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Abstract

The Taylor model [8] is one of the inclusion functions available to com-
pute the range enclosures. It has the property of (m + 1)th convergence
order, where, m is the order of the Taylor model used. It computes a
high order polynomial approximation to a multivariate Taylor expansion,
with a remainder term that rigorously bound the approximation error.
The sharper bounds on the enclosures computed using the Taylor model
can be obtained either by successively partitioning the domain x using
suitable subdivision factors, or by increasing the convergence rate of the
Taylor model using higher order Taylor models. However, higher order
Taylor forms require higher degrees of the polynomial part, which in turn
require more computational effort and more memory. This is the major
drawback of increasing the order m of Taylor models for obtaining range
enclosures with higher order convergence rates.

In this paper, we attempt to overcome these drawbacks by using a
lower order Taylor model, and then using extrapolation to accelerate the
convergence process of the sequences generated with the lower order Tay-
lor model. The effectiveness of all the proposed algorithms is tested on
various multivariate examples and compared with the conventional meth-
ods. The test results show that the proposed extrapolation-based methods
offer considerable speed improvements over the conventional methods.

Keywords: asymptotic expansion, extrapolation methods, Richardson extrapo-
lation process (REP), interval analysis, Taylor model
AMS subject classifications: 65G40, 65G20

1 Introduction

Taylor forms are higher degree generalizations of the centered forms [10]. The Taylor
model [8] is a kind of Taylor form available to compute the range enclosures. It
computes a high order polynomial approximation to a multivariate Taylor expansion,
with a remainder term that rigorously bounds the approximation error. It has the
property of (m + 1)th convergence order, where, m is the order of the polynomial
part.

The enclosures computed using the Taylor model can be tightened to the desired
accuracy in two ways: first, by successively partitioning the domain x using suitable
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subdivision factors, and second, by increasing the convergence rate of the Taylor model
using higher order Taylor models. However, higher order Taylor forms require higher
degrees of the polynomial part, which in turn require more computational effort and
more memory. This is the major drawback of increasing the order m of Taylor models
for obtaining range enclosures with higher order convergence rates.

In this paper, we attempt to overcome these drawbacks by using a lower order
Taylor model, and then using extrapolation to accelerate the convergence process of
the sequences generated with the lower order Taylor model. The main features of the
proposed method are:

• It uses the lowest order Taylor model - the first order Taylor model - to compute
the initial range enclosures.

• For the polynomial part of the first order Taylor model, as every variable occurs
only once, the exact range of the polynomial can be simply obtained using
the natural interval evaluation [12]. In contrast, in typical higher order Taylor
models, the conventional Taylor model uses the Linear Dominated Bounder
(LDB) [7] and the Quadratic Dominated Bounder (QDB) [9] to bound the range
of the polynomial part.

• It generates extrapolated sequences that, in theory, converge with one order
higher than the corresponding Taylor model. For instance, while the existing
first order Taylor model has a quadratic convergence order, the extrapolated
first-order Taylor model has a convergence order of three (cubic convergence
order). In practice, even higher orders may be obtained with the extrapolated
first order Taylor model, as seen in the examples considered later in this paper.

• An identical method to the one proposed here can be used for second and higher
order Taylor models, to obtain accelerated convergence speeds by atleast one
order. This would however require the polynomial range bounding to be done
using, for instance, the LDB or QDB methods mentioned above. We therefore
choose to describe and demonstrate the proposed method for first order Taylor
models, where the polynomial range bounding is simply done using the NIE.

The rest of the paper is organized as follows. In Section 2, we present the nota-
tions and preliminaries of interval analysis. In Section 3, we present the definitions
and the properties of Taylor forms. In Section 4, we give a brief introduction to the
Taylor model. In Section 5, we show the existence of an asymptotic expansion for the
sequences obtained using the Taylor model. In Section 6, we present the extrapolation
process. In Section 7, we discuss the Brezinski’s error control criterion. In Section 8,
we present the proposed MAIN algorithm. In Section 9, we compare the performance
of the proposed method versus that of the existing Taylor model on several multidi-
mensional examples. Lastly, in Section 10, we draw the conclusions. The numerical
results are listed in Appendix A and the brief background of asymptotic expansion is
given in Appendix B.

2 Interval Analysis

2.1 Notation and Definitions

R denotes the field of real numbers, and R
n the vector space of column vectors of

length n with real entries. A real interval x is a closed and bounded set of real
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numbers, x = [x, x] = {x ∈ R | x ≤ x ≤ x} where x and x are called the lower and
upper endpoints of the interval x The set of all real intervals is denoted by IR. An
interval vector x = (x1, . . . , xn)T with components xk = [xk, xk] is also called a box.
The set of all boxes of dimension n is denoted by IR

n.

The lower bound of a box x is inf x := x, its upper bound is supx := x, and its
midpoint is mid x := 1

2
(x + x) . The width of an interval is wid x = x− x ≥ 0. A set

inclusion x ⊆ y is true only when y ≤ x and x ≤ y.

Two intervals are equal if their corresponding endpoints are equal. The intersection
of two intervals x and y is empty, x ∩ y = ∅, if either x > y or y > x. Else, the

intersection of x and y is again an interval x ∩ y =
[
max

(
x, y

)
, min (x, y)

]
.

Definition 2.1 Let f : xR be a function defined for x ∈ x. Then the range of f over
x is denoted as

range(f, x) = {f(x)|x ∈ x}

Definition 2.2 (Inclusion function) A function f(x) is an inclusion function for
f : x→ R if range(f, y) ⊆ f(y) for all y ⊆ x.

Definition 2.3 (Inclusion monotonicity) An inclusion function f(x) is inclusion
monotonic if x ⊆ y ⇒ f(x) ⊆ f(y) for all x, y ∈ IR

l.

If f(x) is an inclusion function of f for x ∈ IR
l, then we can always write

f(x) = range(f, x) + e(x)

for some interval e(x) with 0 ∈ e(x). We call wid e(x) the excess width of f(x).

3 Taylor Forms

Let f : x → R be a function that is m + 1 times differentiable on x ∈ IR
l. Let

x = (x1, x2, . . . , xl) ∈ x. Let

|λ| = λ
1

+ . . . + λl, λ! =λ
1
, . . . , λl, Dλf (x) =

∂λ
1
+...+λlf (x)

∂x
λ
1

1 . . . ∂x
λ

l
l

Then, the Taylor expansion of f of order m is given as

f (x) = p (x) + r (x) (1)

where p (x) and r (x) are defined as

p (x) = f (c) +

m∑

|λ|=1

Dλf (x)

λ!
(x− c)λ ,

r (x) =
∑

|λ|=m+1

f (λ) (ξ)

λ!
(x− c)m+1

with c = mid x and ξ ∈ x. We call p (x) the mth order polynomial part of f and r (x)
the remainder part of the Taylor expansion.
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Assume an inclusion function of the (m + 1)-th derivative of f exists and is
bounded over x. Then, the corresponding Taylor form of order m, denoted by
fTaylor (x), can be expressed as [6]:

fTaylor (x) = range (p,x) + r (x) (2)

where range(p, x) = {p (x) | x ∈ x} is the exact range of the polynomial part p (x) on
x, and r (x) is any inclusion function for the range of the remainder part on x.

The Taylor form has convergence order (m + 1) , as shown in [6]:

Theorem 3.1 [6] Assume that the Taylor form of order m is as defined above. Then,

range (f, x) ⊆ fTaylor (x)

wid fTaylor (x)− wid range (f, x) ