
filib++ , Expression Templates and the Coming

Interval Standard∗

M. Nehmeier and J. Wolff v. Gudenberg
Informatik 2, University of Würzburg, Am Hubland,
D-97074 Würzburg, Germany

{nehmeier,wolff}@informatik.uni-wuerzburg.de

Abstract

In this paper we investigate how a C++ class library can be improved
by the concept of expression templates. Our first result is a saving of
rounding mode switches which considerably increases the performance.

Our second result deals with handling the discontinuity flag that will
probably be decided to be raised whenever a function is called outside its
domain (loose evaluation). We discuss several alternatives and propose
an expression related flag that can be used in a thread safe manner.

Both results are reviewed with respect to the coming IEEE standard
for interval arithmetic.

Keywords: interval arithmetic libraries

AMS subject classifications: 65G30, 65G20, 65G40

1 Introduction

Current C++ interval libraries like Boost [1] or filib++ [6] suffer from low speed of
switching the rounding mode. In filib++ rounding strategies can be instantiated by
template parameters. Boost uses policy classes for different rounding strategies. In
this paper we suggest an optimized rounding strategy based on expression templates.

2 Interval arithmetic using expression templates

Expression templates is a means for user-defined specification of the semantics of
expressions. The expression tree is explicitly visible and can be transformed at compile
time. The result is an optimized machine code. Optimization can include loop fusion
[11], adaptation to grids in finite element methods [3] or increasing accuracy in dot
product expressions [7]. We apply expression templates to minimize rounding mode
switches.

∗Submitted: January 20, 2009; Revised: January 19, 2010; Accepted: February 1, 2010.

312

{nehmeier,wolff}@informatik.uni-wuerzburg.de

Reliable Computing 15, 2011 313

2.1 Saving rounding mode switches

Operator overloading is used by the libraries Boost or filib++ to implement interval
arithmetic. For a single operation usually three rounding mode switches are necessary,
if the initial rounding mode is different from a directed rounding. See the following
pseudo code in Listing 1 for the addition of three intervals a + b + c.

1 s t o r e round ing () ;
2 set rounding downward () ;
3 t1 = a1 + b1 ;
4 set rounding upward () ;
5 t2 = a2 + b2 ;
6 r e s e t r o un d i n g () ;
7 s t o r e round ing () ;
8 set rounding downward () ;
9 r1 = t1 + c1 ;

10 set rounding upward () ;
11 r2 = t2 + c2 ;
12 r e s e t r o un d i n g () ;

Listing 1: Addition of three intervals a + b + c

Three of the six rounding mode switches can be saved by a simple rearrangement.

1 s t o r e round ing () ;
2 set rounding downward () ;
3 t1 = a1 + b1 ;
4 set rounding upward () ;
5 t2 = a2 + b2 ;
6 r2 = t2 + c2 ;
7 set rounding downward () ;
8 r1 = t1 + c1 ;
9 r e s e t r o un d i n g () ;

Listing 2: Rearranged addition of three intervals a + b + c

A further optimization by moving the computation of r1 after line 3 is not possible
for all operations. E.g., for multiplication both bounds of the first product have to be
known before the second product can be computed.

Another optimization is to apply the formula 4x = −O(−x).

1 s t o r e round ing () ;
2 set rounding downward () ;
3 t1 = a1 + b1 ;
4 t2 = −(−a2 − b2) ;
5 r1 = t1 + c1 ;
6 r2 = −(−t2 − c2) ;
7 r e s e t r o un d i n g () ;

Listing 3: Addition of three intervals a + b + c with one rounding mode

Many compilers optimize the computation of the upper bounds in line 4 and 6 to a

314 M. Nehmeier and J. Wolff v. Gudenberg, Interval Standard

simple addition now being performed with the wrong rounding mode. This can be
avoided by storing the upper bound negative [5].

2.2 Evaluation of expression trees

During compilation time the following expression tree is instantiated for the addition of
three intervals. The evaluation is delayed until assignment of the complete expression.

2.2 Evaluation of expression trees

During compilation time the following expression tree is instantiated for the
addition of three intervals. The evaluation is delayed until assignment of the
complete expression.

