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Abstract

In this paper, we introduce a general-purpose approach for the detec-
tion and reduction of overestimation in verified interval simulations of the
dynamics of mechanical systems. For that purpose, we automatically de-
rive constraints which eliminate physically meaningless parts of the state
enclosures of the corresponding ordinary differential equations. The prac-
tical applicability of this procedure is demonstrated by a prototypical
implementation using the verified solver ValEncIA-IVP. This extension
of ValEncIA-IVP is interfaced with SmartMOBILE, a tool for model-
ing and simulation of mechanical multibody systems. Simulation results
are presented to characterize this new strategy.
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1 Introduction

Dynamics of a large class of mechanical systems, electric circuits, and electro-
mechanical components can be described mathematically by sets of canonical equa-
tions based on the Hamiltonian formulation of continuous-time state equations [10,11].
For that purpose, the Hamiltonian H(q, p), which represents the sum of the poten-
tial and kinetic energy, is introduced. The vectors of generalized coordinates q and
generalized momenta p are then employed to compute the system dynamics using the
corresponding canonical equations.

Since the Hamiltonian expresses the total energy of a dynamical system [5], it can
be chosen as a candidate for a positive definite Lyapunov function to analyze the sta-
bility of nonlinear systems. In recent years, stability-based techniques for controller
design have significantly gained in importance. Therefore, stability analysis is one of
the most important applications of the Hamiltonian in control engineering. Further,
regions of attraction of asymptotically stable equilibria can be derived with its help.
Moreover, it can be shown that the Hamiltonian system representation provides ad-
ditional information about the dynamics of uncertain systems. This information can
be employed efficiently as a constraint in interval-based simulation routines to detect,
quantify, and reduce overestimation. For that purpose, a consistency test is developed
restricting the set of solutions to physically meaningful areas [2]. A basic interval-based
approach which identifies constraints to reduce overestimation in verified simulations
of sets of ordinary differential equations (ODEs) has been published in [9].

In this paper, we present a more general procedure to derive Hamiltonian con-
straints automatically. We describe the implementation of these constraints in
ValEncIA-IVP for verified simulation of dynamical systems described by sets of
ODEs. Furthermore, we show their application to verified modeling and simulation
of multibody systems using SmartMOBILE [1] with ValEncIA-IVP [7, 8] as the
underlying ODE solver. In general, similar implementations of physically motivated
constraints are possible for any other verified ODE solver. For visualization purposes,
we consider a simple example in which the Hamiltonian describes a closed mechanical
system without any gain or loss of energy.

In Section 2, the state-of-the-art for modeling of mechanical systems is reviewed
with the focus on Hamiltonian system formulations. This type of modeling is used in
robotics and other disciplines of engineering to describe dynamical systems for which
conservation properties, such as the conservation of energy, hold. In Section 3, a clas-
sification of physical constraints which can be employed to tighten the set of possible
states of a dynamical system is given. A general-purpose procedure for the detection
and reduction of overestimation using the above-mentioned constraints in interval
simulations is summarized in Section 4 with the emphasis on Hamiltonian systems.
Examples highlighting the use and the efficiency of this procedure are presented in
Section 5. Conclusions and an outlook on future research are given in Section 6.

2 Modeling of Hamiltonian Systems

As a background for this paper, we summarize the state-of-the-art for mathematical
modeling of mechanical multibody systems. Instead of the general state-space repre-
sentation

ẋ (t) = f (x (t) , u (t) , t) (1)
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with the state vector x (t) and the control vector u (t), such systems are usually de-
scribed with the help of a minimal set of position and angle variables which are called
generalized coordinates q = [q1, . . . , qs]

T .

The generalized coordinates uniquely represent the positions as well as angles of
the masses of multibody systems. To systematically choose a set of s independent
generalized coordinates (corresponding to the degrees of freedom of a mechanical sys-
tem), the Denavit-Hartenberg-conventions are commonly exploited [6]. With the help
of the generalized coordinates, the potential energy P and the kinetic energy K of a
multibody system can be expressed in a straightforward way. As soon as P and K
are computed, the equations of motion can be derived automatically using either the
Lagrangian or the Hamiltonian system representation. Both approaches are common
in mechanics since they can be used to represent constraints on the admissible motion
of a multibody system and to prove the stability of corresponding control laws [10,11].

