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Abstract
Two types of error bounds are considered for numerically enclosing all eigen-

values of a matrix. A theorem is presented for clarifying the relation between these
two error bounds under an assumption. We discuss the validity of this assumption,
and report some numerical results illustrating the presented theorem and showing
that this assumption is satisfied in many cases.
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1 Introduction
In this paper, we are concerned with accuracy of computed eigenvalues for

Ax = λx, A ∈ Cn×n, λ ∈ C, x ∈ Cn, (1)

where λ is an eigenvalue and x 6= 0 is an eigenvector corresponding to λ .
There are several methods for enclosing eigenvalues and eigenvectors, e.g., [4, 5, 7, 9, 12,

13, 14]. For enclosing eigenvectors, see [9]. For enclosing eigenvalues in the case when A is
Hermitian, see [4, 10, 12] and [5, Algorithm 3]. A few specified eigenvalues and eigenvectors
can be enclosed by applying the methods in [7, 13, 14], even when A is not Hermitian.

In this paper, we consider a method for enclosing all eigenvalues which is applicable even
when A is not Hermitian. Such a method, proposed in [5, Algorithm 2], is based on the following
theorem:

Theorem 1 (Oishi [5]) Let λ be an eigenvalue of A. Assume, as a result of numerical compu-
tation, we have an n× n complex diagonal matrix D̃ and an n× n complex matrix X̃ such that
AX̃ ≈ X̃D̃. Let λ̃i, i = 1, . . . ,n be the (i, i) element of D̃ and ‖ · ‖ := ‖ · ‖p, 1 ≤ p ≤ ∞. Denote
the n× n identity matrix by I. For an arbitrary n× n complex matrix Y , define n× n complex
matrices R and S as R := YAX̃− D̃ and S := Y X̃− I, respectively. Then,

min
1≤i≤n

|λ − λ̃i| ≤ εo, εo := ‖R‖+‖A‖‖S‖.
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On the other hand, a theorem has been presented in [3] for enclosing all eigenvalues of the
generalized eigenvalue problem

Ax = λBx, A,B ∈ Cn×n, λ ∈ C, x ∈ Cn. (2)

This theorem is also applicable even when A is not Hermitian. We can utilize this theorem for
enclosing all eigenvalues in the standard eigenvalue problem (1) by substituting B = I into (2),
where I is as in Theorem 1. Then, we obtain the following theorem 1:

Theorem 2 (Miyajima [3]) Let λ , D̃, X̃ , λ̃i, ‖ · ‖, Y and S be defined as in Theorem 1. Define
an n×n complex matrix T as T :=Y (AX̃− X̃D̃). If ‖S‖< 1. Then X̃ and Y are nonsingular, and

min
1≤i≤n

|λ − λ̃i| ≤ εm, εm :=
‖T‖

1−‖S‖
.

The purpose of this paper is to present a theorem showing that εo ≥ εm holds under an
assumption. We discuss the validity of this assumption, and report some numerical results illus-
trating the presented theorem and showing that this assumption is satisfied in many cases.

2 Main Theorem
Let εo and εm be defined as in Theorems 1 and 2, respectively. In this section, we establish
Theorem 3 clarifying the relations between εo and εm under an assumption.

Theorem 3 Let λ̃i, ‖·‖ and εo be defined as in Theorem 1, and let εm be defined as in Theorem 2.
If max1≤i≤n |λ̃i|+ εo ≤ ‖A‖, then εo ≥ εm.

Remark 1 Let λ̃ j satisfy |λ̃ j| = max1≤i≤n |λ̃i| and ρ(A) denote the spectral radius of A. It
is well known that ρ(A) ≤ ‖A‖ follows. Hence ‖A‖ is a “trivial” upper bound for ρ(A) and
overestimates ρ(A) in general. In contrast, |λ̃ j|+ εo is generally a “nontrivial” upper bound
and a tight estimation for ρ(A) as long as λ̃ j is good approximation and εo is small compared
with |λ̃ j|. Thus |λ̃ j|+ εo ≤ ‖A‖ holds in many cases when λ̃ j and εo are as such.

