to (x1 + x2)(x3 + x4) = [0, 0] which is less
accurate and allows to validate the less informative quantified proposition(

∀x1 ∈ x1

)(
∀x3 ∈ x3

)(
∃x2 ∈ pro x2

)(
∃x4 ∈ pro x4

)(
f(x) = 0

)
. (19)

No explanation for this kind of situations was proposed in [34]. An explanation is
now proposed thanks to the proof of Proposition 11.1: Proposition 11.1 applied to the
computation (x1 + x2)(x3 + x4) = [0, 0] proves that the quantified proposition (19)
has a continuous Skolem function, i.e. proves that there exists a continuous function

s{2,4} : (x1,x3)T −→ (x2,x4)T

which satisfies

(x2, x4)T = s{2,4}(x1, x3) =⇒ f(x) = 0.

However, when one looks inside the proof of Proposition 11.1, he notices that the
function s2 actually does not depend on x3 (see the introducing example of Subsection
11.1 page 165 where the expression of s{2,4} is provided). Therefore, the choice of x2 in
the quantified proposition (19) actually does not depend on the values of x3. Therefore,
the quantified proposition which is validated by the computation (x1 +x2)(x3 +x4) =
[0, 0] is actually(

∀x1 ∈ x1

)(
∃x2 ∈ pro x2

)(
∀x3 ∈ x3

)(
∃x4 ∈ pro x4

)(
f(x) = 0

)
.

This explains why this natural AE-extension is not minimal although the involved
expression has one occurrence of each variable: it actually solves a more difficult
problem!

Remark 19. This more accurate interpretation of the generalized interval evaluation
may be useful in practice but this has not yet been studied.

Finally, next proposition states that the natural AE-extension of bilinear real func-
tions is minimal.
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Theorem 12.2. Consider the bilinear function

f : R2n −→ R ; (x, y) 7−→
∑

i∈[1..n]

xiyi

The natural AE-extension of f is minimal.

Proof. Define N = [1..2n] so

f(xN ) =
∑

i∈[1..n]

xixi+n.

Consider any xN ∈ KR2n. The following equality has to be established:

f∗(xN ) =
∑

i∈[1..n]

xixi+n

Suppose that xi is proper for i ∈ [1..n] and xi is improper for i ∈ [n + 1, 2n] so
that xixi+n is the product of a proper and an improper interval. The other cases
(involving products of proper intervals and products of improper intervals) are similar
and simpler. By definition,

f∗(xN ) =
[

min
xP∈xP

max
xI∈xI

∑
i∈[1..n]

xixi+n , max
xP∈xP

min
xI∈xI

∑
i∈[1..n]

xixi+n
]

(20)

where P = P(xN ) = [1..n] and I = I(xN ) = [n+1..2n]. Also, applying the definition
of the AE-multiplication and the formula of the AE-addition,

∑
i∈[1..n] xixi+n is equal

to [ ∑
i∈[1..n]

min
xi∈xi

max
xi+n∈xi+n

xixi+n ,
∑

i∈[1..n]

max
xi∈xi

min
xi+n∈xi+n

xixi+n
]
. (21)

The generalized intervals (20) and (21) must be proved to be equal. This equality is
proved without any difficulty noticing the following two properties

max
u∈u

(
a(u) + b

)
=
(
max
u∈u

a(u)
)

+ b

and
min
u∈u

(
a(u) + b

)
=
(
min
u∈u

a(u)
)

+ b

where a : R −→ R and b ∈ R.

Some additional functions may be proved to have a minimal natural AE-extension
using a similar proof. The case of bilinear functions is displayed because their mini-
mality has interesting consequence. E.g. the central necessary and sufficient condition
provided by Theorem 5.1 of [33] for the membership to linear AE-solution sets can be
obtained thanks to the Theorem 12.2.

13 On the Scope of AE-Extensions

The natural AE-extensions are a reformulation of the modal “theorems of ∗ and ∗∗
interpretation of a modal rational extension” and “theorems of coercion to ∗ and ∗∗
interpretability” and their n-dimensional versions. Therefore the applications which
were proposed in the context of modal intervals are in the scope of AE-extensions.
The next examples focuses on some positive and negatives aspects of the natural AE-
extensions.
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13.1 Application to n× n Systems of Equations

First, an example is presented where the natural AE-extension succeeds in proving the
existence of a solution to a 2× 2-system of equations.