The Lagrangian formulation is given by

d

dt

(
∂L (q, q̇)

∂q̇

)
− ∂L (q, q̇)

∂q
= τ (2)

with the Lagrangian L = K−P defined as the difference of the kinetic energy K (q, q̇)
and the potential energy P (q) as well as the generalized external force vector by
τ = [τ1, . . . , τs]

T .

In contrast, the Hamiltonian H = K + P is defined as the total energy of a
dynamical system, that is, the sum of kinetic and potential energy. In the following,
we denote the positive definite, symmetric generalized mass matrix by M(q) and the
generalized momentum vector by p = [p1, . . . , ps]

T .

Using these definitions, the Hamiltonian (cf. [6]) can be expressed by

H(q, p) =
1

2
· pT ·M−1(q) · p+ P (q) (3)

or equivalently by

H(q, q̇) =
1

2
· q̇T ·M(q) · q̇ + P (q) . (4)

Any Hamiltonian system1 can be formulated in terms of its corresponding canonical
equations. These are the ODEs

q̇ =
∂H(q, p)

∂p
= M−1(q) · p (5)

for the vector of generalized coordinates q together with the ODEs

ṗ = −∂H(q, p)

∂q
+ τ (6)

for the generalized momentum vector p.

Now, the energy balance

d

dt
H(q, p) =

(
∂H(q, p)

∂q

)T
· q̇ +

(
∂H(q, p)

∂p

)T
· ṗ =

(
∂H(q, p)

∂p

)T
· τ = q̇T · τ (7)

1A Hamiltonian system is a dynamical system which can be described in generalized coor-
dinates using the expressions H(q, p) or H(q, q̇) with a positive definite mass matrix M(q).
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is obtained by differentiation of the expression for the total energy of the system with
respect to time. The property

d

dt
H = 0 (8)

holds for τ = 0, that is, for conservative systems which are not subject to energy dissi-
pation or external gain of energy. In this system representation, damping is included
in the vector τ .

A reconstruction of the Hamiltonian representation (5) and (6) from the general
state equations (1) is possible if a positive definite, symmetric mass matrix M (q)
which only depends on the generalized coordinates q can be found. The mass matrix
has to fulfill the equations

M (q) · q̈ = M (q) · Φ (q, q̇) with
∂Φ (q, q̇)

∂q̇i
= Bi (q) · q̇ (9)

as well as

−∂M (q)

∂qi
eα − ∂M (q)

∂qα
ei −M (q) ·Bi (q) · eα +


eT1
∂M (q)

∂q1
...

eTs
∂M (q)

∂qs

 eα = 0 (10)

for all i = 1, . . . , s and α = 1, . . . , s. In (9), the partial derivatives of Φ (q, q̇) have to
be represented as products of matrices Bi (q) which only depend on q with the vector
of generalized velocities q̇. In (10), the vectors ei and eα represent the i-th and α-th
unit vectors of dimension s.

In the following, the Hamiltonian and its time-derivative are used to implement
a consistency test which identifies and eliminates overestimation in state enclosures
determined by verified ODE solvers. The prerequisite for that is the representation
of dynamical systems using the canonical equations (5) and (6). These are obtained
either directly by modeling or by reformulation of general state-space representations
using the conditions (9) and (10).

3 Classification of Physical Constraints

Besides constraints which can be derived from the Hamiltonian formulation of dynam-
ical systems, several further types of side conditions exist that can be used in a general
simulation framework to restrict the set of solutions to physically meaningful regions.

Such constraints can be classified into holonomic and non-holonomic [3]. Holo-
nomic ones can be expressed as algebraic functions g(q, t) = 0 depending on the time
variable t and the generalized coordinates q. All other constraints which cannot be rep-
resented in this form, for example, inequalities or non-integrable constraints depending
on the velocity q̇, are called non-holonomic.