IntervalExpr<BinaryIntervalExpr<IntervalAdd, �, �>>

IntervalBinaryIntervalExpr<IntervalAdd, �, �>

Interval Interval

Figure 1: Expression tree for the addition of 3 intervals

The class diagram in Figure 2 displays the behavior of the expression tem-
plate class for a binary operation. The two expression operands as well as the
operator are used to instantiate the template, see Figure 1. This class repre-
sents the expression with the evaluation function which is called with the actual
rounding control. The rounding control visits the whole tree1, hence, it can be
accessed by each part of the expression. Depending on the current state a deci-
sion whether to switch the rounding mode can be taken. Note that the classes
IntervalExpr and BinaryIntervalExpr are transparent to the user.

return OP::eval(rnd, expr1.eval(rnd), expr2.eval(rnd));

IntervalExpr
expr: E

+ eval(): Interval

E

RndControl rnd;
return expr.eval(rnd);

+ eval(RndControl rnd): Interval

expr2: E2
expr1: E1
BinaryIntervalExpr OP, E1, E2

Figure 2: Class diagram for IntervalExpr

The expressions are not restricted to elementary operations but can contain
interval function calls. These are evaluated before the rest of the tree. Mixed
mode arithmetic with floating point operations may be supported.

The reduction of rounding mode switches for n operations is displayed in
table 1.

2.3 Performance tests

For performance tests the concept of expression templates was implemented
with the two rounding strategies ”switched” and ”onesided”, see Listing 2 and

1That is called a visitor pattern [2] in software engineering.

3

Figure 1: Expression tree for the addition of 3 intervals

The class diagram in Figure 2 displays the behavior of the expression template
class for a binary operation. The two expression operands as well as the operator are
used to instantiate the template, see Figure 1. This class represents the expression
with the evaluation function which is called with the actual rounding control. The
rounding control visits the whole tree1, hence, it can be accessed by each part of the
expression. Depending on the current state a decision whether to switch the rounding
mode can be taken. Note that the classes IntervalExpr and BinaryIntervalExpr are
transparent to the user.

return OP::eval(rnd, expr1.eval(rnd), expr2.eval(rnd));

IntervalExpr

expr: E

+ eval(): Interval

E

RndControl rnd;
return expr.eval(rnd);

+ eval(RndControl rnd): Interval

expr2: E2
expr1: E1

BinaryIntervalExpr OP, E1, E2

Figure 1: Class diagram for IntervalExpr

1

Figure 2: Class diagram for IntervalExpr

The expressions are not restricted to elementary operations but can contain interval
function calls. These are evaluated before the rest of the tree. Mixed mode arithmetic
with floating point operations may be supported.

The reduction of rounding mode switches for n operations is displayed in table 2.2.

1That is called a visitor pattern [2] in software engineering.

Reliable Computing 15, 2011 315

rounding strategy operator overloading expression templates
switched 3n n + 2
onesided 2n 2

Table 1: Number of rounding mode switches

2.3 Performance tests

For performance tests the concept of expression templates was implemented with the
two rounding strategies “switched” and “onesided”, see Listing 2 and 3, respectively.
The implementation uses plain C++ code in contrast to the current filib++ imple-
mentation that uses assembler subroutines. Therefore the existing filib++ implemen-
tation is the fastest for short expressions. For longer expressions with three or more
operations our test implementation with expression templates results in a measurable
increase of performance. If we apply the same “tricks” as filib++, we can further
reduce the runtime.

rounding strategy operator overloading expression templates
switched 3n n + 2
onesided 2n 2

Table 1: Number of rounding mode switches

3, respectively. The implementation uses plain C++ code in contrast to the
current filib++ implementation that uses assembler subroutines. Therefore the
existing filib++ implementation is the fastest for short expressions. For longer
expressions with three or more operations our test implementation with expres-
sion templates results in a measurable increase of performance. If we apply the
same ”tricks” as filib++, we can further reduce the runtime.

0

10

20

30

40

1 2 3 4 5

� � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

operations

ti
m

e

�
ET onesided

�
ET switched

�
filib++

�
filib++ native directed

�
Boost

Figure 3: Performance

We recomend not to keep intermediate results in temporary variables, since
the gain of performance is higher for longer expressions.

3 Flag Handling

For loose evaluation of functions or division by an interval containing zero flags
will have to be set according to the standard. These flags indicate that a function
has been called with an argument outside the domain of definition. In either
case continuity is not valid anymore. Hence, assertions needing continuity like
Brouwer’s fixed point theorem can not be applied.

The flags have to be checked by the user. There are several ways to imple-
ment these flags.

4

Figure 3: Performance

We recommend not to keep intermediate results in temporary variables, since the
gain of performance is higher for longer expressions.