Example 13.1. Consider the function

f(x, y) =

(
81x2 + y2 + 18xy − 100
x2 + 81y2 + 18xy − 100

)
One of its natural AE-extension is

g(x,y) =

(
81x2 + (pro y)2 + 18(pro x)(pro y)− 100

(pro x)2 + 81y2 + 18(pro x)(pro y)− 100

)
If x = y = [1.1, 0.9] this natural AE-extension leads to

g(x,y) = ( [13.4,−11, 4] , [13.4,−11, 4] )T

and therefore proves that pro g(x,y) ⊆ range (f,pro x,pro y). In particular, the
system of equations f(x, y) = 0 is proved to have a solution inside (x,y)T .

Classical methods (like the Miranda theorem or interval Newton operators, see e.g.
[25]) also succeed in proving the existence of a solution for the previous example. As
it was explained in the previous section, the natural AE-extension splits the problem(

∃x ∈ x
)(
∃y ∈ y

)(
f1(x, y) = 0 ∧ f2(x, y) = 0

)
into two sub-problems, for example(

∀y ∈ y
)(
∃x ∈ x

)(
f1(x, y) = 0

)
and

(
∀x ∈ x

)(
∃y ∈ y

)(
f2(x, y) = 0

)
However, this decomposition is not efficient in general. The next example provides a
situation where the natural AE-extension cannot prove the existence of a solution.

Example 13.2. Consider the linear function

f(x, y) =

(
2y + x
2y − x

)
and the intervals x = [−ε, ε] and y = [−ε, ε] for ε > 0. Both f1 and f2 satisfy(

∀x ∈ x
)(
∃y ∈ y

)(
fk(x, y) = 0

)
and none satisfies (

∀y ∈ y
)(
∃x ∈ x

)(
fk(x, y) = 0

)
So whatever is ε > 0, the natural AE-extension will never be able to prove the existence
of a solution to the system f(x, y) = 0 although (0, 0)T is a solution to this simple
system.

The classical approach to such a problem is to precondition the equation so as to ob-
tain a near-identity equivalent system: the preconditioned system g(x, y) = Mf(x, y)
is considered, where M is a non-singular real matrix. So f(x, y) = 0 ⇐⇒ g(x, y) = 0
and M can be chosen so that g is close to the identity map. However, such a pre-
conditioning process drastically increases the number of occurrences, as gk(x, y) =
Mk1f1(x, y) + Mk2f2(x, y). In the classical interval theory, a preconditioning process
is usually coupled with a linearization process (e.g. a mean-value extension) which
efficiently decreases the influence of the growing number of occurrences.
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13.2 Application to Parametric Under-Constrained Sys-
tems of Equations

A situation where the AE-extensions have a promising potential is the study of para-
metric under-constrained systems of equations. The next example illustrates this idea.

Example 13.3. Consider the function f(a, x) = a1x1 + a2x2 + a3x3 − 5 and the
intervals

x = ([0, 2], [0, 2], [0, 2])T and a = ([0.9, 1.1], [0.9, 1.1], [0.9, 1.1])T .

We want to prove that (
∀a ∈ a

)(
∃x ∈ x

)(
f(a, x) = 0

)
.

We can use the natural AE-extension of f evaluated at (a, dual x)T :

f(a,dual x) = a1(dual x1) + a2(dual x2) + a3(dual x3)

= [0.4,−5]

This proves the following quantified proposition:(
∀a ∈ a

)(
∀z ∈ [−5, 0.4]

)(
∃x ∈ x

)(
f(a, x) = z

)
which indeed implies the first quantified proposition.

The classical techniques based on the Miranda theorem or the interval Newton
operators do not easily handle parametric under-constrained systems. This academic
example illustrates that AE-extensions can provide promising tools in such situations.

