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Abstract

We develop a technique for computing tolerable solution set for inter-
val linear systems with convex polyhedral ties upon its coefficients. The
tolerable solution set in the above problem is proved to be the intersec-
tion of finite number of hyperstripes, i.e. a solution set to a finite system
of two-sided nonstrict linear inequalities. For some specific ties on the
coefficients, we propose simplified variants of the general method.
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Interval linear algebraic system of equations (shortly ILAS) of the form Ax = b
with an interval matrix A ∈ IRm×n and an interval right-hand side b ∈ IRm is a family
of point systems of linear algebraic equations of the same form Ax = b, in which the
matrix A passes through the interval matrix A and the right-hand side vector b passes
through the interval vector b.

For the interval linear system Ax = b, various solution sets can be defined [10],
and the most popular of them are united solution set and tolerable solution set. We
are going to consider tolerable solution set, TSS in brief. It is denoted as Ξtol(A, b)
and consists of all such vectors x that, for any coefficient matrix A from the interval
matrix A, the product Ax falls into the interval b:

Ξtol(A, b) :=
{
x ∈ Rn

∣∣ (∀A ∈ A) (Ax ∈ b)
}
. (1)

A tie on the coefficients of ILAS is meant to be a set of m×n-matrices that imposes
an additional constraint on the entries of A from A. The tie will be denoted as G. The
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set G may be described in various ways. In the situations where the misunderstanding
cannot occur, we refer to any description of the set G as the tie on the coefficients too.

In our work, we restrict ourselves only to the ties that are convex polyhedrons,
and we call them convex polyhedral ties.

Interval linear system of algebraic equations Ax = b with the tie G on the coef-
ficients is a family of the equations Ax = b in which the coefficient matrix passes
through the set A ∩ G and the right-hand side passes through the interval b.

Tolerable solution set for the interval linear system Ax = b with the coefficients
tie G is defined to be the set

Ξtol(A ∩ G, b) :=

{
∅, if A ∩ G = ∅,
{
x ∈ Rn

∣∣ (∀S ∈ (A ∩ G))(Sx ∈ b)
}
, otherwise.

(2)

Interval linear systems of equations with dependent parameters have been studied
in a good deal of papers. See, for example, [1, 2, 3, 5, 6, 7, 8, 9, 11, 12] and bibliography
to them. But so far only united solution set was the object under study. Our work
considers tolerable solution set.

The structure of the paper is as follows: Section 1 presents notation and necessary
preliminaries, Section 2 is devoted to derivation of the technique for computing the
tolerable solution set to interval linear systems with convex polyhedral ties on the co-
efficients, and, in Sections 3–4, simplified versions of the general method for particular
forms of ties are developed.

1 Notation and necessary preliminaries

In this paper, starting from Introduction, we follow the notation proposed in [4]. In
particular, IR := {[z, z] | z, z ∈ R, z ≤ z} is the set of intervals over the real axis,
∗IR := {[z, z] | z ∈ R ∪ {−∞}, z ∈ R ∪ {∞}, z ≤ z} is the set of extended intervals.

Boldface letters are used to designate intervals, interval vectors and matrices; for
example, A ∈ IRm×n is an interval m×n-matrix. Calligraphic letters are used to
designate sets; for example, S ⊂ Rm×n is a subset in the set of all the rectangular
point m×n-matrices. The lower index denotes projection of a set onto a coordinate
subspace; for example, if S ⊂ Rm×n then Si: = {(Si1, . . . , Sin) | S ∈ S} is an orthogonal
projection of the set S onto the coordinate subspace of the i-th row (i.e. the set of
possible values of the i-th row for the matrices from the set S).

The symbol “�” will stand for memberwise multiplication of the sets; as an ex-
ample, for S ⊂ Rm×n and x ∈ Rn, S � x = {Sx | S ∈ S} means the set of all the
products Sx in which the point matrix S is from S. The symbol “

⊗
” will denote usual

direct (Cartesian) product of the sets; in particular, for the set S ⊂ IRn, the equality
S =

⊗
j Sj means that the set S coincides with the direct product of its projections

onto the coordinate axes.
The set from Rn (or Rm×n) is called convex polyhedron if it can be described by

a finite system of nonstrict linear inequalities. Intersection of finite number of convex
polyhedrons is a convex polyhedron. Bounded convex polyhedron is called convex
polytope.

