
A Method for Determining the Regularity Radius

of Interval Matrices∗

L. V. Kolev
Dept. of Theoretical Electrotechnics, Faculty of Auto-
matics, Technical University of Sofia, 1000 Sofia, Bul-
garia

lkolev@tu-sofia.bg

Abstract

Determination of the regularity radius r∗ of interval matrices is known
to be a NP-hard problem. In this paper, a method for determining r∗ is
suggested whose numerical complexity is not a priori exponential. The
method is based on an equivalent transformation of the original problem
to the problem of determining the real maximum magnitude eigenvalue µ∗

of an associated interval generalized eigenvalue problem. The latter prob-
lem is solved iteratively, using lower bounds |µ| on |µ∗| and outer interval
or interval hull solutions of corresponding linear interval systems. The
method is capable of determining the regularity radius r∗ if the interval
solutions satisfy certain constant sign conditions; otherwise, it provides a
tight upper bound r or r∗. If the sign conditions are met for the interval
matrix considered, r∗ is computed in polynomial time. Numerical exam-
ples with interval matrices whose size goes up to n = 500 illustrate the
potential of the method suggested.

Keywords: interval matrices, regularity, regularity radius
AMS subject classifications: 65L15, 65G40

1 Introduction

Let A, A and A be real n × n matrices with A ≤ A (the inequality sign is meant
component-wise). The interval matrix

A = [A, A] := {A : A ≤ A ≤ A} (1.1)

is called regular if each A ∈ A is nonsingular. Checking regularity of interval matrices
is a fundamental problem since a number of important properties of interval matrices
such as Hurwitz stability, positive definiteness or the P-matrix property (with many
applications in control [1, 2, 9, 13] and electrical engineering [6, 8, 17, 18]) can be ascer-
tained via verifying regularity [5]. Regularity, however, is a qualitative characteristic.
A better, quantitative measure of regularity is the so-called radius of regularity of an

∗Submitted: January 28, 2009; Final revision: January 19, 2011; Accepted: June 6, 2011.

1

2 L. V. Kolev, Regularity Radius of Interval Matrices

interval matrix [10]. Let the interval matrix from (1.1) be represented equivalently in
the form

A = [Ac − R, Ac + R] (1.2a)

where
Ac = (A + A)/2, R = (A − A)/2 (1.2b)

are the center and radius of A, respectively. The regularity radius of A is defined by
[5, 10]

r∗(A) = min{r ≤ 0 : [Ac − rR, Ac + rR] is singular}. (1.3)

Evidently, A is regular if and only if r∗(A) > 1. Knowing r∗(A), however, provides
a quantitative measure: the distance from singularity. Thus, the knowledge of r∗(A)
permits to determine the stability radius or positive definiteness radius [5] of interval
matrices. (Alternative quantitative measures are the stability margin [8] or the positive
definiteness margin [7] of interval matrices.)

Checking regularity or determining the regularity radius r∗(A) of an interval ma-
trix is a NP-hard problem [11] (see also [16]). Indeed, the method from [12] for com-
puting r∗(A) requires evaluation of 2n numbers. Obviously, the method is applicable
only for matrices of moderate size n (n ≤ 15, according to [12]).

An interesting approach to circumventing the exponential complexity in the con-
text of verifying regularity has been suggested in [5]. It results in an algorithm that
is not a priori exponential although corresponding necessary and sufficient conditions
are used. Indeed, the algorithm is constructed in such a way that “it requires an
exponential number of operations only in the “worst case” examples and behaves rea-
sonably in the “average” ones” [5]. In some of the examples presented in the paper,
the algorithm is used to approximately assess the regularity radius r∗ through in-
creasing r by an increment δr until A(r′) = [Ac − r′R, Ac + r′R] becomes singular
for the current r′ = r + δr. Such an approach to assessing r∗, however, is possible
if the algorithm for checking regularity (or singularity) from [5] is applicable (i.e., if
its numerical complexity is not exponential). Its main disadvantage is that the deter-
mination of r∗ within a high accuracy would require a considerable, and sometimes
prohibitively large, amount of computations (see Example 1 in [5]) even for the cases
of non-exponential complexity.

An alternative approach to overcoming the inherent exponentiality of the problem
is suggested in this paper. Its main feature is that it is only based on the use of
certain appropriately chosen sufficient conditions. Following this approach, a method
for determining the regularity radius r∗ is devised. It comprises the following stages:
(i) equivalent transformation of the original problem to the problem of determining the
real maximum magnitude eigenvalue µ∗ of an associated interval generalized eigenvalue
problem, (ii) iterative solution of the latter problem using lower bounds |µ| on |µ∗| and
outer interval solutions x and y or interval hull solutions x∗ and y∗ of corresponding
linear interval systems. The method is capable of determining the regularity radius
r∗ if the following sufficient conditions are satisfied: (i) it is possible to compute the
interval solutions x and y or x∗ and y∗ in polynomial time; (ii) the solutions x and y

or x∗ and y∗ satisfy certain sign constancy conditions. The complexity of the method,
under these conditions, is polynomial. Otherwise, it only provides a tight upper bound
r on r∗ (but also for polynomial time).

The paper is structured as follows. The transition from the original problem to
the equivalent formulation is presented in Section 2. A method for determining the
eigenvalue µ∗ is suggested in the next section. In Section 4, a detailed algorithm of
the method is developed. Numerical examples illustrating the determination of the

Reliable Computing 16, 2011 3

regularity radius r∗ are provided in Section 5. The paper ends up with concluding
remarks in Section 6.

2 Equivalent transformation

The interval matrix A considered is represented equivalently as

A = Ac + [−R, R] = Ac + B, B = [−R,R]. (2.1)

In view of (1.3) and (2.1), the regularity radius can be defined equivalently as

r∗(A) = min{r ≥ 0 : det(Ac + rB) = 0, B ∈ B}. (2.2)

We consider the following interval generalized eigenvalue problem

Bx = µA0x, B ∈ B (2.3a)

where
A0 = −Ac. (2.3b)

Let µ∗ denote the real maximum magnitude (rmm) eigenvalue of (2.3) defined as

µ∗ = max{|µ| : Bx = µA0x, B ∈ B}. (2.4)

Lemma 2.1 Let r∗ and µ∗ be defined as in (2.2) and (2.4), respectively. Then the
regularity radius r∗ of the interval matrix A considered is given by

r∗ = 1/|µ∗|. (2.5)

Proof: Consider the condition

det(Ac + rB) = 0, B ∈ B

in (2.2). It can be written equivalently as a generalized interval eigenvalue problem

A0x = rBx, B ∈ B (2.6)

with A0 defined in (2.3b). The latter problem is transformed equivalently to

Bx = µA0x, B ∈ B (2.7)

where
µ = 1/r. (2.8)

We are interested in determining the rmm eigenvalue µ∗ of the generalized eigen-
value problem (2.7). Two cases are possible.

Case A: µ∗ > 0. Consider the matrix B∗

µ that yields

B∗

µx∗ = µ∗A0x∗. (2.9)

On account of (2.8)
r∗ = 1/µ∗ (2.10)

and from (2.9) and (2.10)
r∗B∗

µx∗ = A0x∗

4 L. V. Kolev, Regularity Radius of Interval Matrices

which is equivalent to

det(Ac + r∗B∗

µ) = 0. (2.11)

Let the matrix B yielding the minimum r∗ in (2.2) be denoted B∗

r , i.e.

det(Ac + r∗B∗

r) = 0. (2.12)

It is seen from (2.11) and (2.12) that

B∗

r := B∗

µ. (2.13)

Case B: µ∗ < 0. In this case, on account of (2.8) we can write

ρ̆ = 1/µ∗ (2.14)

which leads to

det(Ac + ρ̆B∗

µ) = 0

or

det(Ac + |ρ̆|(−B∗

µ)) = 0. (2.15)

Comparing (2.15) and (2.12), we see that now

B∗

r := −B∗

µ (2.16)

and from (2.14)

r∗ = |ρ̆| = 1/|µ∗|. (2.17)

This completes the proof.