13.3 Contractors for Quantified Constraints

An other promising application of AE-extensions is proposed in [10] (in the framework
of the original formulation of modal interval theory). It consists of contracting a
domain without loosing any solution to a quantified constraint. Consider for example
a quantified constraint φ on x ∈ R like

φ(x) ⇐⇒
(
∀u ∈ u

)(
∃v ∈ v

)(
f(u, v, x) ≥ 0

)
.

The aim of a contractor is to prove that a given interval x does not contain any real
that satisfies φ(x), i.e. to prove that(

∀x ∈ x
)(
∃u ∈ u

)(
∀v ∈ v

)(
f(u, v, x) < 0

)
. (22)

It is proved in [10] that a sufficient condition of the quantified proposition (22) is

¬
((
∀u ∈ u

)(
∃x ∈ x

)(
∃v ∈ v

)(
f(u, v, x) ≥ 0

))
, (23)

Finally, a sufficient condition for (23) can be obtained using the optimal AE-extension
f∗ of f : it is proved in [10] that

f∗(u,dual v, dual x) 6⊆ [0,+∞[4

4Infinite generalized intervals are not formally defined, but extending the inclusion to such
intervals does not present any difficulty.
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implies (23). A a consequence, one can discard a box x provided that he proves that
the previous inclusion is false. This can be done computing an inner approximation
of f∗(u, dual v,dual x), i.e. an interval z that satisfies z ⊆ f∗(u, dual v, dual x).
Such an interval cannot be computed using the developments exposed in the presented
paper (as the present paper is dedicated to the computation of intervals z that satisfies
f∗(u, dual v, dual x) ⊆ z). In [10] a branch and prune algorithm is proposed in order
to compute such intervals z. In “Modal Intervals Revisited Part 2: A Generalized
Interval Mean-Value Extension”, a new way to compute such intervals will be proposed,
relying on some linearization of f .

14 Conclusion

Modal interval theory has been reformulated in the context of generalized intervals
(intervals whose bounds are not constrained to be ordered). New extensions to gener-
alized intervals have been defined, called AE-extensions. These AE-extensions provide
the same interpretations than the extensions to modal intervals. The following differ-
ences with modal interval theory can be pointed out:

The construction of AE-extensions is similar to the construction of extensions to
classical intervals. In particular, the central modal “theorems of ∗ and ∗∗ interpretation
of a modal rational extension” and “theorems of coercion to ∗ and ∗∗ interpretability”
and their n-dimensional versions are summarized in natural AE-extensions. Further-
more, all the defined concepts are generalizations of their classical counterparts: the
definition of the minimality of AE-extensions is more general than the optimality of
modal interval extensions. On one hand the new definition for minimality is natural
and generalizes the definition of minimality of classical interval extensions. On the
other hand, it allows to introduce the concept of order of convergence, which is widely
used in classical interval theory in order to measure the quality of an extension. Like
in the context of extensions to classical intervals, natural AE-extensions have been
proved to have a linear convergence (provided that no function n

√
x is evaluated at

zero).

The proofs proposed in this paper are new. They intend to fill some gaps which
were found in the proof of the modal “theorems of ∗ and ∗∗ interpretation of a modal
rational extension” and their n-dimensional versions.

Finally, the modal “theorems of ∗ and ∗∗ partially optimal coercion” have not been
cast into the new formulation of modal interval theory. They would allow to introduce
new AE-extensions which would be more accurate than natural AE-extensions thanks
to the study of the monotonicity of the functions. This choice is motivated by the
possibility to introduce a mean-value AE-extension in the new formulation of modal
interval theory. This is the subject of a the second part of the paper.
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A The Brouwer Fixed Point Theorem

The Brouwer fixed point theorem is a famous classical existence theorem (see for
example [11] or [25]).

Theorem (Brouwer fixed point theorem). Let E ⊆ Rn be nonempty, compact and
convex, and f : E −→ E be continuous. Then, there exists x ∈ E such that f(x) = x.

B A Counterexample

Consider the operation � defined by x�y := 1− (x−y)2 as an elementary function of
Ω. It is now proved that this conducts to a wrong assertion. The generalized interval
operation x � y is defined as the optimal AE-extension of x � y. Now consider the
continuous function f : R2 −→ R2 defined by

f(x, y) =

(
x� y
x− y

)
and the intervals x = [1,−1] and y = [1,−1]. One of its natural AE-extension is

z =

(
(pro x)� y
x− (pro y)

)
.