A typical example for a holonomic constraint is the description of the constrained
motion of a (point) mass on the surface of a ball by an algebraic function which depends
solely on the generalized coordinates. An example for a non-holonomic constraint is a
given bound for the kinetic energy which corresponds to an inequality constraint on
the generalized velocities q̇.

Physical continuity and conservation properties have been studied recently in [2]
for a high-dimensional, nonlinear model of human blood cell dynamics [4] to derive
constraints for verified simulations.
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4 Procedure for Detection and Reduction of
Overestimation

State enclosures obtained with the help of interval arithmetic in solvers such as
ValEncIA-IVP tend to overestimate the true solution set. In [7], the basic approach
of ValEncIA-IVP to reduce overestimation in verified simulations of ODEs was pre-
sented. The dependency problem in the iteration formula was treated by using mean-
value rule evaluation and monotonicity tests instead of naive interval evaluation. Ad-
ditionally, ValEncIA-IVP can use subdivision strategies for interval enclosures before
propagating them to a future point of time. This leads to state enclosures described by
the union of usually overlapping interval boxes, see Fig. 1. In general, this enclosure
is tighter than the result obtained without subdivision. Thus, the wrapping effect can
be reduced and tighter enclosures of the true set of reachable states Xk+1 are com-
puted. Moreover, backward propagation of subintervals from a point of time tk+1 to a
previous point tk can be used to implement a consistency test which detects intervals
originating from overestimation. In this consistency test, three cases are distinguished:
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Figure 1: Reduction of overestimation in interval simulations by subdivision of
interval boxes in forward and backward evaluation of the state equations.
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interval boxes in forward and backward evaluation of the state equations.

Case (A): Subintervals which certainly originate from overestimation. Such subin-
tervals are deleted. The intersection of the result of the backward integration of these
subintervals with the state enclosure of the forward evaluation is empty in at least
one component of the state vector for at least one point of time in the time interval
[tk ; tk+1].

Case (B): Subintervals which are consistent with [x (tk)]. These subintervals be-
long to the solution. Their backward integration leads to time responses which are
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completely included in the result of the forward integration for all t ∈ [tk ; tk+1].

Case (C): All other subintervals. Further splitting is required to check consistency.

The drawback of the backward evaluation of the state equations is its computa-
tional cost since IVPs have to be solved in a verified way for each subinterval. In this
paper, we present a new consistency test which relies mostly on algebraic expressions.
It is used before the already existing consistency test by backward integration. The
computational effort is reduced significantly with its help because inconsistent subin-
tervals (corresponding to case (A)) are detected prior to the backward integration.
Therefore, backward integration is only necessary for subintervals corresponding to
case (C) of the new consistency test.

Consider the Hamiltonian system representation summarized in Section 2. The
goal is to generate a three-stage sequence

q , q̇ ,M︸ ︷︷ ︸
step (1)

−→ K ,P︸ ︷︷ ︸
step (2)

−→ H , Ḣ︸ ︷︷ ︸
step (3)

(11)

to derive constraints automatically so that they can be applied in ValEncIA-IVP to
detect and reduce overestimation. Step (1) is the description of a dynamical system
using generalized coordinates from which an expression for the energy (step (2)) and
its time derivative (step (3)) can be formed.

The Hamiltonian of a dynamical system is evaluated in two computationally differ-
ent but effectively identical ways. First, it is evaluated using the algebraic equations (3)
or (4) in which q, q̇, and p are replaced by the corresponding guaranteed state enclo-
sures. This kind of evaluation is denoted as the Hamiltonian constraint HH in the
following. Second, the Hamiltonian is evaluated as the solution of an additional ODE
by verified integration

HV : H(t) = H(0) +

t∫
0

Ḣ(τ)dτ (12)

using ValEncIA-IVP. The term H (0) corresponds to the initial energy of the system.
Its guaranteed enclosure is obtained by evaluation of the algebraic expressions (3) or (4)
for the corresponding initial state enclosures.

Step (1): Find the canonical representation (5), (6) for the given Hamiltonian
system.