Thus, the problem of determining the regularity radius r∗ of the interval matrix
A is reduced to that of computing the rmm eigenvalue µ∗ of the interval generalized
eigenvalue problem (2.3).

In the sequel, we shall need the sign vector zx of a real vector x or zx of an interval
vector x whose components are determined by the formulae

zx
i = (sgn x)i :=

{

1, if xi ≥ 0
−1, if xi < 0

(2.18a)

or

zx
i = sgn xi(µ) =

+1, if xi(µ) ≥ 0

−1, if xi(µ) < 0

0, if 0 ∈ xi(µ),
(2.18b)

respectively.

3 Determination of the rmm eigenvalue

In this section, a method for determining the rmm eigenvalue µ∗ of (2.3) is suggested.
As mentioned in the Introduction, it is based on using either outer interval solutions
x and y or interval hull solutions x∗ and y∗ of corresponding linear interval systems.
First the case of the use of x and y will be considered.

Reliable Computing 16, 2011 5

3.1 Outline of the method

The method is iterative and comprises the following stages.
Stage 1. Find a lower bound |µ| on |µ∗|.
Stage 2. Using µ, (2.7) and the corresponding right eigenvector, transform (2.7)

into a (n − 1) × (n − 1) linear interval system

Cu = c, C ∈ C , c ∈ c. (3.1a)

Find an outer interval solution u of (3.1a). In a similar way, using the left eigenvector
of (2.7), form another (n − 1) × (n − 1) linear interval system.

Dv = d, D ∈ D, d ∈ d (3.1b)

and find its outer interval solution v. If u = (u1, ..., um) and v = (v1, ..., vm),
m = n − 1, satisfy the following constant sign conditions

0 6∈ ui, ∀i, i = 1, ..., m, (3.2a)

0 6∈ vi, ∀i, i = 1, ..., m, (3.2b)

go to the next stage; otherwise modify the interval matrix Bin a certain manner to
obtain new matrices C ′ and D′ containing less interval entries. Let C = C ′, D = D′

and start a cycle from (3.1a). This cycle (referred to as basic) will terminate for at
most n iterates in one of the following two outcomes:

– outcome A: the constant sign condition (3.2) is fulfilled for the current C and
D, go to next stage;

– outcome B: no further improvement is possible (two consecutive iterates result
in the same pattern of components ui and vi containing zero);

In the latter case, the method is not capable of determining the exact value of r∗.
However, on exit from stage 2, it provides an upper bound r on r∗ which is given by

r = 1/|µ|. (3.3)

Stage 3. Using the (n − 1)- dimensional interval vectors u and v obtained at the
last iteration of the basic cycle, construct the real n×n matrix B∗. Compute the real
maximum magnitude eigenvalue µ∗ of the generalized eigenvalue problem

B∗x = µA0x. (3.4)

It will be shown later (Theorems 3.2 and 3.3) that the solution µ∗ of (3.4) is, in fact,
the solution of the initial generalized interval problem (2.7). On account of (2.17), the
regularity radius r∗ is then determined by

r∗ = 1/|µ∗|. (3.5)

3.2 Determination of the lower bound |µ|

Consider the real eigenvalue problem

Bx = µA0x (3.6)

for a fixed B ∈ B. Let µ′ denote the real maximum magnitude (rmm) eigenvalue of
(3.6). We assume that µ′ is a simple eigenvalue. Let x′ denote the corresponding right

6 L. V. Kolev, Regularity Radius of Interval Matrices

eigenvector (that is unique up to normalization). Let x′

s denote a largest magnitude
component of x′. We divide x′ by x′

s to obtain the normalized eigenvector x with

xs = 1. (3.7)

Let y denote the left eigenvector of (3.6) related to µ′. As is well known, this vector

could be found by determining the eigenvector associated with the rmm eigenvalue µ
′′

of the following eigenvalue problem

BT y = µ(A0)T y (3.8)

where the symbol T stands for transposition. Since µ
′′

= µ′ is known, y can be found
in a more efficient way. We require that condition (3.7) be also valid for y, i.e. using
the same index s as in (3.7) we let

ys = 1. (3.9)

Substituting µ′ into (3.8) and taking into account (3.9), we get the system

(B − µ′A0)T y = 0, ys = 1

or

D′y = 0, ys = 1, (3.10a)

D′ = (C′)T , C′ = B − µ′A0. (3.10b)

System (3.10) is over-determined since it has n equations with n − 1 unknowns yi,
i 6= s. Next, to make use of (3.9) explicitly we introduce the following notations. Let
D′

s. denote the sth row of D′ while D′

.s denotes the sth column of D′. We also need
the vector d′ = −D′

.s. Now we introduce the reduced size (n − 1) × (n − 1) matrix
D obtained from D′ by deleting both its sth row and sth column. We also introduce
the reduced size vector d by deleting from d′ its sth element. On account of these
notations system (3.10) is written in the form

Dv = d (3.11)

where v is a reduced size vector obtained from y by deleting its sth element.
The solution v of (3.11) is now used to determine the left eigenvector sought.

Indeed, on account of (3.10)

y = (v1, ..., vs−1, 1, vs, ..., vn−1). (3.12)

At this point, we introduce the scalar

γ = yT A0x. (3.13a)

If γ < 0, we let y = −y to have
γ > 0. (3.13b)

To express the dependence of µ, x and y on B, we shall use, whenever appropriate,
the notation µ(B), x(B) and y(B). Multiplying (3.6) by yT and using (3.13), we have

yT (B)Bx(B) = γµ(B) (3.14a)

which yields in detailed form
∑

ij

bijyi(B)xj(B) = γµ(B), B ∈ B. (3.14b)

Reliable Computing 16, 2011 7

Let B∗ denote a real matrix that provides the maximum magnitude in (3.14b); let the
corresponding eigenvectors be x∗ and y∗, i.e. x∗ = x(B∗) and y∗ = y(B∗). We have
the following result.

Theorem 3.1 The real maximum magnitude eigenvalue µ∗ of (2.7) is obtained if the
elements b∗ij of B∗ are determined as follows:

if µ∗ > 0,

b∗ij =

{

b̄ij = rij , if y∗

i x∗

j ≥ 0
bij = −rij , if x∗

i y
∗

j ≤ 0;
(3.15a)

if µ∗ < 0,

b∗ij =

{

bij = −rij , if y∗

i x∗

j ≥ 0

b̄ij = rij , if y∗

i x∗

j ≤ 0.
(3.15b)

Proof: Assume that µ∗ > 0. On account of (3.15a) and (3.14b)
∑

ij

b∗ijyi(B
∗)xj(B

∗) =
∑

ij

b∗ijy
∗

i x∗

j = γ∗µ∗. (3.16)

But
∑

ij

bijy
∗

i x∗

j < γ∗µ∗, (3.17a)

if
bij 6= b∗ij . (3.17b)

On the other hand, according to [15] each element b∗ij of B∗ takes on a boundary
value, i.e.

b
∗

ij =

{

either b̄ij = rij

or bij = −rij .
(3.18)

Thus, on account of (3.16) to (3.18) the maximum in the left-hand side of (17a) is
attained if B = B∗ with elements defined by (3.15a).

Formula (3.15b) is proved in a similar way.

Based on Theorem 3.1, we suggest the following procedure for determining a lower
bound |µ| on the rmm eigenvalue |µ∗|.

Procedure 3.1 (for finding |µ|). The procedure involves the following steps.

0. (initialization). Set ni = 0 (ni is the iteration number) and µ0 = 0. Introduce
the real matrix B formed by the upper endpoints of the interval matrix B, i.e.
B = B̄ = R.