The interval (pro x)� y is computed in the following way:

(pro x)� y = ∨x∈pro x ∧y∈y x� y
= ∨

x∈pro x
dual range (f1, x, pro y)

= ∨
x∈pro x

[1 , 1− (1 + |x|)2]

= [1 , max
x∈pro x

1− (1 + |x|)2]

= [1, 0].

So, the natural AE-extension evaluation leads to z = ([1, 0], [0, 0])T and the following
quantified proposition must be true:(

∀z1 ∈ [0, 1]
)(
∀z2 ∈ [0, 0]

)(
∃y ∈ pro y

)(
∃x ∈ pro x

)(
f(x, y) = z

)
.

However, this latter quantified proposition is false: indeed it implies(
∃y ∈ pro y

)(
∃x ∈ pro x

)(
f(x, y) = 0

)
.

However f2(x, y) = 0 implies x = y, and therefore f1(x, y) = 0 implies 1−(x−x)2 = 0,
which is absurd.

Remark 20. The papers describing modal interval theory do not focus on such cases.
For example, some care should be given when applying the results of the section III.4
of [34] so as to be sure that the situation displayed in this section cannot occur.

The wrong conclusion obtained considering � as an elementary operation is ex-
plained in the following way: the computations (pro x)�y = [1, 0] and x− (pro y) =
[0, 0] validates both following quantified propositions:(

∀x ∈ pro x
)(
∃y ∈ pro y

)(
x� y = 0

)
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and
(
∀y ∈ pro y

)(
∃x ∈ pro x

)(
x− y = 0

)
.

However, these two quantified propositions do not imply(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
x� y = 0 ∧ x− y = 0

)
.

This is due to the fact that in the first quantified proposition, the choice of the values
of y cannot be done continuously with respect to x (and that is the reason why �
cannot be considered as a elementary function of Ω).

C Proofs of Some Propositions from Section 10

First of all, the following case is trivial for all functions (one variable or two variables
elementary functions):

Proposition C.1. Let f : x[1..n] −→ R be a continuous function where x[1..n] ∈ IRn.
Define x0 = f∗(x[1..n]) which is proper. Then there exists a continuous function
s : x[1..n] −→ x0 which satisfies

x0 = s(x[1..n]) =⇒ x0 = f(x[1..n])

Proof. The function s is nothing but f and is therefore continuous.

One variable elementary functions

In the case of one variable functions, there are only two cases: either x ∈ IR or x ∈ IR.
The first case has already been treated by the Proposition C.1, so it remains to study
the second one. The next proposition stands for the functions expx, lnx, tan, arccosx,

arcsinx, arctanx, xn for n odd and, x
1
n .

Proposition C.2. Let f : R −→ R be continuous and strictly increasing or decreasing
and x ∈ IR. Define z = f∗(x), which is improper. Then there exists a continuous
function s : pro z −→ pro x which satisfies x = s(z) =⇒ z = f(x).

Proof. By definition of f∗, pro z = range (f,pro x). As f is continuous and strictly
monotone, it is an homeomorphism between pro x and z. Therefore, it inverse
f−1 : pro z −→ pro x is also continuous. Finally, x = f−1(z) =⇒ z = f(x) so
f−1 (restricted to pro x) is the wanted continuous function.

Finally, the next proposition stands for sinx, cosx, absx, xn for n even.

Proposition C.3. Let f : R −→ R be continuous and x ∈ IR. Suppose that f has
no local maximum or minimum in pro x excepted maybe on the bounds of pro x and
that f is strictly monotonic between its different minimum and maximum (local or
global). Then there exists a continuous function s : pro z −→ pro x which satisfies
x = s(z) =⇒ z = f(x).