When A is Hermitian and ‖ · ‖ is the 2-norm, |λ̃ j|+ εo ≤ ‖A‖ does not hold even if λ̃ j and
εo are as above, since ‖A‖2 = ρ(A) ≤ |λ̃ j|+ εo, where the equality is given by Wilkinson and
Weyl (see e.g. [11]). However some methods have been proposed in [4] and [5, Algorithm 3] for
enclosing all eigenvalues of an Hermitian matrix 2, and are more efficient than those based on
Theorems 1 and 2. Therefore the methods based on Theorems 1 and 2 are advantageous when
they are not applied to an Hermitian matrix but to a general matrix. Moreover using the matrix
1-norm or ∞-norm, it is disadvantageous in computational cost to compute verified upper bounds
for the matrix 2-norm. Although a fast method for computing the verified upper bounds for the
2-norm has been proposed in [8], this method requires O(n3) flops, while the computations for
the verified upper bounds for the 1-norm and ∞-norm require only O(n2) flops. In fact, in [3, 5],
the programs created for the methods based on Theorems 1 and 2 use the ∞-norm.

1The only case considered in [3] is when ‖·‖ is the ∞-norm. However Theorem 2 follows for an arbitrary
p-norm.

2The methods in [4] and [5, Algorithm 3] have been proposed for enclosing all eigenvalues of a real
symmetric matrix. On the other hand, these methods can be extended for enclosing all eigenvalues of an
Hermitian matrix.
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Proof Let D̃, X̃ , I, Y , R and S be defined as in Theorem 1. From ‖S‖< 1, we obtain

εm =
‖YAX̃− D̃+ D̃−Y X̃D̃‖

1−‖S‖

≤ ‖YAX̃− D̃‖+‖D̃−Y X̃D̃‖
1−‖S‖

≤ ‖R‖+‖I−Y X̃‖‖D̃‖
1−‖S‖

=
‖R‖+max1≤i≤n |λ̃i|‖S‖

1−‖S‖

= ‖R‖+ (max1≤i≤n |λ̃i|+‖R‖)‖S‖
1−‖S‖

= ‖R‖+

(
‖A‖− ‖A‖− (max1≤i≤n |λ̃i|+ εo)

1−‖S‖

)
‖S‖

= εo−
(‖A‖− (max1≤i≤n |λ̃i|+ εo))‖S‖

1−‖S‖
. (3)

The inequalities max1≤i≤n |λ̃i|+ εo ≤ ‖A‖ and ‖S‖< 1 yield

(‖A‖− (max1≤i≤n |λ̃i|+ εo))‖S‖
1−‖S‖

≥ 0.

This and (3) prove the theorem. 2

3 Numerical Results
Let D̃, X̃ , ‖ ·‖, Y , R, S and εo be defined as in Theorem 1, and let εm be defined as in Theorem 2.
In this section, we report some numerical results to illustrate Theorem 3 and to show that the
assumption in Theorem 3 is satisfied in many cases. We used a computer with an Intel Xeon
2.66GHz Dual CPU, 4.00GB RAM and MATLAB 7.5 with Intel Math Kernel Library and IEEE
754 double precision. We applied the MATLAB function eig to obtain D̃ and X̃ .

We created Programs3 1 and 2 for executing the methods based on Theorems 1 and 2, respec-
tively, when ‖ · ‖ is ∞-norm. For F(c), F(r) ∈ Rn×n where all elements of F(r) are nonnegative,
the notation 〈F(c),F(r)〉 denotes a matrix interval whose center and radius are F(c) and F(r),
respectively. For n× n real matrices F and F with F ≤ F , the notation [F ,F ] denotes a matrix
interval whose lower and upper bounds are F and F , respectively.

Program 1 This program computes a verified upper bound for min1≤i≤n |λ − λ̃ | based on The-
orem 1, when ‖ ·‖ is the ∞-norm and D̃ and X̃ are given. The functions cerrt and cerrb return
verified upper bounds for ‖R‖∞ and ‖S‖∞, respectively (see [5] for details). The INTLAB [6]
function setround(+1) switches the rounding mode to upwards (towards ∞). The computa-
tional cost of this program is 72n3 flops.

function εo = voeig(A,D̃,X̃)
Y = inv(X̃);
r = cerrt(Y,A,X̃,D̃);

s = cerrb(Y,X̃,eye(n));
setround(+1); εo = r + norm(A,inf)*s;

Program 2 This program computes a verified upper bound for min1≤i≤n |λ − λ̃ | based on The-
orem 2, when ‖ · ‖ is ∞-norm and D̃ and X̃ are given. The functions cerrb and setround(+1)