1. Let ni = ni + 1. Find the rmm eigenvalue µ′ of

Bx = µA0x

and the corresponding right eigenvector x′, using some generalized eigenvalue
problem solver. Traditionally, an eigenvector is normalized so that

|x| =

(

v
∑

i=1

x2
i

)1/2

= 1.

For our purposes we use the rule (3.7) to obtain the index s and the normalized
eigenvector x. We also introduce the check: if µ′ < 0, then we let B = −B and
µ′ = −µ′ ensuring that

µ′ > 0. (3.19)

8 L. V. Kolev, Regularity Radius of Interval Matrices

2. Using the index s found in step 1, form system (3.11). Using its solution v and
(3.12), find the left eigenvector y associated with µ′. Compute γ by (3.13a) and,
if necessary, change the sign of y to ensure γ > 0.

3. Find the sign vector zx of the eigenvector x using (2.18a). In the same way,
find the sign vector zy of the eigenvector y. Form the sign vector z = (zx, zy).
Introduce the real matrix Bz with components

b∗ij =

{

bij , if zy
i zx

j = −1,

b̄ij , if zy
i zx

j = 1.
(3.20)

4. Let µ0 = µ′, B = Bz and start a cycle (called an inner cycle) from Step 1 until
the sign vector z remains unchanged (the current z is equal to z′ of the previous
iteration).

5. A lower bound µ equal to µ′ of the last iteration has been found.

It can be easily seen that the choice of Bz by (3.19), (3.20) ensures that µ′ > µ0

before stationarity is reached. Thus, the procedure is guaranteed to find µ in a finite
number ni of iterations (typically for ni < n).

3.3 Forming the linear interval systems

In this subsection, we show how the linear interval systems (3.1) are formed.
First, the system (3.1a) will be considered. It is obtained from (2.7) in the following

way. We observe that (2.7) defines µ and x as implicit functions of B, i.e. µ = µ(B)
and x = x(B). We now fix µ to the value of the lower bound µ (found by Procedure
3.1), i.e. we replace µ by µ in (2.7). Thus, x becomes a function of both µ and B, i.e.
we have

x = x(µ, B), B ∈ B. (3.21)

Next, we impose the normalization condition (3.7) to be valid for x defined by (3.21),
i.e. require that

xs = x(µ, B) = 1, B ∈ B. (3.22)

Taking into account (3.22) and the equality µ = µ, the interval eigenvalue problem
(2.7) is transformed into the linear interval system (3.1a) in much the same way as
the real eigenvalue (3.8) has been modified into the real linear system (3.11). Indeed,
now we have

(B − µA0)x = 0, B ∈ B, xs = 1 (3.23)

or equivalently
C′x = 0, C′ ∈ C, xs = 1 (3.24a)

C′ = B − µA0, C
′ = B − µA0. (3.24b)

System (3.24) can be written symbolically in the form

C
′x = 0, xs = 1. (3.25)

Now we introduce the following notations: C′

s. for the sth row of C′ and C′

.s for the
sth column of C′ as well as c′ = −C′

.s; C for the reduced size interval matrix obtained
from C′ by deleting the corresponding sth row and sth column of C′ as well as c for
the reduced c′ resulting from c′ after deleting its sth element. In a similar manner,
we introduced the notations Bs., C.s, A0

s. and A0
.s and form: (i) the reduced-size

Reliable Computing 16, 2011 9

((n−1)× (n−1) matrices Br and A0
r and (ii) the reduced-length vectors Brs and A0

rs

(obtained from B.s and A0
.s, respectively). Thus, (3.25) can be written in the form

Cu = c, (3.26a)

C = Br − µ̄A0
r, c = −Brs + µ̄A0

rs, (3.26b)

C
′

s.x = 0. (3.26c)

The system (3.26a), (3.26b) obtained is the short (symbolic) form of the interval linear
system (3.1a) sought. The interval linear system (3.1b) is formed in an analogous
manner as system (3.26a). The only difference is that now the interval matrix D

is obtained on the basis of (C′)T . Indeed, since we are now interested in the left
eigenvector solution of (2.7) we have to consider the problem

BT y = µ(A0)T y, B ∈ B. (3.27)

In this case, similarly to (3.22) we have

y = y(µ, B), B ∈ B

and the normalization rule (3.23) becomes

ys(µ, B) = α, B ∈ B (3.28)

where αs = 1, if γ > 0 or αs = −1, if γ < 0. On account of (3.27) and (3.28), now we
have

(B − µA0)T y = 0, B ∈ B, ys = 1

which, in its turn, leads to

Dv = d. (3.29)

It is easily seen that
D = C

T . (3.29a)

while d is the reduced form of

d
′ = −(C′)T

.s (3.29b)

(with C′)T
.s being the sth column of C′)T).

Let u denote an outer solution of (3.26a). On account of the relation between u
and x (by analogy with (3.12))

x = (u1, ..., us−1, 1, us, ..., un−1). (3.30)

In a similar way, if v denotes the outer solution of (3.29), then

y = (v1, ..., vs−1, 1, vs, ..., vn−1). (3.31)

Remark 3.1 . To simplify the notation, we have introduced the outer solutions u and
x. It should, however, be borne in mind that in view of (3.22), (3.24b) and (3.26a)
a more precise notation for u would be u(µ). From (3.30), we should also use x(µ)
(rather than the short notation x) to underline the dependence of x on µ. For similar
reasons, v(µ) and y(µ) are to replace v and y when necessary to stress the dependence
of these interval vectors on µ. The same remark is valid for the range solutions u∗(µ)
and v∗(µ) of (3.26a) and (3.29), respectively, written in short as u∗ and v∗, as well as
the associated ranges x∗(µ) and y∗(µ) written in short as x∗ and y∗.

10 L. V. Kolev, Regularity Radius of Interval Matrices

3.4 Main results

We first consider the problem how to determine the rmm eigenvalue µ∗ (formulae
(3.15) are inapplicable since the optimal eigenvectors x∗ and y∗ are unknown). A
solution is suggested which is based on the use of the outer interval bounds x(µ) and
y(µ) where µ is the lower bound on µ∗ found by Procedure 3.1. We now make the
following assumption.

Assumption 3.1. The eigenvalues µ and µ∗ are simple. It is also assumed that systems
(3.26a) and (3.29) have bounded interval solutions.

We first prove the following auxiliary result.

Lemma 3.1 If Assumption 3.1 is valid and additionally

µµ∗ > 0, (3.32)

then

x(µ∗) ∈ x(µ), y(µ∗) ∈ y(µ). (3.33)

Proof: First, the former inclusion will be proved. Consider the interval systems

Bx = µA0x, B ∈ B, Bx = µ∗A0x, B ∈ B

related to the outer solutions x(µ) and x(µ∗), respectively. On account of (3.30), it
suffices to prove that

u(µ∗) ⊆ u(µ). (3.34)

In view of (3.26a) and (3.26b), u(µ) is the outer solution of

(Br − µA0
r)u = −Brs + µA0

rs (3.35a)

while u(µ∗) is the outer solution of

(Br − µ∗A0
r)u = −Brs + µ∗A0

rs. (3.35b)

On account of (3.32) µ∗ = αµ with α > 1 (|µ| < |µ∗|) so we can transform (3.35b)
into the equivalent form

[(1/α)Br − µA0
r]u = −(1/α)Brs + µA0

rs (3.35c)

Now the inclusion (3.34) follows from the comparison of (3.35a) and (3.35c), on the
one hand, and the inclusion monotonicity property of interval operations, on the other
hand, since (1/α)Br ⊆ Br and (1/α)Brs ⊆ Brs.

The latter inclusion in (3.33) is proved in a similar way.

To simplify the presentation of the method for determining µ∗, we first make
(temporarily) the following assumption.

Assumption 3.2. No component xi(µ) of x(µ) and yi(µ) of y(µ) contain 0, i.e.

0 6∈ xi(µ), 0 6∈ yi(µ), i ∈ I (3.36)

where I = {1, ...n}.
Using Lemma 3.1, we have the following result.

Reliable Computing 16, 2011 11

Theorem 3.2 If Assumptions 3.1 and 3.2 are valid, then µ∗ is given by the rmm
eigenvalue of the following generalized eigenvalue problem

B∗x = µA0x (3.37a)

where B∗ is a real matrix whose elements b∗ij are determined as follows

b∗ij =

{

rij , if yi(µ)xj(µ) > 0,

−rij , if yi(µ)xj(µ) < 0.
(3.37b)

Proof: From Theorem 3.1,

b∗ij =

{

b̄ij = rij , if y∗

i x∗

j ≥ 0,
bij = −rij , if y∗

i x∗

j < 0.
(3.38)

for µ∗ > 0. According to Lemma 3.1 the sign of the product of the unknown values
y∗

i and x∗

j is the same as the sign of the product of the known xj and yi. The validity
of (3.37) follows directly from comparison of (3.37) and (3.38).

Now we show the validity of the present method for determining µ∗ (outlined in
Section 3.1) when Assumptions 3.1 and 3.2 are fulfilled. After a lower bound µ on µ∗

is found in Stage 1 of the method (using Procedure 3.1), we form systems (3.1) and
find the outer interval solutions u and v. On account of (3.30) to (3.36) the validity of
Assumption 3.2 entails the validity of conditions (3.36). So we can construct the real
matrix B∗ from Stage 3. The elements of this matrix are determined as in (3.37b).
Finally, we solve (3.37a) to find the rmm eigenvalue µ∗.

Now it will be shown that the present method for computing µ∗ remains applicable
if the Assumption 3.2 is replaced with the following less stringent condition.

Assumption 3.3. Let I1 and J1 be two subsets of the index set I = {1, ..., n} of which
at least one is proper and such that

0 6∈ zij = yixj , if i ∈ I1, j ∈ J1, (3.39a)

0 6∈ zij = yixj , if i 6∈ I1. j 6∈ J1, (3.39b)

It is seen that now the sign constancy condition is required only for part of the
intervals zij since I1 and J1 are smaller than I . Hence, the partial sign constancy
condition (3.39a) is easier to satisfy than the complete sign constancy condition (3.36).
Based on Lemma 3.1 and using the same arguments as in Theorem 3.2, we have the
following results.

Theorem 3.3 If Assumptions 3.1 and 3.3 are valid, those components bij of B∗ for
which i ∈ I1 and j ∈ J1 are determined by (3.37b); the remaining elements of B∗ are
unknown.

The basic cycle of the present method (mentioned in Stage 2 from Section 3.1)
makes use of Theorems 3.2 and 3.3.

Remark 3.2. The above results remain valid if throughout the outer interval solu-
tions u and v of the linear interval systems (3.26a) and (3.29) are replaced by the
corresponding interval hull solutions u∗ and v∗.

12 L. V. Kolev, Regularity Radius of Interval Matrices

4 Algorithms

In this section, an algorithm for assessing the regularity radius r∗ is suggested which
is based on Theorems 3.2 and 3.3. In view of Remark 3.2, it will be presented in two
versions:

(A) using the outer solutions or

(B) using the hull solutions.
In either case, if Assumption 3.2 is satisfied, the true r∗ can be determined. Using

Theorem 3.3, this can be done even in the case where Assumption 3.2 is violated.
Indeed, according to that theorem a modified interval matrix B′ can be generated
with elements

b
′

ij =

b̄ij = rij , if zij > 0,
bij = −rij , if zij < 0,

bij otherwise.
(4.1a)

It is seen that the new matrix B′ has a smaller number of interval entries as compared
to the original matrix B. Using B′, we form a modified matrix

A
′ = Ac + B

′, (4.1b)

let A = A′ and update the center and radius of A. New matrices C ′ and D′ con-
taining less interval entries are thus set up. We let C = C ′ and D = D′ , form the
corresponding vectors x and y and check the constant sign condition (3.36). If it is
satisfied, the rmm eigenvalue µ∗ is computed from (3.37). Otherwise, if the current
index sets I1 and J1 (associated with B′) are not empty, a modified matrix A′ is con-
structed by (4.1b), it is renamed A and a new iteration is initialized. This iterative
scheme can terminate in two outcomes:

(i) the current modified matrix B′ contains no interval entries: the real maximum
eigenvalue sought has been determined;

(ii) no further improvement is possible and the current matrix B′ still contains at
least one interval entry: in this case the method is not capable of finding µ∗ exactly.

Typically, the basic cycle terminates in outcome (i). If, however, it ends up in
outcome (ii), most often only a small number of elements remain intervals in the last
matrix B′. Therefore, a tight lower bound µ can be found applying Procedure 3.1 to
the corresponding matrix A′.

The first version of the present algorithm referred to as Algorithm 4.1 is based on
the above ideas and the use of the outer solutions to (3.26a) and (3.29).

It is easily seen that Algorithm 4.1 has polynomial complexity. Indeed, the tran-
sition from the current matrix B to the new matrix B′ may result (in the worst
scenario) in the reduction of just one interval element bij to rij or −rij . Thus, the
total number k of iterations of the basic cycle needed to reach outcome (i) is at most
n2; obviously k < n2 if the outcome is (ii). On the other hand, each iteration of the
basic cycle requires a polynomial amount of operations for computing µ by Procedure
3.1 and setting up and solving the linear interval systems (3.26a) and (3.29), which
leads to polynomial complexity of the algorithm considered.

There exists an opportunity to compute the exact value of µ∗ even if the basic cycle
terminates in outcome (ii). Let m1 and m2 denote the number of indices in the set I2

and J2, respectively. Let m = m1 + m2. If m is not greater than a boundary value m̄
(say m̄ = 12), we can apply the following combinatorial approach to determine µ∗.

Let zi be the components of the 2n-dimensional sign vector z = (zx, zy). The set
of zi whose indices correspond to the “optimal” components z∗

i (defined by x∗, y∗ and

Reliable Computing 16, 2011 13

(2.18b)) will be denoted t∗; the remaining elements of z will be denoted w. Thus, the
vector z can be represented in the form

z = (t∗; w). (4.2)

On exit from outcome (ii) the elements of w are all zeros. However, being a component
of the sign vector, each component wi of w can take the value of either +1 or −1. Let
each combination of these +1, −1 be denoted w(v). Obviously, the number of all such
combinations is nm = 2m. Each vector w(v) gives rise through (4.2) to a corresponding
sign vector

z(v) = (t∗; w(v)). (4.3)

so the number of all possible vectors z(v) is also nm. On account of (3.21) let Bv

be the matrix associated with the respective z(v). Further, let µ(Bv) denote the real
maximum magnitude eigenvalue of

Bvx = µA0x. (4.4)

Obviously

µ∗ = max(µ(Bv), v = 1, ..., nm). (4.5)

The above procedure for attaining µ∗ will be referred to as Procedure 4.1. Since
m is bounded by m̄ , the numerical complexity of Procedure 4.1 and, hence, of the
method for computing remains polynomial.

We now present Algorithm 4.1 in detail.

Algorithm 4.1 (use of outer solutions). The steps of this algorithm are executed
successively unless there is a branching.

0. (initialization). Set B = [−R,R] and choose a value for m̄ (e.g., m̄ = 12). Set
k = 0 (k will denote the current number of the basic cycle iteration). Introduce
the 2n - dimensional zero vector z0.

