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Abstract

In this paper, interval arithmetic techniques for controller design of
nonlinear dynamical systems with uncertainties are summarized. The
main reason for the application of interval techniques in this context is
the quantification of the influence of uncertainties and modeling errors.
They result from neglecting nonlinear phenomena in the mathematical
description of real-world systems. Furthermore, measured data usually
do not provide exact information about the system parameters. Often
simplifications of nonlinear models or controller structures are necessary
to enable the implementation of controllers. Therefore, these uncertain-
ties have to be taken into account during the design of controllers for
verification of observability, controllability, stability, and robustness.
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1 Introduction

This paper gives an overview of general interval arithmetic procedures for the design
of controllers for continuous-time dynamical systems [9]. To guarantee robustness
with respect to uncertain initial conditions as well as uncertain system parameters,
interval variables and verified computational techniques are taken into account during
all design stages. For that purpose, the notion of optimality of control strategies is
extended to systems with uncertainties by minimization of guaranteed upper bounds
of suitable performance indices.

In the first part of this paper, techniques for the verification of controllability,
reachability, and observability of states in the presence of uncertainties as well as
stabilizability of instable systems are demonstrated. These techniques are based on
the verified evaluation of the corresponding system theoretic criteria [6, 3]. Therefore,
underlying computational approaches are required which yield guaranteed enclosures
of all reachable states of dynamical systems. Especially for safety-critical applications,
asymptotic stability and compliance with given restrictions for the state variables
have to be assured for all possible operating conditions using analytical or numerical
techniques. For both open-loop and closed-loop control systems, possibilities for the
combination of verified techniques with classical approaches for robust and stability-
based controller design in the time-domain are highlighted (Sections 2–4).

In the second part, procedures for structure and parameter optimization of
continuous-time dynamical systems with bounded uncertainties are derived that rely
on the above-mentioned basic concepts [8]. For that purpose, an interval-based algo-
rithm is presented. This algorithm computes approximations of globally optimal open-
loop and closed-loop control laws for dynamical systems. Focusing on continuous-time
applications, we present new strategies which allow to combine piecewise constant ap-
proximations of optimal control laws with continuous approximations (Sections 5,6).

The focus of the third part is the application of the previously introduced methods
and procedures to the design of robust and optimal control strategies for dynamical
systems with state-dependent switching characteristics [8]. In practically relevant
applications, the fact that control variables are usually bounded has to be taken into
account directly during design. This aims at building a new unified, general-purpose
framework for the verified synthesis of dynamical systems integrating trajectory plan-
ning, function-oriented and safety-related controller design, as well as robustness and
optimality assessment and verification. Computational routines for the previously
mentioned tasks already exist. However, they are usually not integrated into a com-
mon tool verifying the design using interval arithmetic (Section 6).

2 Control-Oriented Modeling of Dynamical Sys-
tems

In control engineering, commonly two tasks are distinguished: the design of open-loop
control strategies and observer-based closed-loop control strategies. In the following,
we restrict the discussion to continuous-time dynamical system models which are de-
scribed by sets of (nonlinear) ordinary differential equations

ẋs (t) = f (xs (t) , p (t) , u (t) , t) (1)
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and nonlinear mathematical models specifying the sensor characteristics

y (t) = h (xs (t) , u (t) , q (t) , t) . (2)

In (1) and (2), the state vector is denoted by xs (t), the control vector by u (t),
and the parameter vectors corresponding to uncertainties and disturbances by p (t)
and q (t), resp. Finally, the reference signal w (t) describes the trajectories of the
desired system outputs, where y (t) = w (t) holds in the ideal case. For open-loop
control strategies (Fig. 1) the control sequence u (w) only depends on the reference
signal w (t) and (often) a finite number of its time derivatives. In contrast to the open-
loop case, information on the current system states xs (t) is fed back additionally in
closed-loop control structures (Fig. 2).

ẋs = f (xs, p, u, t) y = h (xs, u, q, t)u (w)
u

control law plant

y
w

sensor characteristics

xs

1

Figure 1: Open-loop control of nonlinear dynamical systems.

ẋs = f (xs, p, u, t)

observer for

state

reconstruction

y = h (xs, u, q, t)u (x̂, w)
u

x̂

control law plant

y
w

sensor characteristics

xs

Figure 2: Observer-based closed-loop control of nonlinear dynamical systems.