Vertex of a convex polyhedron is its point such that there does not exist a straight
line segment within the set for which the point under consideration is an interior
one. The vertices set of a convex polytope V will be denoted by vertV. This set
is finite. Furthermore, any convex polytope is the convex hull of its vertices set:
V = conv(vertV).
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The inclusion

c>x ∈ d, where c, x ∈ Rn, d ∈ IR, (3)

or, put it differently, two-sided nonstrict linear inequality of the form

d ≤ c>x ≤ d, where c, x ∈ Rn, d, d ∈ R, d ≤ d,

will be referred to as elementary linear inclusion. Hyperstripe is defined as solution
set to an elementary linear inclusion with respect to x.

The inclusion of the form

Cx ∈ d, where x ∈ Rn, C ∈ Rm×n, d ∈ IRm,

will be called matrix linear inclusion.

For vectors x ∈ Rn, the relationship of the form

c>x ∈ d, where c ∈ Rn, d ∈ ∗IR,

will be referred to as linear constraint. It is an elementary linear inclusion in case of
d ∈ IR, and it is a nonstrict linear inequality in case of d = [d,∞] or d = [−∞, d] with
d ∈ R.

2 Method for computing TSS for ILAS
with convex polyhedral tie

2.1 Reduction to solution of inclusion V � x ⊆ b,
where V is a convex polytope

We turn to determination of the tolerable solution set of an interval linear system
Ax = b with the tie G on its coefficients. First, we reformulate the definition of the
solution set so as to get rid of the quantifier prefix in (2). We arrive at

Ξtol(A ∩ G, b) =

{
∅, if A ∩ G = ∅,{
x ∈ Rn

∣∣ (A ∩ G)� x ⊆ b
}
, otherwise.

(4)

Let us consider the intersection of A and G. The tie G is taken only as a convex
polyhedron. The interval matrix A is a convex polytope. Hence, the intersection A∩G
is a convex polytope too. We denote it through V.

Therefore, to compute TSS of the system Ax = b with a convex polyhedral tie G
on the coefficients we have to develop a technique that solves, with respect to x, the
inclusion

V � x ⊆ b, where V is a convex polytope in Rm×n.

2.2 Properties of inclusion V � x ⊆ b

In this subsection, we consider properties of the inclusion V � x ⊆ b, and they help
us to construct the algorithm for its solution later. The first property is valid for an
arbitrary set of matrices from Rm×n, not only for convex polytopes.
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Property 1 Let S ⊆ Rm×n, x ∈ Rn, b ∈ IRm. The inclusion

S� x ⊆ b (5)

and the system of inclusions
&
i

(Si: � x ⊆ bi) (6)

mean the systems of the same elementary linear inclusions. But the number of occur-
rences of each elementary linear inclusion in the system corresponding to (6) is not
greater than that in the system corresponding to (5).

. Proof. Using the definition of the operation “�”, we rewrite the inclusion S� x ⊆ b
in the form &

S∈S
(Sx ∈ b). For the interval vector b, any matrix inclusion Sx ∈ b

is nothing but a system of elementary linear inclusions &
i

(Si:x ∈ bi). Therefore,

S� x ⊆ b is a concise form of

&
S∈S

&
i

(Si:x ∈ bi). (7)

Let us rearrange the elementary linear inclusions in (7):

&
i

&
S∈S

(Si:x ∈ bi). (8)

In (8), we change each block &
S∈S

(Si:x ∈ bi) to &
Si:∈Si:

(Si:x ∈ bi). This way, we

eliminate the repetitions of the elementary linear inclusions that may take place due
to the fact that different matrices S from the set S can have identical rows. We arrive
at

&
i

&
Si:∈Si:

(Si:x ∈ bi). (9)

Making use of the operation “�”, we can represent (9) in a short form:

&
i

(Si: � x ⊆ bi).
/

The sense of Property 1 is that the reduction from (5) to (6) eliminates obvious
repetitions of elementary linear inclusions.