1. Let k = k + 1. Apply Procedure 3.1 to compute the lower bound µ and the
corresponding eigenvectors x and y.

2. Use the eigenvector x to fix the index s using the normalization rule (3.7). Using
µ and s, set up system (3.26a). Apply the method of [14] (or [3] if the matrix C

is structured) trying to determine the outer solution u. If this is possible, form
the outer solution x using (3.30) and determine by (2.18b) its sign vector zx.
Otherwise, go to Step 10.

3. Using µ and s, set up system (3.29). Apply the method from [14] (or [3]) to
determine the outer solution v. If this is possible, form the outer solution y

using (3.31) and determine by (2.18b) its sign vector zy. Otherwise, go to Step
10.

4. Form the 2n-dimensional sign vector z = (zx; zy). If z contains no zero compo-
nents, go to Step 5; otherwise go to Step 6.

5. Using the corresponding outer solutions x and y found in Steps 2 and 3, form
by (3.37b) the real matrix B∗ and solve the eigenvalue problem (3.37a) to find
µ∗. Go to Step 9.

6. If z = z0, go to Step 8.

14 L. V. Kolev, Regularity Radius of Interval Matrices

7. Using z, determine the modified matrix B′ with elements defined by (4.1a).
Form by (4.1b) the modified matrix A′, renamed it as A and update its center
and radius according to (1.2b). Set z0 = z and go to Step 1 (to start a new
iteration of the basic cycle).

8. Let m denote the number of zero components of the current sign vector z. If
m > m̄, go to Step 10; else apply Procedure 4.1.

9. Termination 1. The exact (within rounding errors) value of µ∗ has been found.
Finally, the regularity radius r∗ of the interval matrix A is determined as

r∗ = 1/µ∗.

10. Termination 2. A lower bound µ on µ∗ has been found and, hence, an upper
bound

r̄ = 1/µ

on r∗ has been determined.

Remark 4.1. If the width of the interval matrix A is relatively small, the algorithm
terminates in Step 9 providing the exact regularity radius r∗. For larger widths,
however, Algorithm 4.1 fails to compute r∗ since C and D are not strongly regular
(the matrix M from the method [14] used in Steps 2 and 3 turns out to be not non-
negative). Also if m > m̄, only an upper bound r̄ on r∗ is attained.

To ensure polynomial complexity of Algorithm 4.1, the interval matrices C and D

in (3.26a) and (3.29), respectively, should be strongly regular. If this is not the case,
the problem of determining the regularity radius r∗ of the interval matrix A could
still be solved in polynomial time if use is made of the interval hull solutions u∗ and
v∗ of systems (3.26a) and (3.29) provided the solution sets X and Y of these systems
intersect a “small” number of orthants. More precisely, the numbers pX and pY of
nonempty intersections of X and Y with the orthants should be polynomially bounded
[4]. In this case, the method of [4] can determine the hull solutions in polynomial
time (or establishes the singularity of the interval matrix involved). Thus, the second
version of the present algorithm denoted Algorithm 4.2 differs from Algorithm 4.1 only
in that the outer solutions u and v in Step 2 and Step 3 are replaced by the interval
hull solutions u∗ and v∗ , which are computed by the method of [4].

Remark 4.2. It is easily seen that the use of the interval hull solutions u∗ and v∗

rather than the outer solutions u and v leads to easier satisfaction of the constant
sign conditions (3.36). Thus, it is expected that Algorithm 4.2 will determine the
regularity radius r∗ in cases where Algorithm 4.1 manages to compute only an upper
bound r̄. At the same time, determining u∗ and v∗ is much more time consuming
than determining u and v. These observations will be confirmed by the numerical
evidence reported in the next section.

5 Numerical examples

We illustrate the applicability of the method suggested by way of several examples.
The linear interval systems (3.26a) and (3.29) have been solved using the method
from [14] or [4] depending on whether Algorithm 4.1 or Algorithm 4.2 is applied to the
example considered. Both algorithms have been implemented in a simplified manner
without resorting to Procedure 4.1. All computations have been done on a 1.7 GHz
PC computer using the matlab environment and toolbox intlab [19], version 5.5. To

Reliable Computing 16, 2011 15

simplify the presentation, the numerical results will be reported only to four decimal
places. The first four examples illustrate the application of Algorithm 4.1.

Example 1 . In this example, the interval matrix A whose regularity radius we are
interested in is constructed in the following manner. First (as in [18]), two 7 × 7
matrices are generated in a random way (each entry is a random integer from the
interval [−9, 9]:

S =

4 1 2 −4 −4 5 −9
5 6 4 −9 −2 7 6

−2 9 7 −8 9 −3 0
5 −8 2 −1 −4 2 3

−4 −4 6 6 2 9 8
−5 4 9 −5 1 −7 9

3 −9 1 −8 −8 6 −4

, (5.1)

∆ =

0 2 3 3 9 9 4
2 2 1 1 6 4 4
3 1 7 3 6 2 1
3 1 3 5 0 4 9
9 6 6 0 2 7 3
9 4 2 4 7 2 9
4 4 1 9 3 9 6

, (5.2)

the second matrix being symmetric. Since S is nonsingular, the following matrix is
introduced

B = −ST S. (5.3)

Now a symmetric interval matrix of the form

B = [B, B + ε.∆] (5.4)

is constructed where

ε = 0.2. (5.4a)

At this point, the matrix in (5.4) is transformed into a non-symmetric matrix by
letting

Bij = 0, i, j ≥ α, (5.5a)

α = 6, (5.5b)

i.e. by nullifying the elements Bij on and above the diagonal n − α of B. Finally, A

is obtained by subtracting a diagonal matrix from the new B as follows

A = B − 100E (5.6)

(where E is the identity matrix).

For this example, the problem considered is solved successfully by the method
suggested since Algorithm 4.1 terminates in Step 9 providing the exact value of r∗.
The basic cycle takes 2 iterations to converge, i.e. k = 2. At the first iteration (k = 1),
the outer solutions x and y are

x =([0.2907, 0.5134], [−0.1823,−0.0550], [−0.4437,−0.2728],
(5.7a)

[−0.1639, −0.0627], [−0.2752, −0.1198], [−0.9161, −0.4169], [1.0000, 1.0000]),

16 L. V. Kolev, Regularity Radius of Interval Matrices

y =([0.1352, 0.3718], [−0.0955, 0.0476], [−0.5486,−0.3681],
(5.7b)

[−0.1790,−0.00870], [−0.1867, −0.0249], [−0.4858, 0.1191], [1.0000, 1.0000]).

and it is seen that now
0 ∈ y2, 0 ∈ y6. (5.8)

Thus,
I1 = {1, ..., n}, I2 = ∅, J1 = {1, 3, 4, 5, 7}, J2 = {2, 6} (5.9)

and since J2 6= ∅ we are led to start a second iteration of the basic cycle. On account
of (5.9) and (4.1a), the modified interval matrix B′ will have proper (non-degenerate)
interval entries only in the positions of the second and sixth rows, which are equal to
the respective entries of the initial matrix B. The remaining elements whose indices
i ∈ I1 and j ∈ J1 are real numbers and, according to Theorem 3.3, their values are
determined by (4.1a). Thus, we have formed the modified matrix B′. At this stage,
the corresponding matrix A′ is set up by (4.1b), A′ is renamed A and the second
iteration is initialized from Step 1 of Algorithm 4.1. At the end of the iteration, the
relevant data are

x =([0.3884, 0.4636], [−0.1588,−0.0870], [−0.3804,−0.3283],
(5.10a)

[−0.1282, −0.1141], [−0.2418, −0.1987], [−0.8302, −0.5843], [1.0000, 1.0000]),

y =([0.2952, 0.3312], [−0.0775,−0.0615], [−0.4340,−0.4106],
(5.10b)

[−0.1448, −0.1305], [−0.1571, −0.1343], [−0.4135, −0.3463], [1.0000, 1.0000]).