1

Figure 2: Observer-based closed-loop control of nonlinear dynamical systems.

If the complete state vector xs (t) and the parameters p (t) and q (t) are not di-
rectly accessible for measurements, estimated values x̂ (t) are used as a substitute for
these quantities in the implementation of the feedback controller. These estimates are
determined with the help of state observers (cf. [6]). They are computed in terms of
the known control u (t) and the measured output y (t).

The goal of this paper is to highlight the components of a general-purpose software
tool which uses interval arithmetic routines to quantify the influence of uncertainties
resulting from uncertain initial system states xs (0) ∈

[
xs,0 ; xs,0

]
as well as uncertain

parameters p (t) ∈
[
p (t) ; p (t)

]
, q (t) ∈

[
q (t) ; q (t)

]
at the earliest possible design

stages. Thus, a system design becomes possible which does not rely on the implemen-
tation of controllers for a simplified, nominal model with an a-posteriori assessment
of the influence of uncertainties. This often leads to tedious iterations in the design
until robustness of the complete control system can be shown for all possible values
of the uncertain quantities. Instead, uncertainties are propagated through the com-
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plete design process by guaranteed bounds on the system states computed by verified
techniques.

The basic properties of control systems to be addressed are (global) asymptotic
stability and stabilization of instable plants, improvement of the dynamics of the open-
loop system, robustness and optimality, as well as feasibility of the necessary open-
loop and closed-loop control laws that are required to minimize the control errors
‖w (t)− y (t)‖ and ‖xs (t)− x̂ (t)‖, resp., for all t ≥ 0.

3 Classical Approaches for Robust Control

In the following, an overview of the most important design strategies for robust con-
trollers of linear and nonlinear dynamical system models is given. As discussed in
this section, the use of interval techniques and other verified approaches during the
complete control system design is not yet state-of-the-art in industrial control appli-
cations. Instead, approximations and simple design techniques based on linear system
theoretic properties are often employed.

For linear finite-dimensional time-invariant system representations described by
rational transfer functions, i.e., system models without time delay, pole placement is
usually performed to parameterize linear state feedback controllers for single-input-
single-output systems using Ackermann’s formula (1972). This formula provides a
unique solution for the feedback gains K in u (t) = −K · xs (t). For multiple-input-
multiple-output systems, additional constraints (such as the decoupling of the influence
of input and output variables) are taken into account to find a unique solution of the
feedback gain matrix K. In both cases, controllability (as introduced by Kalman in
1960) is a sufficient condition for the assignment of arbitrary poles to the closed-loop
control system. Furthermore, observability is necessary if not all state variables are
directly accessible by measurements such that they have to be reconstructed using
model-based estimators as, for example, shown in Fig. 2.

Extensions that are commonly used for the design of controllers for systems with
uncertainties and nonlinearities are:

• The Kharitonov criterion (1978) to prove asymptotic stability of characteristic
polynomials with interval coefficients which is basically a generalization of the
Hurwitz criterion for nominal system models.

• The parameter space approach by Ackermann and Kaesbauer [1], which is im-
plemented in the Matlab toolbox PARADISE based on the boundary crossing
theorem by Frazer and Duncan (1929). It shows that the poles of rational
transfer functions depend continuously on continuous parameter variations (Γ-
stability).

• Extensions to nonlinear systems with sector-bounded static nonlinearities on the
basis of the Popov criterion (1962).

• Handling of constant time delays using the notion of B-stability.

• Design approaches based on control Lyapunov functions as well as symbolic
design approaches relying on state-feedback linearization, backstepping, and
flatness-based feedforward and feedback control [3, 6].

However, general approaches for controller design of nonlinear dynamical systems
with bounded parameter uncertainties and bounded errors in the state reconstruction
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are not yet commonly used by engineers in industrial applications. Therefore, interval-
based implementations of both classical design approaches and novel numerical tech-
niques are inevitable to obtain general software tools for verification and validation of
controller design.