Property 2 Let V ⊆ Rm×n be a convex polytope, x ∈ Rn, b ∈ IRm. Then

V � x ⊆ b ⇐⇒ (vertV)� x ⊆ b. (10)

. Proof.
=⇒) It is evident, since vertV ⊆ V.
⇐=) The set b is convex, therefore, for every its subset, the result of taking the

convex hull remains within the set b:

(vertV)� x ⊆ b =⇒ conv
(
(vertV)� x

)
⊆ b.

Multiplying by the vector x is a linear mapping. It transforms any convex combi-
nation of finite number of points to a combination of images of these points with the
same coefficients. Therefore,

(
conv(vertV)

)
� x ⊆ conv

(
(vertV)� x

)
.
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It remains to make use of the fact that the convex polytope V is the convex hull of its
vertices set: conv(vertV) = V. /

Property 2 allows one to change the inclusion V �x ⊆ b, which usually denotes an
infinite system of elementary linear inclusions, by a finite system of elementary linear
inclusions (vertV) � x ⊆ b. We make this transition by deleting, from the system,
those elementary linear inclusions that are implications of the rest of inclusions.

Proposition 1 Let V ⊂ Rm×n be a convex polytope, b ∈ IRm, x ∈ Rn. Then

V � x ⊆ b ⇐⇒ &
i

((
vert(Vi:)

)
� x ⊆ bi

)
. (11)

. Proof. Applying Property 1, we rewrite the inclusion V � x ⊆ b in the form

&
i

(Vi: � x ⊆ bi).

The projections Vi:, i = 1, . . . ,m, of the convex polytope V are convex polytopes by
themselves. Therefore, Property 2 holds true for them:

Vi: � x ⊆ bi ⇐⇒
(
vert(Vi:)

)
� x ⊆ bi.

/

Both Proposition 1 and Property 2 result in a finite system of elementary linear
inclusions that is equivalent to the inclusion V �x ⊆ b. Let us compare these systems,
writing them out in similar forms, when, in each system, the rows with the right-hand
side bi are separated to the i-th block:

from original form block form

System 1 (10) (vertV)� x ⊆ b &
i

(
&

V ∈vertV
Vi:x ⊆ bi

)

System 2 (11) &
i

((
vert(Vi:)

)
� x ⊆ bi

)
&
i

(
&

v∈vert(Vi:)
vx ⊆ bi

)

In such a block form, when all the elementary linear inclusions are explicitly written
out, it is fairly simple to realize (see Fig. 1) that System 2 is a subsystem of System 1.

Indeed, each row of the coefficients of the i-th block in System 1 corresponds to the
i:-th projection Vi: of a vertex V of the polytope V, while the rows of the coefficients
of the i-th block in System 2 correspond only to the vertices v of the projection Vi: of
the polytope V.

Notice that Proposition 1 is very convenient for computation of TSS to interval
linear systems without ties. Eliminating the quantifier prefixes in the definition (1), we
can conclude that Ξtol(A, b) coincides with the solution set of the inclusion A�x ⊆ b.
The interval matrix A is a convex polytope, therefore, by Proposition 1, Ξtol(A, b) is
described by a finite system of elementary linear inclusions

&
i

((
vert(Ai:)

)
� x ⊆ bi

)
.
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V

Vi:

}
— Vi:, V ∈ vertV

— v ∈ vert(Vi:)

Figure 1: How projection of vertices set relates to vertices set of projection

2.3 A technique for computing TSS

Let us return from the properties of the inclusion V � x ⊆ b to computation of the
tolerable solution set Ξtol(A ∩ G, b) of the system Ax = b with a convex polyhedral
tie G imposed on the coefficients of the system. Proposition 1 proved in Section 2.2
completes the following chain of arguments:

1. First, in Section 2.1, we transformed the definition (2) to the equality (4). The
formula (4) means that if A ∩ G = ∅ then Ξtol(A ∩ G, b) is also empty, and if
A ∩ G �= ∅ then Ξtol(A ∩ G, b) coincides with the solution set of the inclusion
(A ∩ G) � x ⊆ b with respect to the unknown x.

2. Further, in Section 2.1, we pointed out that, for convex polyhedron G, the
intersection A ∩ G is a convex polytope.

3. Finally, relying on Proposition 1, we can change the inclusion
(A ∩ G) � x ⊆ b, where A ∩ G is a convex polytope,
by a finite system of elementary linear inclusions

&
i

((
vert((A ∩ G)i:)

)
� x ⊆ bi

)
.