Proof. Pick up a global minimum x1 ∈ pro x and a global maximum x2 ∈ pro x
which are not separated by any minimum or maximum. This is possible thanks to the
hypothesis that there are no local extrema in the interior of pro x. Define x′ = x1∨x2.
The function f |x′ is either strictly increasing or strictly decreasing, so the previous
proposition applies. Finally, s(x) ∈ x′ ⊆ x and x = s(z) =⇒ z = f |x′(x) = f(x).
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Two variables elementary functions

In the case of two variables elementary functions, the case where x ∈ IR and y ∈ IR
is already treated. First of all, only + and × are now considered because

x− y = x + (−y) et x/y = x× (1/y)

The next proposition stands for all the two variable elementary functions and for
x ∈ IR and y ∈ IR. In the sequel, we suppose that pro x1 and pro x2 are not
degenerate, the other cases being similar and simpler.

Proposition C.4. Let x1 ∈ IR, x2 ∈ IR and x0 = x1 ◦ x2 for ◦ ∈ {+,×}. Then x0

is also improper and there exists a continuous function s : x0 −→ pro x{1,2} which
satisfies x{1,2} = s(x0) =⇒ x0 = f(x1, x2) where f(x1, x2) = x1 ◦ x2.

Proof. x0 is improper because the result of Kaucher arithmetic operations applied
to improper intervals is also improper. Define x′1 = pro x1, x′2 = pro x2 and x′0 =
pro x0. Using the expressions of Kaucher arithmetic, we have x′0 = range (f,x′1,x

′
2).

So, x′0 = [u1 ◦ u2, v1 ◦ v2] with u{1,2} ∈ x′{1,2} and v{1,2} ∈ x′{1,2} (u1 ◦ u2 < v1 ◦ v2
because x′0 is not degenerate by hypothesis). Now define the continuous function
m{1,2} : [0, 1] −→ x′{1,2} by

m{1,2}(t) = u{1,2}(1− t) + v{1,2}t

and the continuous function g : [0, 1] −→ x′0 by

g(t) = f(m{1,2}(t)) =
(
u1(1− t) + v1t

)
◦
(
u2(1− t) + v2t

)
We have g(0) = inf x′0 and g(1) = supx′0 so range (g, [0, 1]) = x′0. We now prove that
the propositions C.2 and C.3 applies to g whatever is ◦:
◦ = + We have g(t) = (u1 + u2)(1− t) + (v1 + v2)t which is strictly increasing because

we supposed u1 + u2 < v1 + v2. So C.2 applies.

◦ = × We have g(t) = at2 + bt+ c. If a 6= 0 the Proposition C.3 applies. If a = 0 and
b 6= 0 then Proposition C.2 applies. We cannot have a = 0 and b = 0 since x′0
is supposed not to be degenerate.

Therefore, there exists a continuous function s̃ : x′0 −→ [0, 1] which satisfies

t = s̃(x0) =⇒ x0 = g(t). (24)

It eventually easy to check that the wanted continuous function is s(x0) = m{1,2}(s̃(x0)):
on one hand s(x0) ∈ x′{1,2} by construction of m{1,2}. On the other hand, x{1,2} =
s(x0) implies x{1,2} = m{1,2}(s̃(x0)) which implies f(x{1,2}) = f(m{1,2}(s̃(x0))) =
g(s̃(x0)). This latter is equal to x0 thanks to (24).

It remains to study the cases where x1 and x2 do not have the same proper/improper
quality. The next proposition stands for Kaucher addition.

Proposition C.5. Let x1 ∈ KR, x2 ∈ KR and x0 = x1+x2. Define the following sets
of indices: A = P(x{1,2})

⋃
I(x0) and E = I(x{1,2})

⋃
P(x0) (A contains the indices

of the universally quantified variable and E contains the indices of the existentially
quantified ones). Then both A and E are nonempty and there exists a continuous
function s : xA −→ xE which satisfies xE = s(xA) =⇒ x0 = x1 + x2.
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Proof. We have only two cases to study because x1 + x2 = x2 + x1.
(1) x1 ∈ IR, x2 ∈ IR and x0 ∈ IR. We have to prove the existence of a continuous
function s{0,2} : x1 −→ pro x{0,2} which satisfies x{0,2} = s{0,2}(x1) =⇒ x0 = x1 +x2.
Thanks to the rules of Kaucher arithmetic, we have x0 = x1 + x2 ⇐⇒ (dual x1) =
(dual x0)−x2. Then, we can apply the Proposition C.4 to this latter operation, which
proves the existence of a continuous function s{0,2} : x1 −→ pro x{0,2} which satisfies
x{0,2} = s{0,2}(x1) =⇒ x1 = x0 − x2. Therefore, as x1 = x0 − x2 ⇐⇒ x0 = x1 + x2,
s{0,2} is the wanted continuous function.