3Although a faster program than Program 2 is described in [3], we adopted Program 2 for fairness.
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are defined as in Program 1. For F,G ∈ Cn×n, the function cprod returns n× n real matrices
Hr, Hr, Hi and Hi satisfying [Hr,Hr] + i∗ [Hi,Hi] 3 FG, where i =

√
−1. For F ,F ∈ Rn×n with

F ≤ F, the function cr returns n×n real matrices F(c) and F(r) satisfying 〈F(c),F(r)〉 ⊇ [F ,F ].
For Fr,G(c), G(r) ∈Rn×n where all elements of G(r) are nonnegative, the function iprod returns
n×n real matrices H and H satisfying [H,H]⊇ Fr ∗〈G(c),G(r)〉. See [5] for details of the func-
tions cprod, cr and iprod. The INTLAB function setround(-1) switches the rounding mode
to downwards (towards −∞). The computational cost of this program is 72n3 flops.

function εm = vmeig(A,D̃,X̃)
Y = inv(X̃);
s = cerrb(Y,X̃,eye(n));
if s≥ 1; error(’Enclosure failed.’); end;

[Br,Br,Bi,Bi] = cprod(A,X̃); [Cr,Cr,Ci,Ci] = cprod(−X̃,D̃);

setround(-1); Pr = Br + Cr; Pi = Bi + Ci;

setround(+1); Pr = Br + Cr; Pi = Bi + Ci;

[P(c)
r ,P(r)

r ] = cr(Pr,Pr); [P(c)
i ,P(r)

i ] = cr(Pi,Pi);

Yr = real(Y); Yi = imag(Y);
[Qrr,Qrr] = iprod(Yr,P

(c)
r ,P(r)

r ); [Qii,Qii] = iprod(−Yi,P
(c)
i ,P(r)

i );

[Qri,Qri] = iprod(Yr,P
(c)
i ,P(r)

i ); [Qir,Qir] = iprod(Yi,P
(c)
r ,P(r)

r );

setround(-1); Tr = Qrr + Qii; Ti = Qri + Qir;

setround(+1); Tr = Qrr + Qii; Ti = Qri + Qir;

Tr = max(abs(Tr),abs(Tr)); Ti = max(abs(Ti),abs(Ti));

T = Tr + i*Ti; t = norm(T,inf);
εm = t/(-(s-1));

Let tλ , tλx, to and tm be the computing time (sec) for obtaining D̃, D̃ and X̃ , for the meth-
ods based on Theorems 1 and 2, respectively. For nonsingular M ∈ Cn×n, define the condition
number κ(M) := ‖M‖2‖M−1‖2.

3.1 Example 1
In this example, we observe the magnitudes of the error bounds and computing times for large
n. Consider the case when A ∈ Cn×n is generated by the MATLAB code A = randn(n) +

i*randn(n);. Then the real and the imaginary parts of the entries of A are normally distributed
pseudo random numbers. Table 1 displays εo, εm, max1≤i≤n |λ̃i|+ εo and ‖A‖ for various n.
Table 2 shows tλ , tλx, to and tm for various n. In Tables 1, 3 and 5, the computation of the
absolute value and the addition in max1≤i≤n |λ̃i|+εo, and the computation of the norm ‖A‖∞ are
executed via floating point operations in rounding upwards and downwards mode, respectively.

Table 1: The quantities εo, εm, max |λ̃i|+ εo and ‖A‖ in Example 1, for the ∞-norm
n εo εm max |λ̃i|+ εo ‖A‖
1000 2.22e–07 8.24e–08 7.23e+01 1.92e+03
1500 2.19e–06 7.21e–07 1.27e+02 4.00e+03
2000 4.36e–06 1.50e–06 1.89e+02 6.96e+03
2500 2.23e–05 7.70e–06 2.61e+02 1.07e+04
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Table 2: Computing times (sec) in Example 1
n tλ tλx to tm
1000 2.76 5.27 12.9 13.1
1500 7.78 16.7 41.6 42.1
2000 17.4 39.6 95.8 96.9
2500 33.9 78.9 185 187

It can be seen from Table 1 that max1≤i≤n |λ̃i|+ εo < ‖A‖ holds for all the cases in this
example. Moreover εo/εm ≈ 2.88. We can confirm from Table 2 that to was approximately
equal to tm. This result coincides the fact that the computational cost of Program 1 is similar to
that of Program 2. Computing times to and tm were larger than tλ and tλx.