Step (2): Calculate the kinetic energy K and the potential energy P with the
help of the solution of the canonical equations in step (1). The kinetic energy

K (q, q̇) =
1

2
· q̇T ·M(q) · q̇ =

1

2
· pT ·M−1(q) · p (13)

can be computed directly from the information obtained in step (1). It is more difficult
to compute a verified enclosure for the potential energy P (q) if its symbolic represen-
tation is not given beforehand. The derivative of P (q) with respect to the vector of
generalized coordinates q can be expressed by

∂P (q)

∂q
= −ṗ− ∂K (q, q̇)

∂q
= − ∂

∂q

(1

2
· pT ·M−1(q) · p

)
+ τ − d

dt

(
M(q) · q̇

)
. (14)

The integral of (14) provides the missing expression for the potential energy. To obtain
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a complete representation for P (q), it is necessary to compute the scalar integrals

P<i>(q) =

∫ (
− ∂

∂qi

(1

2
· pT ·M−1(q) · p

)
+ τ − d

dt

(
eTi ·M(q) · q̇

))
· dqi

=

∫ (
1

2
· q̇T · ∂M

∂qi
· q̇ + τ − d

dt

(
eTi ·M(q) · q̇

))
· dqi

(15)

for all i = 1, . . . , s. Using this procedure, we can determine integration constants
which possibly depend on q1, . . . , qi−1, qi+1, . . . , qs. The state-independent integration
constant representing the reference potential may be chosen arbitrarily without loss
of generality.

Step (3): Compute the terms H and Ḣ. The interval evaluations of the physically
identical constraints HV and HH are used to detect overestimation by comparing
enclosures resulting from different mathematical representations.

To systematically determine the point of time t∗ at which the consistency test
should be applied, we define the reduction area RA in Fig. 2 according to

RA(t) := diam {[HH(t)]} − diam {[HH(t)] ∩ [HV (t)]}≥0 . (16)

Now, the point of time t∗ in the integration time span [t0; tf ] is chosen such that
RA(t) is maximized. This represents a strategy which helps to detect a maximum
amount of overestimation in the consistency test.

To simplify the maximization, the first local maximum ofRA(t) in the time interval
t ∈ [t0; tf ] is used instead of the global maximum. For this point of time, the constraints
HV and HH are mapped back into the original state-space. Then, the Branch and
Prune technique is used to eliminate regions which certainly result from overestimation.
To illustrate this procedure, we discuss a simple example in the following section. A
detailed comparison of six different subdivision strategies as well as criteria for their
selection and parameterization can be found in [2].
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Figure 2: Maximization of the reduction area RA(t).

5 Simulation Results

5.1 Visualization of the Energy-Based Consistency Test

Consider a simple pendulum consisting of a point mass m and a massless arm with
length l. The gravitational constant is denoted by g. The position and velocity of the
point mass are described by

px(t) = l · sin(ϕ(t))
py(t) = −l · cos(ϕ(t))

ṗx(t) = l · cos(ϕ(t)) · ϕ̇(t)
ṗy(t) = l · sin(ϕ(t)) · ϕ̇(t)

(17)

with the angle ϕ(t) as the generalized coordinate q (t). The state-space representation
is then given by

q̇(t) = ϕ̇(t) and q̈(t) = −g

l
· sin(ϕ(t)) . (18)
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point mass are described by

px(t) = l · sin(ϕ(t))
py(t) = −l · cos(ϕ(t))

ṗx(t) = l · cos(ϕ(t)) · ϕ̇(t)
ṗy(t) = l · sin(ϕ(t)) · ϕ̇(t)

(17)

with the angle ϕ(t) as the generalized coordinate q (t). The state-space representation
is then given by

q̇(t) = ϕ̇(t) and q̈(t) = −g
l
· sin(ϕ(t)) . (18)

The Hamiltonian is the sum of kinetic and potential energy

H(q, q̇) =
1

2
·m ·

(
(l · sin(q) · q̇)2 + (l · cos(q)) · q̇)2

)
+m · g · (l − l · cos(q)) . (19)