It is seen that condition (3.36) is now fulfilled so the sign vector z = (zx; zy) formed
in Step 4 contains no zero. Thus, the algorithm terminates in Step 9 with

µ∗ = µ = 0.3100. (5.11)

Finally,
r∗ = 1/µ∗ = 3.2254. (5.12)

The time needed by the algorithm to determine r∗ is T = 0.091 sec.
The relevant data on the example considered are given in Table 1. The input data

Input data Output data
n α ε k N |µ∗| r∗ T [s]
7 6 0.2 2 6 0.3100 3.2254 0.091

Table 1: For the first matrix in Example 1.

are the values of the parameters α and ε defining the matrix studied. The output
data are: k (number of the basic cycle iterations), N (total number of inner iterations
needed by Procedure 3.1), the values of |µ∗| and r∗ as well as T (execution time in
seconds).

A second matrix A has been constructed in the same way as before. The only
difference is that now α = 5. The relevant results associated with the input data
chosen are given in Table 2.

Reliable Computing 16, 2011 17

Input data Output data
n α ε k N |µ∗| r∗ T [s]
7 5 1 5 17 0.7519 1.3299 0. 227

Table 2: For the second matrix in Example 1.

Example 2. In this example, the interval matrix A is constructed in the following way.
Initially, its center matrix Ac is symmetric

(Ac)ij = (γ0 + iγ1)δij + (2/(n + 1))1/2 sin(ijπ/(n + 1)) (5.13a)

(δij is the Kronecker symbol) where γ0, γ1 are constants, n being the size of the matrix.
To make Ac asymmetric, the elements (Ac)ij on and above the diagonal n − α of Ac

will be fixed to a constant β. For this example α was chosen to be α = 2 so three
elements of Ac are modified as follows

Ac(1, n) = β, Ac(1, n − 1) = β, Ac(2, n) = β. (5.13b)

The radius matrix of A is defined by

R = ε|Ac|. (5.13c)

Several interval matrices A will be constructed using different values for the constants
involved.

We first consider a matrix A for which the defining (input) data are

n = 10, ε = 0.04, β = 80, γ0 = 0.4, γ1 = 0.8. (5.13d)

The application of Algorithm 4.1 of the present method results in the successful deter-
mination of the regularity radius r∗ of the matrix A defined by (5.13). The radius r∗

is obtained for four iterations of the basic cycle (k = 4) and a total of twelve iterations
of the inner iterations (N = 12) (see Table 3).

Input data Output data
n ε β γ0 γ1 k N |µ∗| r∗ T [s]
10 0.04 80 0.4 0.8 4 12 0.9294 1.0760 0.180

Table 3: For the first matrix in Example 2.

We next consider a matrix A for which the defining (input) data are

n = 20, ε = 0.08, β = 600, γ0 = 4, γ1 = 1. (5.14)

The relevant data for this matrix are given in Table 4.
Finally, we construct a matrix A whose defining data are

n = 50, ε = 0.1, β = 5000, γ0 = 4, γ1 = 1.2. (5.15)

The relevant data for this matrix are given in Table 5.

18 L. V. Kolev, Regularity Radius of Interval Matrices

Input data Output data
n ε β γ0 γ1 k N |µ∗| r∗ T [s]
20 0.08 600 4 1 4 15 0.8125 1.2307 0.381

Table 4: For the second matrix in Example 2.

Input data Output data
n ε β γ0 γ1 k N |µ∗| r∗ T [s]
50 0.1 5000 4 1.2 7 30 0.9294 1.0342 1.232

Table 5: For the third matrix in Example 2.

Example 3. This example has been designed to show that in some cases Algorithm 4.1
of the present method may only terminate with an upper bound r̄ on the regularity
radius r∗. With this in mind, we construct a family of interval matrices in the following
way. As in the previous example, the parameters n, α, ε, γ0 and γ1 are fixed at the
following values:

n = 10, α = 2, ε = 0.04, γ0 = 0.4, γ1 = 0.8. (5.16)

The parameter β, however, is now variable. The objective is to (approximately) deter-
mine the boundary value β of β for which the exact value of r∗ can still be determined
without resorting to the use of Procedure 4.1. The value of β was found through de-
creasing the current value of β by an increment ∆β until failure of the algorithm mode
studied. The increment was chosen to be ∆β = 1. The relevant results obtained are
given in Table 6. It is worth noting that the constant sign pattern at the last iteration

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
10 8 8 31 0.2323 4.3050 0.550

Table 6: The first experiment for Example 3.

of the basic cycle (k = 8) is

zx = (1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1), (5.17a)

zy = (−1 1 − 1 1 1 1 1 1 1 1), (5.17b)

i.e. no components yi and xj of the outer solutions yand x contain zero.
If β̄ = 8 is decreased by ∆β to β = 7 , the method is now incapable of determining

the radius r∗ (if Procedure 4.1 is not used). In this case, Algorithm 4.1 terminates
in Step 10. Indeed, for two consecutive iterations the sign pattern vector z = (zx; zy)
with components

zx = (1 0 − 1 − 1 − 1 − 1 − 1 − 1 − 1 0), (5.18a)

zy = (−1 1 0 1 0 0 1 0 1 0), (5.18b)

Reliable Computing 16, 2011 19

remains unchanged. It is seen that the subsets referring to the zero elements of (5.18a)
and (5.18b) are I2 = {2, 10} and J2 = {3, 5, 6, 8, 10} so m1 = 2 while m2 = 5. Thus,
m = m1 + m2 = 7. If we assume (just for illustrative purposes) that m̄ = 6, then
m > m̄ and, hence, Procedure 4.1 is inapplicable. In Table 7, data about the results
obtained are given which illustrate the case where only an upper bound r̄ on the
regularity radius r∗ can be obtained using the lower bound µ found by Procedure 3.1.

Input data Output data

n β̄ k N |µ| r̄ T [s]

10 7 7 31 0.2141 4.6713 0. 460

Table 7: The second experiment in Example 3.

Further reduction of β to β = 6 results in the subsets I2 = {2 ÷ 10} and J2 =
{2 ÷ 8, 10} with m1 = 9 and m2 = 8, respectively, since for two consecutive iterations

zx = (1 0 0 0 0 0 0 0 0 0), (5.19a)

zy = (1 0 0 0 0 0 0 0 − 1 0). (5.19b)

Thus, m = m1+m2 = 17, m > m̄ (if m̄ = 12) and, hence, Procedure 4.1 is inapplicable.
In Table 8, data about the results concerning the upper bound r̄ are given. It is seen

Input data Output data

n β̄ k N |µ| r̄ T [s]

10 6 4 23 0.1451 6.8895 0.391

Table 8: The third experiment in Example 3.

that for β = 6 the failure of the method to determine the regularity radius r∗ precisely
is due to the fact that too many components yi and xj of the outer solutions y and
x contain zero.

Finally, we let β = 2. Once again, Algorithm 4.1 terminates in Step 10. The
relevant data for this case are given in the following table. However, Algorithm 4.1

Input data Output data

n β̄ k N |µ| r̄ T [s]

10 2 2 6 0. 0832 12.0217 0.080

Table 9: The fourth experiment in Example 3.

terminates in Step 10 because the method of [14] cannot find an outer solution to
system (3.26a) in Step 2. Indeed, the matrices C and D related to the interval matrix
A considered turn out not to be strongly regular at some iteration k (the matrix M
from the method [14] is not non-negative).

20 L. V. Kolev, Regularity Radius of Interval Matrices

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
10 6 4 18 0.1968 5.0820 42.16

Table 10: Algorithm 4.2 results for the first matrix in Example 4.