4 An Interval-Based Framework for Robust and
Optimal Controller Design

4.1 Overview

In this section, selected components of an interval arithmetic framework for verified
design of robust and optimal control strategies are presented [8, 9], see Fig. 3. They
are extensions of classical techniques for the analysis of asymptotic stability of dynam-
ical systems, parameter and structure optimization based on dynamic programming,
and trajectory planning techniques using information about reachability and observ-
ability of states. Especially with respect to optimal control of dynamical systems
with uncertainties, non-verified approaches based on Bellman’s dynamic programming
and Pontryagin’s maximum principle have also been used in other interval-based ap-
proaches [4, 5].

4.2 Verified Reachability Analysis

Reachability analysis for nonlinear input-affine dynamical systems

ẋ (t) = f (x (t)) + g (x (t)) · u (t) , x ∈ Rnx (3)

is the prerequisite for the design of most closed-loop control strategies. To analyze the
applicability of control sequences u (t) such that the state variables can be influenced
in a desired way, the Lie brackets of f(x) and g(x) have to be evaluated, which are
defined according to

[f (x) , g (x)] :=
∂g(x)

∂x
f (x)− ∂f (x)

∂x
g (x) . (4)

Using (4), the state-dependent reachability matrix P (x) defined by P (x) :=[
P0 (x) P1 (x) . . . Pnx−1 (x)

]
with P0 (x) := g (x), P1 (x) := [f (x) , g (x)], . . . ,

Pk (x) := [f (x) , Pk−1 (x)], k = 2, . . . , nx − 1 can be obtained.

The rank of the matrix P (x) is usually state-dependent. To guarantee that all
states can be influenced in a desired way, P (x) must have full rank nx along the
complete trajectory for all possible values of the uncertain system parameters and
all possible state variables. For linear systems, the rank criterion for the reachability
matrix is identical to Kalman’s criterion for state controllability.

4.3 Verified Observability Analysis

Similarly, the observability matrix Q(x) is defined by

Q(x) :=

[(
∂h(x)

∂x

)T (
∂Lfh(x)

∂x

)T
. . .

(
∂Lnx−1

f h(x)

∂x

)T]T
(5)
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(1) Extension to robust trajectory planning by exclusion of inadmissible controls and inadmissible reference signals

task m

no

yes

task 1

no

yes

Nm piecewise constant/ lin. controls

Splitting of Lm control strategies

Evaluation of state equations:
piecewise constant/ linear control

• Computation of guaranteed state
enclosures

• Computation of guaranteed bounds
for the cost function

Exclusion of control strategies (1)

• Violation of state constaints

• Computation of upper bound JNm for
the performance index

• Exclusion of non-optimal control
sequences

Has the desired number of
iterations been reached?

Splitting of L1 control strategies

N1 piecewise constant/ lin. controls

Evaluation of state equations:
piecewise constant/ linear control

• Computation of guaranteed state
enclosures

• Computation of guaranteed bounds
for the cost function

Exclusion of control strategies (1)

• Violation of state constaints

• Computation of upper bound JN1 for
the performance index

• Exclusion of non-optimal control
sequences

Has the desired number of
iterations been reached?

Comparison of the upper bounds JNj
for the performance index obtained for control

strategies with different Nj: Calculation of the best upper bound J
∗

:= min
j=1,...,m

{
JNj

}

Elimination of non-optimal control strategies if J<l>
Nj

> J
∗

holds

Output of the best approximation for the optimal control strategy or continuation of
the parallelized optimization routine

Stability analysis of the closed-loop control system
Verified sensitivity analysis of the trajectories with respect to uncertain parameters

Computation of regions of attraction and maximum admissible deviations from
desired trajectories to ensure asymptotic stability

Coice between parameterization of predefined control structure or structure optimization
Combination of structure optimization and feedback control

Reachability and observability analysis of open-loop control system with uncertainties
Stability analysis of open-loop control system

Figure 3: Components of an interval-based framework for the design of optimal
and robust controllers.

6

Figure 3: Components of an interval-based framework for the design of optimal
and robust controllers.
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with the Lie derivatives Lifh(x) := Lf
(
Li−1
f h(x)

)
with L0

fh(x) := h (x) and Lfh(x) :=
∂
∂x
h(x) · f(x). These Lie derivatives provide information about the variation of the

output y = h (x) of the dynamical system along the vector field f (x). Similar to
the reachability analysis, the rank of the matrix Q(x) is usually state-dependent. For
linear systems, the procedure leads to Kalman’s observability matrix.