The above chain of arguments

• proves that the tolerable solution set for the interval system Ax = b with a
convex polyhedral coefficients tie G is the intersection of finite number of hyper-
stripes,

• and substantiates the following technique for finding this set.
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A method for computing tolerable solution set
to interval linear system of equations Ax = b

with convex polyhedral tie G on the coefficients:

Step I. Find the sets vert
(
(A ∩ G)i:

)
, i = 1, . . . ,m.

If at least one of them is empty, then Ξtol(A ∩ G, b) = ∅.
If all the sets are nonempty, go to Step II.

Step II. Produce a description of the solution set
to a finite system of elementary linear inclusions

&
i

((
vert((A ∩ G)i:)

)
� x ⊆ bi

)

in a necessary form.

(12)

A few words about Step II. The complexity of execution of Step II depends on
what is meant as ‘nesessary form’. Possible variants:

• exact description of the solution set

– optimal inequality system

– set of vertices and directions of polyhedron

• estimate of the solution set

– shape of the estimate (point, ellipse, interval)

– disposition with respect to the estimated set
(outer, inner, nearest in a certain metric)

So, we have a lot of options. But the problems of transition from the finite system
of elementray linear inclusions to each variant of the nesessary form of the solution
set are well known. They are considered, for instance, in identification theory of
linear systems. Additionally, the problems of computing various interval estimates are
treated in interval analysis when evaluating the united and tolerable solution sets of
ILAS (in case of point coefficient matrix). This is why we do not consider Step II in
detail and concentrate all our efforts on Step I only.

Let us agree that “we have found the set Ξtol(A ∩ G, b)” if Step I of the above
method is fulfilled.

To carry out Step I of the method (12), the following plan of actions looks reason-
able:

1. Find a description of the convex polyhedron G in the form of a finite system of
linear inequalities.

2. Add to this system the inequalities that represent membership in the interval
matrix A.

3. Find the vertices set of the polytope A∩G from the inequalities system obtained.

4. If the resulting set is empty, then Ξtol(A ∩ G, b) = ∅.

5. If the vertices set of the polytope A ∩ G is not empty, then project this set
onto the coordinate subspaces of separate rows and delete excess points from
the projections.
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Although quite complicated, this way is sufficiently universal. Specific complexity of
execution of Step I heavily depends on both the geometric properties and description
of the set G.

Taking into account particular features of the tie, we can develop simpler ways
of executing Step I of the method (12) for specific problems. In Sections 3–4, we
consider two special cases of the tie G and elaborate quite elementary algorithms for
Step I of (12) that have polynomial complexity.

3 Case 1: row-independent linear constraints

Characteristics of the convex polyhedral tie G:

1. The set G is defined as a finite system of linear constraints:

G ∈ G ⇐⇒ &
k=1,...,q

(∑

i,j

CkijGij ∈ dk

)
, (13)

where q ∈ N, Ckij ∈ R, dk ∈ ∗IR.

2. Each entry of the matrix G can occur with a nonzero coefficient in only one of
the linear constraints of the system (13), i.e.

Clij 6= 0 =⇒
(
∀k ∈ {1, . . . , q} \ {l}

) (
Ckij = 0

)
.

3. No two entries from one row of the matrix G can get into a linear constraint of
the system (13) with nonzero coefficients, i.e.

Ckir 6= 0 =⇒
(
∀j ∈ {1, . . . , n} \ {r}

) (
Ckij = 0

)
.

In particular, the sets of symmetric and skew-symmetric matrices can be represented
in the form corresponding to Case 1. For example, for square n×n-matrices the
description of the skew-symmetric matrices that matches Case 1 looks as follows:

Gij +Gji = 0, i = 1, . . . , n, j = i+ 1, . . . , n.

How the tie affects Step I of the method (12).

We denote the set of all index pairs (ij) for the entries of the matrix G by Idx:

Idx = {(ij) | i = 1, . . . ,m, j = 1, . . . , n}.

Additionally, Idxk will stand for the pairs of indices (ij) for which Gij occurs with a
nonzero coefficient in the k-th constraint:

Idxk = {(ij) ∈ Idx | Cijk 6= 0}.