Example 4. This example illustrates the application of Algorithm 4.2. Two matrices
are considered. The input data for the first matrix are same as those given in (5.16)
and Table 8. The output results are given in Table 10. It is seen that Algorithm
4.2 determines r∗ exactly while Algorithm 4.1 provides only an upper bound r̄. On
the other hand, the time needed by the second algorithm is much larger than that
of the first algorithm. Nevertheless, Algorithm 4.2 solves the problem considered in
polynomial time since pX and pY are polynomial bounded. The values of pX and pY

for the corresponding iteration (value of k) are given in Table 11.

k 1 2 3 4
pX 5 2 1 1
pY 24 12 2 1

Table 11: Values for the first matrix in Example 4.

The second matrix has the input data of the example given in (5.16) and Table 9.
The corresponding output data for the solution obtained by Algorithm 4.2 are given
in Table 12 and Table 13. Once again, Algorithm 4.2 solves the problem exactly

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
10 2 5 15 0.1388 7.2060 50.83

Table 12: Algorithm 4.2 results for the second matrix in Example 4.

k 1 2 3 4 5
pX 11 6 3 1 1
pY 24 6 2 2 1

Table 13: Values for the second matrix in Example 4.

whereas Algorithm 4.1 fails to compute r∗.
Example 5. This example serves to show that the present method can, when applicable,
determine the regularity radius r∗ of interval matrices of higher sizes (up to n = 500
in the present paper) in polynomial time.

We first consider an interval matrix A of size n = 100 that is constructed in the
same way as in Example 2, (5.15). The parameter α is again α = 2 but β = 50000.

Reliable Computing 16, 2011 21

We try to compute r∗ by applying Algorithm 4.1. It turns out that for the matrix A

considered the resulting matrices C and D are all strongly regular so Algorithm 4.1
solves the problem of determining r∗. The output data are given in Table 14.

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
100 50000 4 13 2.6971 0.3708 5.434

Table 14: Algorithm 4.1 output for the first matrix in Example 4.

Next n is increased to n = 200. Now Algorithm 4.1 is inapplicable since C and D

are not strongly regular. However, if α is changed from α = 2 to α = 6 Algorithm 4.1
is again applicable yielding the output results given in Table 15.

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
200 50000 5 21 6.4256 0.1556 30.43

Table 15: Algorithm 4.1 output for the order 200 matrix.

Further increase of n to n = 300, n = 400 and n = 500 showed that Algorithm 4.1
is only capable of finding the upper bound r̄ on r∗ for either value of α = 2 or α = 6.
Output data for the case of α = 2 are given in Tables 16, 17 and 18.

Input data Output data

n β̄ k N |µ| r̄ T [s]

300 50000 6 35 0.3657 2.7226 154.8

Table 16: Algorithm 4.1 applied to an order 300 matrix.

Input data Output data

n β̄ k N |µ| r̄ T [s]

400 50000 6 42 0.2799 3.5723 407.6

Table 17: Algorithm 4.1 applied to an order 400 matrix.

It is interesting that for n = 300 Algorithm 4.1 is incapable of determining r∗

since the sign vector z = (zx; zy) contains the same pattern of zero elements for two
consecutive iterations of the basic cycle. More precisely, the number of zeros in zx is
235 and there are 266 zeros in zy.

Finally, the second version Algorithm 4.2 has been applied to the same matrices
with n = 300, n = 400 and n = 500 (as defined in Tables 16, 17 and 18) in an attempt
to determine r∗. The corresponding output data are reported in Tables 19, 20 and 21.

22 L. V. Kolev, Regularity Radius of Interval Matrices

Input data Output data

n β̄ k N |µ| r̄ T [s]

500 50000 5 43 0.2449 4.0834 821.7

Table 18: Algorithm 4.1 applied to an order 500 matrix.

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
300 50000 1 6 0.3711 2.6945 674.2

Table 19: Algorithm 4.2 applied to an order 300 matrix.

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
400 50000 1 7 0.2896 3.4528 1620

Table 20: Algorithm 4.2 applied to an order 400 matrix.

Input data Output data

n β̄ k N |µ∗| r∗ T [s]
500 50000 1 7 0.2482 4.0293 1403

Table 21: Algorithm 4.2 applied to an order 500 matrix.

The smaller time T in Table 21 as compared with Table 20 is explained by the fact
that the numbers of intersections pX and pY are larger for the former problem than
for the latter one.

It is worth noting the following two points. First, the upper bounds r̄ obtained by
Algorithm 4.1 (reported in Tables 16, 17 and 18) are fairly good approximations on
the corresponding regularity radii r∗. Second, the computer time needed to determine
the exact (within rounding) values of r∗ by Algorithm 4.2 increases slowly with respect
to n. Although this is due to the fact that the number of orthants intersected by the
solution sets X and Y for all matrices considered here is small, this experimental ob-
servation is encouraging since it seems realistic in various practical problems. Indeed,
frequently, due to physical or economical restrictions, many of the problem variables
xi do not change sign, which could lead to small numbers of orthant intersections and,
hence, to possible applications of Algorithm 4.2.
Example 6 . In this final example, the present method is tested on a set S of randomly
generated interval matrices whose coefficients are normally distributed with zero mean.
More specifically, as in the last example of [5] the center matrix Ac and radius matrix
R of each individual matrix A from A are given by

Ac = randn(n), ρ = 0.02 · randn and R = ρ · randn(n), (5.20)

where randn is the matlab program for creating normal distribution matrices. The

Reliable Computing 16, 2011 23

results obtained are given in Tables 22 to 24 for n = 10, n = 20, and n = 30,
respectively. The test turns out to be a difficult one for Algorithm 4.1: the regularity

Algorithm 4.1 for n = 10 Algorithm 4.2 for n = 10

ρ × 10−2 r̄ r∗ T [s] ρ × 10−2 r̄ r∗ T [s]

2.6024 3.8168 0.152 0.6700 4.7335 10.7

0.2108 8.9883 0.055 0.3386 - 3.664 7.29

0.3654 2.1310 0.237 0.6812 10.4380 0.056

2.5280 0.9997 0.025 2.7911 3.6758 48.0

1.8651 22.3132 0.0084 1.5358 5.5647 51.8

2.4903 0.8429 0.027 0.7820 4.8362 0.188

2.0201 1.4668 0.012 1.0290 5.5179 20.3

1.3600 8.3255 0.017 2.1014 1.5314 32.2

3.2781 3.6622 0.089 0.5412 23.6189 0.072

3.8815 1.1156 0.164 2.0072 1.5178 28.8

Table 22: The algorithms applied to randomly generated matrices of order 10.

Algorithm 4.1 for n = 20 Algorithm 4.2 for n = 20

ρ × 10−2 r̄ r∗ T [s] ρ × 10−2 r̄ r∗ T [s]
1.9907 0.6663 0.137 0.8452 1.6287 150
2.3800 0.3619 0.043 2.4031 0.4579 64.7
2.9500 0.7598 0.030 0.3891 3.0330 208
2.3837 0.3619 0.042 2.3457 0.3162 312
2.1100 2.0778 0.114 1.0564 0.6729 151
0.8600 0.1847 0.669 2.0041 0.1684 36.6
2.1400 0.3740 0.376 0.5610 0.7012 140
1.6327 0.4892 0.694 0.3586 0.9545 37.4
3.0100 0.3948 0.316 1.6027 0.4502 76.7
0.9400 2.6116 0.046 0.6010 7.8567 1.01

Table 23: The algorithms applied to randomly generated matrices of order 20.

radius r∗ has been determined only for 3 matrices (one for each n). For the remaining
27 matrices, Algorithm 4.1 is only capable of computing an upper bound r̄ on r∗. This
is due mainly to the fact that most of the generated matrices (24 out of 27) proved
not to be strongly regular and, hence, the outer solutions u and vcannot be found by
the method of [14]; for 3 matrices, Algorithm 4.1 terminated in an incomplete sign
constancy condition.

As expected, Algorithm 4.2 performs much better than Algorithm 4.1: the total
number of cases with successful determination of r∗ is now 15. For the remaining
matrices the algorithm has only yielded an upper bound r̄ on r∗.