Using techniques for automatic differentiation, the matrices P (x) and Q(x) can
also be constructed for systems with uncertainties, where enclosures of the sets of
reachable states are determined by verified ODE solvers such as VNODE, VSPODE,
ValEncIA-IVP, or COSY VI. A sufficient condition for the applicability of a specific
procedure for controller design is that both matrices have full rank for the desired
trajectories [9].

4.4 Controller Design Using Input-to-State Linearization

The use of verified computational methods is shown exemplarily for the design of
nonlinear controllers aiming at input-to-state linearization. The goal is to convert the
input-affine dynamical system (3) into a set of linear ODEs

ż (t) = A · z (t) +B · w (t) with y (t) = C · z (t) (6)

using diffeomorphism T : D ⊂ Rn 7→ Rn defining a diffeomorphism z = τ (x) : D ⊂
Rnx 7→ Rnx and a control law u = r (x) +W (x) · w.

Let δi be the relative degree of the output yi, i = 1, . . . ,m, i.e., the smallest order
of the derivative dδiy/dtδi which explicitly depends on the control input u. Then, the
state transformation

z = τ(x) =
[
τ1
1 (x) . . . τ δ11 (x) τ1

2 (x) . . .
]T

(7)

can be computed using the Lie derivatives τri
i = Lri−1

f hi(x), ri = 1, . . . , δi.
The feedback control law u = r(x) +W (x) · w is given by

r(x) = −D−1(x)ϕ(x) and W (x) = D−1(x) . (8)

In (8), the vector

ϕ(x) =
[
ϕ1(x) ϕ2(x) . . . ϕm(x)

]T
x(t)=τ−1(z)

(9)

is defined by ϕi(x) = Lδi
f hi(x) for all i = 1, . . . ,m. Furthermore, the decoupling

matrix D(x) is computed by

D(x) =




Lg1L
δ1−1
f h1(x) · · · LgmL

δ1−1
f h1(x)

Lg1L
δ2−1
f h2(x) · · · LgmL

δ2−1
f h2(x)

...
...

...

Lg1L
δm−1
f hm(x) · · · LgmL

δm−1
f hm(x)




. (10)

Linear feedback controllers can be designed for (6) if rank{D (x)} = nx and
δ = δ1 + . . .+ δm = nx hold for all desired states x (t), all possible parameter values p,
and uncertainties of x (t0). These prerequisites can be verified by interval evaluation
of D(x) for guaranteed enclosures [x (t)] of the sets of all reachable states. Note that
the derivatives which are required to evaluate (9) and (10) have already been com-
puted by automatic differentiation for the reachability and observability matrices P (x)
and Q (x).
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4.5 Verified Stability Analysis

An approach for verified stability analysis which is used in Matlab and C++ routines
for controller design implemented by the authors is summarized in the following. It is
based on a procedure described in [2]. After computation of the interval enclosure [x∞]
of the equilibrium of the system (1), a double-valued approximate solution x̃∞ ∈ [x∞]
is chosen. Then, an approximation A of the Jacobian is determined for x̃∞. Using
this matrix, the Lyapunov equation

ATP + PA = −I with A :=
∂f

∂x

∣∣∣∣
x=x̃∞

(11)

is solved for the symmetric matrix P . If P is positive definite, i.e., if the linearized
system can be proven to be asymptotically stable, an estimate for the region of at-
traction of the asymptotically stable equilibrium of the original nonlinear system can
be determined.

For that purpose, an interval box [x0] for which [x∞] ⊂ [x0] holds is assumed.
Additionally, this box must not contain further equilibria. Typically, the initialization
of the interval Newton iteration used to determine [x∞] is chosen at this stage since it
fulfills the above-mentioned requirements. To analyze the stability of the dynamical
system, the quadratic Lyapunov function

V (x, p) = (x− x∞)T · P · (x− x∞) , (12)

with P determined in (11), is used. For the time derivative of this Lyapunov function,
the properties

V̇ (x, p)
∣∣∣
x=x∞

= 0 and
∂V̇ (x, p)

∂x

∣∣∣∣
x=x∞

= 0 (13)

hold. Then, the Hessian

H := −∂
2V̇ (x, p)

∂x2
(14)

has to be positive definite for all x ∈ [x0]. This can be shown using a procedure
described by Rohn in [11].