For the initial conditions q(0) ∈ [2.1 ; 2.2] and q̇(0) ∈ [3.1 ; 3.2], the optimal point
of time t∗ to start the consistency test is identified using maximization of RA (t)
in (16), see Fig. ??. Since Ḣ (t) has not been simplified symbolically to Ḣ = 0, the
bounds [HV (t)] are not constant. For the point of time t∗, the state enclosure [x (t∗)]
is split into subintervals. Then, the constraint HH is evaluated for each of the subin-
tervals. Intervals which do not overlap with the interval [HV (t∗)] are inconsistent and,
therefore, eliminated. In Fig. ??, the domains which are inconsistent with the con-
straints [HV (t∗)] and [HH (t∗)] before subdivision of [x (t∗)] are marked by the dotted
regions. Additionally, the subintervals of [x (t∗)] which are kept after the consistency
test are depicted. They represent a tight enclosure of the physically consistent domain.
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Figure 3: Identification of overestimation using the energy constraint for a sim-
ple pendulum with uncertain initial conditions and visualization of the con-
straint in the (q; q̇)–plane for t = t∗.

5.2 A Double Pendulum

Consider the double pendulum in Fig. 4 as a second application. The positions and
velocities of the point masses m1 and m2 are given by

px,1 = l1 · sin(ϕ1)

py,1 = −l1 · cos(ϕ1)

px,2 = l1 · sin(ϕ1) + l2 · sin(ϕ2)

py,2 = −l1 · cos(ϕ1)− l2 · cos(ϕ2)

ṗx,1 = l1 · cos(ϕ1) · ϕ̇1

ṗy,1 = l1 · sin(ϕ1) · ϕ̇1

ṗx,2 = l1 · cos(ϕ1) · ϕ̇1 + l2 · cos(ϕ2) · ϕ̇2

ṗy,2 = l1 · sin(ϕ1) · ϕ̇1 + l2 · sin(ϕ2) · ϕ̇2 .

(20)

The system has s = 2 degrees of freedom. Its generalized coordinates according to
the Denavit-Hartenberg-conventions are x1 = ϕ1 and x2 = ϕ2 − ϕ1. Using the state
vector

x =
[
x1 x2 ẋ1 ẋ2

]T
=:

[
x1 x2 x3 x4

]T
, (21)

Figure 3: Identification of overestimation using the energy constraint for a sim-
ple pendulum with uncertain initial conditions and visualization of the con-
straint in the (q; q̇)–plane for t = t∗.
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5.2 A Double Pendulum
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the Denavit-Hartenberg-conventions are x1 = ϕ1 and x2 = ϕ2 − ϕ1. Using the state
vector

x =
[
x1 x2 ẋ1 ẋ2

]T
=:
[
x1 x2 x3 x4

]T
, (21)

the double pendulum is described by the ODEs [7]

ẋ =


1 0 0 0
0 1 0 0
0 0 m1l1 +m2 (l1 + l2 cos (x2)) m2l2 cos (x2)
0 0 m2 (l1 cos (x2) + l2) m2l2


−1

·


x3

x4

−g (m1 +m2) sin (x1) +m2l2 sin (x2) (x3 + x4)2

−gm2 sin (x1 + x2)−m2l1 sin (x2)x2
3

 .

(22)

Reliable Computing 15, 2011 9

the double pendulum is described by the ODEs [7]
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Figure 4: Modeling of a double pendulum with generalized coordinates x1, x2.

Using the procedure described in (9) and (10), the state-dependent, symmetric
mass matrix of this system can be reconstructed as

M =

[
(m1 + m2) · l21 m2 · l1 · l2 · cos(x2)

m2 · l1 · l2 · cos(x2) m2 · l22

]
. (23)

With this information, the Hamiltonian of the system (corresponding to its total en-
ergy) results in

H = m1 · g · py,1 + m2 · g · py,2 +
1

2
·m1 · (ṗ2

x,1 + ṗ2
y,1) +

1

2
·m2 · (ṗ2

x,2 + ṗ2
y,2) (24)

with Ḣ = 0. For uncertain initial conditions with

inf ([x(0)]) =
[
0.99 3π

4
− 11π

20
0.43 0.67

]T
and

sup ([x(0)]) =
[
1.01 3π

4
− 11π

20
0.43 0.67

]T
(25)

state enclosures are computed with the help of ValEncIA-IVP in three different ways.
These are:

(i) numerical modeling of the dynamical system in SmartMOBILE and simulation
without any consistency test (black solid lines in Fig. 5),

(ii) numerical modeling of the dynamical system in SmartMOBILE and applica-
tion of the Hamiltonian constraints (grey lines in Fig. 5), and

(iii) symbolic modeling of the dynamical system and application of the Hamiltonian
constraints in a stand-alone version of ValEncIA-IVP (dashed lines in Fig. 5).