The data on the times needed by the successful runs of Algorithm 4.2 indicate
that the algorithm requires a polynomial amount of computation for the set of ma-
trices considered. Indeed, let T a

10, T a
20, and T a

30 denote the average time taken by the

24 L. V. Kolev, Regularity Radius of Interval Matrices

Algorithm 4.1 for n = 30 Algorithm 4.2 for n = 30

ρ × 10−2 r̄ r∗ T [s] ρ × 10−2 r̄ r∗ T [s]
2.1200 0.6362 0.338 0.8800 0.8551 856
0.3100 2.1946 0.863 0.890 1.0126 1255
0.4600 3.807 0.218 18.198 2.107
3.2400 0.2950 0.471 0.4861 3.6539 2211
1.6100 0.2450 0.864 0.0702 12.570 159
0.9900 0.5481 0.202 0.2030 2.5244 89.6
1.6500 0.8362 0.404 0.7100 2.7909 0.278
0.8237 0.2059 0.579 0.5000 10.871 0.094
1.9400 0.7876 0.125 2.7900 0.4284 178
2.8700 0.8983 0.554 1.7050 0.3527 188

Table 24: The algorithms applied to randomly generated matrices of order 30.

successful runs for n1 = 10, n1 = 20, and n1 = 30, respectively. So

T a
10 = 28.08, T a

20 = 147.9, T a
30 = 829.5.

It is seen that

q1 = T a
20/T a

10 = 5.27 < 10

q2 = T a
20/T a

10 = 5.61 < 10.

If the method had exponential complexity, the corresponding quotients would be

q′1 = 2n2/2n1 = 210 = 1024

q′2 = 2n3/2n2 = 210 = 1024.

The comparison of q1 with q′1 and q2 with q′2 confirm the conclusion concerning the
polynomial complexity of the present method for the set of matrices considered in this
example.

Remark 5.1. The choice (5.20) for constructing the random matrices from the
present example is not unique. An alternative rule for constructing the random ma-
trices used (as suggested by the first reviewer of the present paper) could be:

Ac = randn(n), R = ones(n). (5.21)

The choice (5.20), however, seems preferable (at least for the Example 6) for the
following three reasons:

(i) The choice (5.21) for R makes the example too unbalanced: numerical evidence
shows that the overwhelming majority of matrices thus generated are singular (but as
is well known establishing singularity is much easier than checking regularity). The
coefficient 0.02 used in the expression for ρ in (5.20) ensures that the set S contains
both regular and singular interval matrices.

(ii) Such a choice for R is quite natural for engineering applications (cf., e.g., [6])
since each element rij is given a “tolerance” which is a certain small percentage of the
“nominal” value (Ac)ij . A tolerance of 2% is a typical value.

Reliable Computing 16, 2011 25

(iii) Finally, the choice (5.20) has already been used in [5] for n = 10 and the
author of the present paper was curious to obtain comparable numerical results for
higher n.

6 Concluding remarks

It has been shown that the problem of determining the regularity radius r∗ of an inter-
val matrix can be equated to that of finding the real maximum magnitude eigenvalue
µ∗ of an associated interval generalized eigenvalue problem (2.3). An iterative method
of polynomial complexity for solving the latter problem has been suggested. At each
iteration, a lower bound |µ| on |µ∗| and outer interval bounds x and y or interval hull
envelopes x∗ and y∗ on the right and left eigenvectors of (2.3) are used. The outer
bounds x and y or the hull envelopes x∗ and y∗ are found using the corresponding
interval solutions of the linear interval systems (3.26a) and (3.29). The method sug-
gested is capable of determining the exact (within rounding) regularity radius r∗ if µ
and µ∗ are simple eigenvalues and, eventually, the solutions x and y or x∗ and y∗

satisfy the constant sign conditions (3.36) associated with the original interval matrix
A or the current modified matrix (4.1). Otherwise, it only provides a tight upper
bound r̄ on r∗.

Several numerical examples with interval matrices whose size is n ≤ 500 illustrate
the potential of the new method. It should, however, be borne in mind that its
present implementation is based on full-matrix operations, limiting the application of
the method to moderate size problems.

Future research will concentrate on enhancing the numerical efficiency and, hence,
the applicability of the method. One possibility is to implement the algorithm in
Section 4 using sparse matrix techniques. An open problem is to extend the present
method to interval matrices where double (or multiple) eigenvalues µ and µ∗ are
encountered. Another objective is to generalize this paper’s approach to the case of
parametric matrices, in particular to matrices whose elements depend linearly on a set
of interval parameters.

Acknowledgements

The author wishes to express his gratitude to two of the anonymous referees for their
valuable comments and suggestions.

References

[1] L. Carotenuto et al. Computational method to analyze the stability of interval
matrices. IEE Proc. Control Theory Appl., 151:669–674, 2004.

[2] L. Jaulin et al. Applied Interval Analysis with Examples in Parameter and State
Estimation: Robust control and Robotics. Springer, London, 2001.

[3] C. Jansson. Interval linear systems with symmetric matrices, skew-symmetric
matrices and dependencies in the right hand side. Computing, 46:265–274, 1991.

[4] C. Jansson. Calculation of exact bounds for the solution set of linear interval
systems. Linear Algebra and its Applications, 251:321–340, 1997.

26 L. V. Kolev, Regularity Radius of Interval Matrices

[5] C. Jansson and J. Rohn. An algorithm for checking regularity of interval matrices.
SIAM J. Matrix Anal. Appl., 20:756–776, 1999.

[6] L. Kolev. Interval Methods for Circuit Analysis. World Scientific, Singapore, New
Jersey, London, 1993.

[7] L. Kolev. Determining the positive definiteness margin of interval matrices. Re-
liable Computing, 13:445–466, 2007.

[8] L. Kolev L. and S. Patrakieva. Assessing the stability of linear time-invariant
continuous interval dynamic systems. IEEE Transactions on Automatic Control,
50:393–397, 2005.

[9] M. Mansour. Robust stability of interval matrices. In Proceedings of the 28th
Conference on Decision and Control, Tampa, FL, pages 46–51, 1989.

[10] S. Poljak and J. Rohn. Radius of nonsingularity. Technical report, Research
Report, KAM Series 88-117, Faculty of Mathematics and Physics, Charles Uni-
versity, Prague, 1988.

[11] S. Poljak and J. Rohn. Checking robust nonsigularity is NP-hard, mathematics
of control. Signals, and Systems, 6:1–9, 1993.

[12] B. Polyak. Robust linear algebra and robust aperiodicity. In Directions in Math-
ematical Systems Theory and Optimization, LNCIS 2003, 286, pages 249–260. A.
Rantzer, C. Byrnes (Eds.), 2003.

[13] J. Rohn. Stability of interval matrices: the real eigenvalue case. IEEE Transac-
tions on Automatic Control, 37:1604–1605, 1992.

[14] J. Rohn. Cheap and tight bounds: the recent result by E. Hansen can be made
more efficient. Interval Computations, pages 13–21, 1993.

[15] J. Rohn. Interval matrices: singularity and real eigenvalues. SIAM Journal on
Matrix Analysis and Applications, 14:82–91, 1993.

[16] J. Rohn. Checking positive definiteness or stability of symmetric interval matrices
is np-hard. Computat. Math. Univ. Carol., 35:795–797, 1994.

[17] J. Rohn. Positive definiteness and stability of interval matrices. SIAM Journal
on Matrix Analysis and Applications, 15:175–184, 1994.

[18] J. Rohn. An algorithm for checking stability of symmetric interval matrices. IEEE
Trans. on Automatic Control, 41:133–136, 1996.

[19] S. Rump. INTLAB INTerval LABoratory, in Tibor Csendes, ed., Developments
in Reliable Computing, (1999), pp. 77–105. Kluwer, Dordrecht, Netherlands,
1999.