3 Flag Handling

For loose evaluation of functions or division by an interval containing zero flags will
have to be set according to the standard. These flags indicate that a function has been
called with an argument outside the domain of definition. In either case continuity

316 M. Nehmeier and J. Wolff v. Gudenberg, Interval Standard

is not valid anymore. Hence, assertions needing continuity like Brouwer’s fixed point
theorem can not be applied.

The flags have to be checked by the user. There are several ways to implement
these flags.

3.1 Global flags

Intervals in filib++ can be called with different modes. The standard or interval
mode does not allow loose evaluation and terminates the program, if a call outside
the domain occurs. No flags are provided. In the extended mode filib++ returns the
containment set, i.e. an element of IR∗. Again no flags occur. In the third mode,
extended with flag, a global flag is maintained. It has to be reset by the user and is
set, if an operation or function is called outside its domain. A global flag, however, has
several disadvantages. It is not possible to mark the expression that was responsible
for setting the flag and, more crucial, thread safety can not be guaranteed in modern
multi-scalar, multi-core computer architectures.

3.2 User managed flags

For the proposed interval arithmetic part of the C++ standard library[9] an explicitly
managed flag – completely under user control – had do be provided, since it was
required that the compiler does not need to know anything about the flag. In other
words the flag handling has to be transparent for the compiler. This concept overcomes
the first disadvantage of global flag handling.

The user has to call extended functions and “operators” that receive and deliver
the flag as an explicit boolean variable. The code completely looses readability:

1 I n t e r v a l x (1) , y (−1 ,1) ;
2

3 bool f = f a l s e ;
4 I n t e r v a l r = d iv id e (x , s q r t (y , f) , f) ;
5 i f (! f)
6 . . .

Listing 4: r = x/
√

y user defined flag

Furthermore, since the user can reset the flags, it is difficult to retain thread safe
code.

3.3 Expression related flags

Our proposal is to use local flags for each interval expression. That can be applied
in the same manner as the C++ library flag without having to be managed by the
user. This is achieved by the introduction of the new data type ExpressionResult

that keeps an expression local flag.
ExpressionResult is a data type that contains an interval and several flags, there-

fore an alternative name would be FlaggedInterval. It can be passed as an operand
to expressions, then the flag is also included. If, however, the ExpressionResult is
converted to an interval the flag is disregarded.

Since one or even more flags per interval would not only boost the representation
of an interval to 2 doubles plus some bits and, hence, do not fit in any reasonable ports

Reliable Computing 15, 2011 317

and buses but also slow down the operations, we suggest to provide the new data type
for exception handling during evaluation and use plain intervals as storage format.

This has the following advantages. If the information that is indicated by the flag
is important for the application, the user just assigns the return value of an expression
to a variable of the type ExpressionResult. That is possible, since ExpressionResult

is assignment compatible with Interval. For a user who doesn ’t care about flag and
therefore doesn’t use the type ExpressionResult the evaluation corresponds to the
extended mode in filib++.

1 I n t e r v a l x (1) , y (−1 ,1) ;
2

3 Express ionResu l t e r = x/ s q r t (y) ;
4 i f (! e r . getExtendedErrorFlag ())
5 I n t e r v a l r = er ;
6 . . .

Listing 5: r = x/
√

y expression related flag

Implementation of this data type can be done by operator overloading or by expres-
sion templates. In the latter case the eval() method can use traits for the evaluation
of different types.

1 template<typename OP, typename E1 , typename E2>
2 class BinaryInterva lExpr {
3 private :
4 typedef EvalTraits<E1> et1 ;
5 typedef EvalTraits<E2> et2 ;
6

7 E1 expr1 ;
8 E2 expr2 ;
9

10 public :
11 BinaryInterva lExpr (E1 expr1 , E2 expr2)
12 : expr1 (expr1) , expr2 (expr2) {}
13

14 I n t e r v a l eva l (RndControl& rnd ,
15 FlagControl& f l a g) const {
16 return OP: : eva l (rnd ,
17 f l a g ,
18 et1 : : eva l (rnd , f l a g , expr1) ,
19 et2 : : eva l (rnd , f l a g , expr2)) ;
20 }
21 } ;

Listing 6: Traits Implementation of the class BinaryIntervalExpr

Walking through the tree for evaluation the flag is passed as a visitor object. The dif-
ferent eval() methods can set the flag if necessary.