A symmetric interval matrix [H] = {H|Hc −∆ ≤ H ≤ Hc + ∆} with Hc =
1
2

(
H +H

)
and ∆ = 1

2

(
H −H

)
is positive definite if the following 2nx−1 point ma-

trices Hz = H−z are positive definite. The matrices Hz are defined according to
Hz := Hc − Tz · ∆ · Tz with Tz := diag(z). The vector z has to be replaced by all
possible combinations of the components zi = ±1, i = 1, . . . , nx. Thus, Hz = H−z
holds.

As shown in [2], the interval box [x] with center in [x∞] and radius
√
nx
λmin
λmax

d ([x∞] , [x0]) (15)

certainly belongs to the region of attraction of an asymptotically stable equilibrium
x∞. In (15), λmin and λmax are the minimum and maximum eigenvalues of P , resp.
Furthermore, d is a function defined on IRnx × IRnx with

d : ([x] , [y]) 7→ sup {r ∈ R|B (r, [x]) ⊂ [y]} , (16)

an interval box [x] ⊂ IRnx , and B (r, [x]) denoting the set
{
x ∈ Rnx

∣∣∣ min
a∈[x]

‖a− x‖ < r

}
. (17)
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5 Robustness and Optimality

A general, interval-arithmetic framework for structure and parameter optimization of
dynamical systems with both nominal and uncertain parameters has been presented
in [8]. According to the definition of optimality for uncertain systems introduced
therein, a control strategy is optimal if it leads to the smallest upper bound of the
performance index for all possible p ∈ [p]. This is depicted exemplarily in Fig. 4 for
lmax different control laws.

of P , resp. Furthermore, d is a function defined on IRnx × IRnx with

d : ([x] , [y]) 7→ sup {r ∈ R|B (r, [x]) ⊂ [y]} , (16)

an interval box [x] ⊂ IRnx , and B (r, [x]) denoting the set
{

x ∈ Rnx

∣∣∣ min
a∈[x]

‖a− x‖ < r

}
. (17)

5 Robustness and Optimality

A general, interval-arithmetic framework for structure and parameter optimiza-
tion of dynamical systems with both nominal and uncertain parameters has been
presented in [8]. According to the definition of optimality for uncertain systems
introduced therein, a control strategy is optimal if it leads to the smallest up-
per bound of the performance index for all possible p ∈ [p]. This is depicted
exemplarily in Fig. 4 for lmax different control laws.

best
approximation

[
J<l>

]

l

sup
([

J<l∗>
])

range of necessary costs

guaranteed non-optimal
control sequences

interval enclosure of the

1 2 3 l∗ lmax

Figure 4: Optimality of control strategies with interval uncertainties.

These controls can either result from different parameterizations of a con-
troller with a fixed structure (parameter optimization) or from different con-
trol structures (determined during structure optimization). In the latter case,
piecewise constant and piecewise linear approximations of the globally optimal
control sequence are determined.

In both cases, verification techniques are used to evaluate the integral per-
formance index

J = ftf
(x (tf ) , p (tf ) , tf ) +

tf∫

0

f0 (x (t) , p (t) , u (t) , t) dt (18)

to be minimized. The term ftf
(x (tf ) , p (tf ) , tf ) corresponds to terminal costs

at the prescribed final point of time tf if final states x (tf ) are not specified
exactly. The integrand f0 (x (t) , p (t) , u (t) , t) quantifies deviations between the
current states and the desired trajectories of the state variables as well as the
required control effort u (t).

9

Figure 4: Optimality of control strategies with interval uncertainties.

These controls can either result from different parameterizations of a controller
with a fixed structure (parameter optimization) or from different control structures
(determined during structure optimization). In the latter case, piecewise constant and
piecewise linear approximations of the globally optimal control sequence are deter-
mined.

In both cases, verification techniques are used to evaluate the integral performance
index

J = ftf (x (tf ) , p (tf ) , tf ) +

tf∫

0

f0 (x (t) , p (t) , u (t) , t) dt (18)

to be minimized. The term ftf (x (tf ) , p (tf ) , tf ) corresponds to terminal costs at the
prescribed final point of time tf if final states x (tf ) are not specified exactly. The
integrand f0 (x (t) , p (t) , u (t) , t) quantifies deviations between the current states and
the desired trajectories of the state variables as well as the required control effort u (t).