(2) x1 ∈ IR, x2 ∈ IR and x0 ∈ IR. We have to prove the existence of a continuous
function s2 : pro x{0,1} −→ pro x2 which satisfies x2 = s2(x0, x1) =⇒ x0 = x1 + x2.
It is proved in the same way than previously, noticing that x0 = x1 +x2 is equivalent
to (dual x2) = (dual x0)−x1. All the intervals being proper in this latter expression,
we can apply Proposition C.1.

Now, Kaucher multiplication is studied.

Proposition C.6. Let x1 ∈ KR, x2 ∈ KR and x0 = x1x2. Define the following sets
of indices: A = P(x{1,2})

⋃
I(x0) and E = I(x{1,2})

⋃
P(x0) (A contains the indices

of the universally quantified variable and E contains the indices of the existentially
quantified ones). Then both A and E are nonempty and there exists a continuous
function s : xA −→ xE which satisfies xE = s(xA) =⇒ x0 = x1x2.

Proof. Define x′1 = pro x1, x′2 = pro x2 and x′0 = pro x0. First, if the involved
intervals do not contain 0 we can come back to Kaucher addition using the exp and
ln bijections:
(1) x1 > 0 and x2 > 0. Apply ln to x0 = x1x2 in order to obtain the equivalent
expression lnx0 = lnx1 + lnx2 which is written x̃0 = x̃1 + x̃2 with x̃k = lnxk.
Then, the wanted continuous function is built using the one obtained thanks to the
application of the Proposition C.5 to x̃0 = x̃1+x̃2: the function ln keeps unchanged the
proper/improper quality of the intervals, so the Proposition C.5 proves the existence
of a continuous function s̃ : pro x̃A −→ pro x̃E which satisfies x̃E = s̃(x̃A) =⇒ x̃0 =
x̃1+x̃2. Then define s(xA) = exp s̃(lnxA) (here the functions ln and exp are applied to
vectors componentwise). One one hand, we have pro lnxk = ln pro xk, so s is defined
inside x′A with values inside x′E , i.e. s : x′A −→ x′E . On the other hand, using the
definitions and properties of s and s̃, we have xE = s(xA) =⇒ xE = exp s̃(lnxA) =⇒
lnxE = s̃(lnxA) =⇒ lnx0 = lnx1 + lnx2 =⇒ x0 = x1x2.
(1’) 0 /∈ x′1 and 0 /∈ x′2. We come back to the first case in the following way: for
k ∈ {1, 2} define εk ∈ {−1, 1} such that εkxk > 0. So x1x2 = (ε1ε2)(ε1x1)(ε2x2).
(2-4) It remains to study only three cases where x1 ∈ IR and x2 ∈ IR, because
x0x1 = x1x0.
(2) 0 ∈ x′1 and 0 /∈ x′2 which imply x0 ∈ IR. The existence of the continuous function
s is proved in a similar way to the case (1) of the Proposition C.5, considering that
x0 = x1x2 ⇐⇒ (dual x1) = (dual x0)/x2, which is well defined because 0 /∈ x′2.
All intervals are improper in the latter expression, so we can apply Proposition C.4 in
order to get the wanted continuous function.
(3) 0 /∈ x′1 and 0 ∈ x′2 which imply x0 ∈ IR. In the same way as previously, we consider
the equivalent expression (dual x2) = (dual x0)/x1 where all intervals are proper. So
we can apply Proposition C.1 in order to get the wanted continuous function.
(4) 0 ∈ x′1 and 0 ∈ x′2. In this case, x0 = [0, 0], and the wanted continuous function
is for example s2(x1, x0) = 0 ∈ x′2 as x2 = s(x1, x0) =⇒ x1 × x2 = x0.
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