3.2 Example 2
In this example, we observe the magnitudes of the error bounds for matrices with ill-conditioned
eigenvectors. Consider the case when A ∈ Cn×n is generated by

A = gallery(’chebspec’,n,0);.
We used the Higham’s test matrix chebspec [2]. Then A has ill-conditioned eigenvectors. Ta-
ble 3 shows κ(X̃) and the other quantities as in Table 1 for various n, where κ(X̃) is an approxi-
mation obtained by the MATLAB function cond.

Table 3: The quantities κ(X̃), εo, εm, max |λ̃i|+ εo and ‖A‖ in Example 2 for ∞-norm
n κ(X̃) εo εm max |λ̃i|+ εo ‖A‖
10 6.45e+14 2.30e+01 6.62e+00 2.32e+01 8.10e+01
15 8.19e+14 8.35e+01 2.90e+01 8.46e+01 1.96e+02
20 1.35e+14 2.61e+01 8.26e+00 2.93e+01 3.61e+02
25 2.63e+14 6.39e+01 1.78e+01 7.01e+01 5.76e+02

We see from Table 3 that the relation between max1≤i≤n |λ̃i|+ εo and ‖A‖ is similar to that
in Section 3.1. Moreover εo and εm were larger than max1≤i≤n |λ̃i|.

3.3 Example 3
In this example, we observe the magnitudes of the error bounds and computing times for matrices
in the Matrix Market [1]. All the matrices in this example are real unsymmetric. Although these
matrices are sparse, X̃ is full. Hence the methods based on Theorems 1 and 2 are not applicable
when n is large. Table 4 shows the names, n, κ(A) and κ(X̃) of the matrices being used, where
κ(A) and κ(X̃) are approximations obtained by cond. Tables 5 and 6 display quantities as in
Tables 1 and 2, respectively, for various matrices.

It can be seen from Table 5 that max1≤i≤n |λ̃i|+ εo ≤ ‖A‖ did not hold when the matrix
was CDDE2, LOP163 and RW496. Nevertheless εo > εm held in LOP163 and RW496. These
results show the existence of the case when εo ≥ εm holds even if max1≤i≤n |λ̃i|+ εo ≤ ‖A‖
does not hold. In contrast, εo ≥ εm did not follow in CDDE2. In this case, εo = 2.63×101 and
max1≤i≤n |λ̃i|= 5.73×100, i.e., εo was larger than max1≤i≤n |λ̃i|. Similarly, relations regarding
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Table 4: Properties of matrices
Name n κ(A) κ(X̃)
CDDE2 961 1.29e+02 4.29e+23
CRY2500 2500 4.35e+17 1.29e+08
DW2048 2048 5.30e+03 6.35e+01
LOP163 163 3.42e+07 6.32e+07
OLM2000 2000 1.22e+07 8.11e+01
QH1484 1484 5.58e+17 4.85e+08
RDB2048L 2048 2.08e+03 9.38e+01
RW496 496 1.14e+10 5.72e+10
TOLS2000 2000 6.92e+06 5.19e+03

Table 5: The quantities εo, εm, max |λ̃i|+ εo and ‖A‖ in Example 3 for ∞-norm
Name εo εm max |λ̃i|+ εo ‖A‖
CDDE2 2.63e+01 3.80e+02 3.20e+01 9.09e+00
CRY2500 5.68e–04 4.31e–05 9.56e+03 1.08e+04
DW2048 1.39e–11 3.94e–12 9.79e–01 1.00e+00
LOP163 6.36e–08 2.46e–08 1.01e+00 1.00e+00
OLM2000 1.61e–06 1.02e–07 4.07e+04 4.06e+05
QH1484 1.10e+08 5.62e+04 6.68e+11 1.27e+16
RDB2048L 3.93e–09 5.24e–10 7.31e+01 7.91e+01
RW496 4.03e–04 8.32e–06 1.01e+00 1.00e+00
TOLS2000 2.84e–06 1.31e–07 2.45e+03 5.96e+06

εo, εm, max1≤i≤n |λ̃i|+ εo and ‖A‖ corresponding to Sections 3.1 and 3.2 can be confirmed
except in the above cases. Table 6 showed the similar tendencies to Table 2.
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