The simulations (ii) and (iii) lead to significantly tighter state enclosures than
simulation (i). Both numerical and symbolic modeling approaches give almost identical
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y,1) +

1

2
·m2 · (ṗ2
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state enclosures are computed with the help of ValEncIA-IVP in three different ways.
These are:

(i) numerical modeling of the dynamical system in SmartMOBILE and simulation
without any consistency test (black solid lines in Fig. 5),

(ii) numerical modeling of the dynamical system in SmartMOBILE and applica-
tion of the Hamiltonian constraints (grey lines in Fig. 5), and

(iii) symbolic modeling of the dynamical system and application of the Hamiltonian
constraints in a stand-alone version of ValEncIA-IVP (dashed lines in Fig. 5).

The simulations (ii) and (iii) lead to significantly tighter state enclosures than
simulation (i). Both numerical and symbolic modeling approaches give almost identical
results with the maximum deviations ∆x1 = 0.0018, ∆x2 = 0.0072, ∆x3 = 0.0066,
and ∆x4 = 0.0444 in the interval diameters of the four state variables which is less
than the graphical resolution in Fig. 5. In simulation (ii), the consistency test was
applied after at most 0.1 s with 10 subdivisions. In simulation (iii), the setting 0.01 s
for the maximum time between two consistency tests with 50 subdivisions was chosen.

Note that the constraints HV and HH were not computed symbolically in (ii).
To obtain the total energy of the system and, consequently, HH , SmartMOBILE
functions getPotentialEnergy and getKineticEnergy were used. Additionally, the
time derivative of their sum was computed by FADBAD++ to provide the basis for
HV . The result in Fig. 5 demonstrates that the overestimation can be reduced for the
numerical approach to modeling of this system as efficiently as for the symbolic one
with the help of the new consistency test.
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6 Conclusions and Outlook on Future Research

In this paper, we have presented a general procedure for the derivation and application
of Hamiltonian constraints. They are applied to detect and reduce overestimation
arising in verified solution techniques for ODEs.

For non-Hamiltonian systems and in situations in which Hamiltonian constraints
do not depend on the state variables introducing overestimation, the energy-based
constraints might fail to detect a portion of overestimation. To solve this problem,
further constraints based on specific physical system properties such as continuity
laws or mass balance equations have to be derived. This extension would allow us to
generalize the consistency test for use in various applications in engineering, medicine,
and biology.

In future work, we will extend the approach for Hamiltonian system formulations
for the derivation and verification of stabilizing control laws. In this case, we will
focus on systems with non-negligible parameter uncertainties. For many engineering
applications, it is difficult to prove asymptotic stability using classical procedures for
controller design relying on symbolic formula manipulation if parameter uncertainties
have significant influence on the stability of the closed-loop control system. Interval
techniques will be used to simplify this task from a computational point of view.
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For non-Hamiltonian systems and in situations in which Hamiltonian constraints
do not depend on the state variables introducing overestimation, the energy-based
constraints might fail to detect a portion of overestimation. To solve this problem,
further constraints based on specific physical system properties such as continuity
laws or mass balance equations have to be derived. This extension would allow us to
generalize the consistency test for use in various applications in engineering, medicine,
and biology.

In future work, we will extend the approach for Hamiltonian system formulations
for the derivation and verification of stabilizing control laws. In this case, we will
focus on systems with non-negligible parameter uncertainties. For many engineering
applications, it is difficult to prove asymptotic stability using classical procedures for
controller design relying on symbolic formula manipulation if parameter uncertainties
have significant influence on the stability of the closed-loop control system. Interval
techniques will be used to simplify this task from a computational point of view.
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