318 M. Nehmeier and J. Wolff v. Gudenberg, Interval Standard

1 template<typename E>
2 class Interva lExpr {
3 private :
4 E expr ;
5

6 public :
7 . . .
8 ExprResult eva l () const {
9 RndControl rnd ;

10 FlagControl f l a g ;
11 return ExprResult (expr . eva l (rnd , f l a g) , f l a g) ;
12 }
13 } ;

Listing 7: Evaluation of an expression tree

Using the expression template implementation an evaluation of an expression is
delayed until all information is available as a tree. The flag of the whole expression
is computed by or-ing the flags of the subexpressions. Hence, it does not matter in
which order the computations of the subexpressions arrive.

For the implementation with operator overloading the flags only occur as result
parameters and again the order of evaluation does not change the final value of the
flag. So we have the following proposition.

Proposition: The handling of expression local flags is thread safe.

4 Coming interval standard

Currently interval arithmetic is being standardized by the IEEE working group P1788.
The definition of interval arithmetic will be described in levels of abstraction [10].
Level 1 is the application level whereas level 2 defines the interval operations. Level
3 is responsible for the representation of interval data, and level 4 finally specifies the
bit strings. Level 2 may be regarded as the interface of the abstract data type interval
specifying its constructors and operations.

It is still under discussion whether level 2 should be implemented in hardware or
software. In our opinion the whole standard is to be formulated independent from
such issues. We even think that at least level 4, the bit layout level should not be
specified completely.

Each implementation, however, in hardware or software has to provide all oper-
ations of level 2. Combined hardware and software solutions are possible. Figure 4
displays different levels of abstraction. Starting from the level 2 interface of the P1788
standard, there is a choice of an implementation in a particular programming lan-
guage using the instruction set of an existing processor or a new interval processing
unit. This level can be refined by choosing various implementation options.

We hope that our results will have some influence on the discussion of that stan-
dard.2

2In the meantime the standard provides exception handling with decorated intervals which
may be considered as extension of our flagged interval concept.

Reliable Computing 15, 2011 319

Cell Processor

C++

P1788

Expression Templates ...

Figure 4: Levels of abstraction

1

Figure 4: Levels of abstraction

5 Summary

We have used expression templates to compute interval expressions. On the one hand
we could save rounding mode switches and thus accelerate the performance. On the
other hand we discussed thread safe flag handling for loose evaluation. It can be
established for expression related flags. This is achieved by the introduction of the
new data type ExpressionResult that contains an interval and several flags. The flag
handling can be applied to expressions computed by several statements, if we use the
data type ExpressionResult for intermediate values.

References

[1] Boost Interval Arithmetic Library, January 2009.
http://www.boost.org/doc/libs/1 37 0/libs/numeric/interval/doc/interval.htm

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[3] J. Härdtlein, Moderne Expression Templates Programmierung, PhD thesis, Uni-
versität Erlangen-Nürnberg, 2007, in German.

[4] IEEE Interval Standard Working Group – P1788, January 2009.
http://grouper.ieee.org/groups/1788/

[5] B. Lambov, “Interval arithmetic using SSE-2”, Lecture Notes in Computer Science,
vol. 5045, pp. 102–113, 2008.

[6] M. Lerch, G. Tischler, J. Wolff von Gudenberg, W. Hofschuster, and W. Krämer.
“Filib++, a fast interval library supporting containment computations”, ACM
Trans. Math. Softw., vol. 32, no. 2, pp. 299–324, 2006.

[7] M. Lerch and J. Wolff von Gudenberg, “Expression templates for dot product
expressions”, Reliable Computing, vol. 5, no. 1, pp. 69–80, 1999.

[8] S. B. Lippman, ed., C++ Gems, SIGS Publications, Inc., New York, NY, USA,
1996.

320 M. Nehmeier and J. Wolff v. Gudenberg, Interval Standard

[9] S. Pion, H. Brönnimann, and G. Melquiond, “A proposal to add interval arithmetic
to the C++ standard library” In: P. Hertling, C. M. Hoffmann, W. Luther, and
N. Revol, editors, Reliable Implementation of Real Number Algorithms: Theory and
Practice, Dagstuhl Seminar Proceedings, no. 06021, Schloss Dagstuhl, Germany,
2006. http://drops.dagstuhl.de/opus/volltexte/2006/718

[10] J. Pryce and D. Lester, A proposed structure for the process of constructing the
P1788 standard, December 2008, in [4].

[11] T. L. Veldhuizen, “Expression templates”, C++ Report, vol. 7, no. 5, pp. 26–31,
June 1995; Reprinted in [8].

	Introduction
	Interval arithmetic using expression templates
	Saving rounding mode switches
	Evaluation of expression trees
	Performance tests

	Flag Handling
	Global flags
	User managed flags
	Expression related flags

	Coming interval standard
	Summary