The intersection of the sets A and G will be denoted as S.
By virtue of the first condition on the set G, the matrices S from the set S are

described by the system of linear constraints





&
k=1,...,q

(
∑

(ij)∈Idxk

CkijSij ∈ dk

)
,

&
(ij)∈Idx

(Sij ∈ Aij).
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Using the second condition on the set G, we split up the system to the blocks so as
different blocks do not have common variables:





&
k=1,...,q





∑
(ij)∈Idxk

CkijSij ∈ dk,

Sij ∈ Aij , where (ij) ∈ Idxk;

&
(ij)∈Idx \(

⋃
k

Idxk)
(Sij ∈ Aij).

(14)

In the above formula, a separate block corresponds to each index k. Additionally, a
separate block that consists of one constraint Sij ∈ Aij corresponds to each pair of
indices (ij) for which (∀k)(Ckij = 0). So, the values of the variables Sij entering into
one block do not depend on the values of the variables from the other blocks.

Using the third condition on the set G, we conclude that the entries of one row of
the matrix S cannot occur in the same block. Therefore, for every i, the variables Sij ,
j = 1, . . . , n, are not interdependent, wich implies

(∀i)
(
Si: =

⊗

j

Sij

)
.

Let us define the set Sij from the unique block of the system (14) that contains
the variable Sij .

If (ij) ∈ Idxk, then the only block that contains the variable Sij has the form

∑

(lr)∈Idxk

CklrSlr ∈ dk,

Slr ∈ Alr, where (lr) ∈ Idxk .

(15)

We rewrite (15) taking out the variable Sij :

Sij ∈
(

dk −
∑

(lr)∈ Idxk \{(ij)}
CklrSlr

)/
Ckij , (16a)

Slr ∈ Alr, where (lr) ∈ Idxk \{(ij)}, (16b)

Sij ∈ Aij . (16c)

Bearing in mind the special form of the constraint (16c), we obtain

Sij = Aij ∩ S̃ij , (17)

where S̃ij is the ij-th projection of the solution set to the system (16a)&(16b).

The constraints (16a) and (16b) allow us to think of the set S̃ij as the range of the
multivalued function

(
dk −

∑
(lr)∈ Idxk \{(ij)}

CklrSlr

)/
Ckij

over the interval
⊗

(lr)∈Idxk \{(ij)}
Alr. Such a viewpoint on S̃ij makes it clear that

S̃ij =
⋃

Slr∈Alr,
(lr)∈Idxk \{(ij)}

(
dk −

∑
(lr)∈ Idxk \{(ij)}

CklrSlr

)/
Ckij .
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Taking the union makes no difficulty, since the function under study is defined by a
rational expression with only one occurrence of every variable. We get

S̃ij =

(
dk −

∑
(lr)∈ Idxk \{(ij)}

CklrAlr

)/
Ckij . (18)

(The same result can be obtained by a more complicated way, having carried out all
the transformations of Fourier method that eliminates the unknowns Slr, (lr) 6= (ij),
from the system (16a)&(16b).)

Hence, for (ij) ∈ Idxk, the set Sij is determined from (17) and (18).

If (ij) ∈ Idx \
(⋃

k

Idxk

)
, then the only block that contains the variable Sij has

the form Sij ∈ Aij , and so Sij = Aij . Overall, we have

Sij =





Aij

⋂
((

dk −
∑

(lr)∈ Idxk \{(ij)}
CklrAlr

)/
Ckij

)
for (ij) ∈ Idxk,

Aij for (ij) ∈ Idx \
(⋃

k

Idxk

)
.

(19)

If the set Sij is not empty, then it is an interval.
We have demonstrated that, for the convex polyhedral tie G corresponding to

Case 1, the set (A ∩ G)i: is a direct product of the sets Sij computed by the formula
(19). Therefore, Step I of the method (12) for Case 1 looks as follows:

1. Find the sets Sij , (ij) ∈ Idx, according to the formula (19).

2. If any one of the sets obtained is empty, then Ξtol(A ∩ G, b) = ∅.

If all the sets Sij , (ij) ∈ Idx, are nonempty, then, for every index i, find
vert ((A ∩ G)i:) as the vertices set of the interval vector

⊗
j Sij and go to Step II

of the method (12).