6 Optimal Control of a Mechanical Positioning
System with Friction

In the remainder of this paper, optimal control of a mechanical positioning system
with state-dependent switchings between different dynamical models is discussed [8].
For that purpose, a sliding mass m is considered. For a given initial position x1 (0)
and given initial velocity x2 (0), an approximation of an optimal control strategy for
the accelerating force u (t) = Fext (t) is determined under consideration of the friction
force Ff (x2). The state equations for this system are given by

ẋ (t) =

[
0 1
0 0

]
x (t) +

[
0

1
m

(Fext (t)− Ff (x2))

]
with x =

[
x1

x2

]
. (19)
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The friction characteristic is modeled by l = 3 discrete states S = {S1, S2, S3},
which are sliding friction for motion in “negative” (backward) direction (= S1), static
friction (= S2), and sliding friction for motion in “positive” (forward) direction (= S3).

In this friction model, interval parameters are considered for both the static friction
coefficient [Fs] =

[
Fs ; Fs

]
and the sliding friction coefficient [µ] =

[
µ ; µ

]
. The

resulting sliding friction force is then given by

Ff (x2) =

{
− [Fs] + [µ] · x2 for S1 = true

+ [Fs] + [µ] · x2 for S3 = true
(20)

and the static friction by

Ff (x2) ∈ [Fmaxs ] =
[
−Fs ; Fs

]
for S2 = true . (21)

In Fig. 5, the results for an approximate solution of the optimal control problem
are shown. If a piecewise constant approximation of the optimal control strategy is
determined, the performance index

J =

tf∫

0

(
(x1 (t)− 1)2 + x2 (t)2 + u (t)2

)
dt+ 100∆T

kmax∑

k=1

(uk − uk−1)2 (22)

is minimized by a control strategy with a maximum number of 5 switchings in the
considered time span. Analogously, the performance index

J =

tf∫

0

(
(x1 (t)− 1)2 + x2 (t)2 + u (t)2

)
dt+ 100∆T

kmax∑

k=1

u̇2
k (23)

is minimized with u̇k := u̇ (t), tk−1 < t < tk if piecewise linear control strategies
are considered. Note that the absolute values of both performance indices cannot be
compared directly. However, these criteria have been chosen to guarantee a maximum
similarity between both types of approximations.

For the parameters Fs = 0.015, µ = 0.001, u ∈ [−1.00 ; 1.00], and u̇ ∈
[−0.50 ; 0.50] it can be shown that the inequalities J ≤ 2.56 and J ≤ 4.43 hold for
the piecewise constant and piecewise linear approximation, resp. In this example, the
range of admissible final positions is described by the interval x1 (tf = 5) ∈ [0.9 ; 1.1].
The admissible final velocities are characterized by x2 (tf = 5) ∈ [−0.1 ; 0.1].

7 Conclusions and Outlook on Future Research

In this paper, interval-based techniques for the verification of reachability, observ-
ability, and robust asymptotic stability of dynamical systems have been presented.
They represent sufficient conditions for the corresponding system theoretic proper-
ties. Overestimation in the computation of guaranteed lower bounds of the rank of
the reachability and observability matrices might lead to conservative results if large
domains are considered for state variables and uncertain parameters. Efficient rou-
tines employing subdivision of those regions are available which help to express the
resulting dependencies during rank computation as precisely as necessary. Together
with the routine for verified stability analysis, they are included in a general-purpose
framework for optimal and robust controller design. In this framework, also dynamical
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Figure 5: Approximate solution of the optimal control problem with state-
dependent switchings. Solid lines: piecewise constant control, dashed lines:
piecewise linear control.
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Figure 5: Approximate solution of the optimal control problem with state-
dependent switchings. Solid lines: piecewise constant control, dashed lines:
piecewise linear control.

systems with state-dependent switchings between different dynamical models can be
considered.

In future work, we will develop extensions towards the design of state and dis-
turbance estimators using interval techniques. These estimators will be used for the
computation of worst-case bounds for the influence of approximation techniques in
the design of both observers and controllers [7, 10]. A further step will be real-time
state estimation in model-predictive control approaches for dynamical systems with
interval uncertainties. For that purpose, the use of verified solvers for systems of
differential-algebraic equations (DAEs) will be included and relations between criteria
for solvability of DAEs and the criteria for controllability and observability of states
in control theory will be investigated.
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