4 Case 2: row-independent proportional
parametric tie

Characteristics of the convex polyhedral tie G:

1. The set G is determined in parametric form

G =
⋃

p∈Rq

G(p), where p is a parameter vector,

and, additionally, each element Gij(p) of the matrix G(p) is proportional to one
of the parameters:

Gij(p) = cijpk(i,j), cij ∈ R \ {0}, pk(i,j) ∈ {p1, . . . , pq}.

2. No two entries of the matrix G(p) that are proportional to one of the parameters
belong to one row, i.e. for every k = 1, . . . , q the implication

(il) ∈ Idxk =⇒
(
∀j ∈ {1, . . . , n} \ {l}

) (
(ij) 6∈ Idxk

)

holds, where Idxk := {(ij) | Gij(p) = cijpk} is the set of index pairs for such
entries of the matrix G(p) that are proportional to the parameter pk.
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The set G is evidently a linear subspace in Rm×n.
In particular, the following types of matrices can be represented in the form that

corresponds to Case 2: symmetric matrices, skew-symmetric matrices, circulant ma-
trices, Hankel matrices, Hurwitz matrices, Toeplitz matrices. For instance, one of
possible parametrizations of skew-symmetric matrices that meets Case 2 has the form

G(p) =




p1 p2 p3 . . . pn

−p2 pn+1 pn+2 . . . p2n−1

−p3 −pn+2 p2n . . . p3n−3

...
...

...
. . .

...
−pn −p2n−1 −p3n−3 . . . pn(n+1)/2



, p1, . . . , pn(n+1)/2 ∈ R.

How the tie affects Step I of the method (12).

If the tie G meets the first condition of Case 2, then the set S := A∩ G consists of
all such matrices S that





&
k=1,...,q

(
Sij = cijpk, for (ij) ∈ Idxk

)
,

Sij ∈ Aij , for i = 1, . . . ,m, j = 1, . . . , n.
(20)

We rewrite (20) as a system of q blocks:

&
k=1,...,q

{
Sij = cijpk, for (ij) ∈ Idxk,

Sij ∈ Aij , for (ij) ∈ Idxk .
(21)

In (21), no two blocks have common variables, so the values of the variables Sij ,
(ij) ∈ Idxk, from the k-th block do not depend on the values of the variables from the
other blocks.

Due to the second requirement on the set G, the entries of one row of the matrix
S cannot occur in one block. Hence, for every i, the variables Sij , j = 1, . . . , n, are
independent from each other, i.e. (∀i)

(
Si: =

⊗
j Sij

)
.

Let us find the set Sij from the only block of the system (21) that contains the
variable Sij . For (ij) ∈ Idxk, this is the block

{
Slr = clrpk, for (lr) ∈ Idxk,

Slr ∈ Alr, for (lr) ∈ Idxk .

After obvious transformations, it can be reduced to the form

{
Slr = clrpk, for (lr) ∈ Idxk,

clrpk ∈ Alr, for (lr) ∈ Idxk .

For pk ∈ R, the equalities Slr = clrpk, (lr) ∈ Idxk, describe, in the space of the
variables Slr, (lr) ∈ Idxk, a straight line that goes through the origin of coordinates.
As far as all the constants clr, (lr) ∈ Idxk, differ from zero, this straight line is not
orthogonal to any of the coordinate axes. Every inclusion clrpk ∈ Alr with clr 6= 0
bounds the range of values of the parameter pk by the interval Alr/clr. Taking into
account the effect of all such constraints, we conclude that the range of values of the
parameter pk is equal to

⋂
(lr)∈Idxk

Alr/clr. It is either empty or an interval in IR.
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Therefore, 


Slr = clrpk, for (lr) ∈ Idxk,

pk ∈
⋂

(lr)∈Idxk

Alr/clr.

As the result, the range of values of the variable Sij that satisfy the above system can
be found by the formula

Sij = cij �


 ⋂

(lr)∈Idxk

Alr/clr


 . (22)

We have demonstrated that Step I of the method (12) can be executed as follows:

1. Find the sets Sij , i = 1, . . . ,m, j = 1, . . . , n, according to the formula (22).

2. If any one of the sets obtained is empty, then Ξtol(A ∩ G, b) = ∅.

If all the sets obtained are nonempty, then, for every index i, determine
vert ((A ∩ G)i:) as the vertices set of the interval vector

⊗
j Sij and go

to Step II of the method (12).
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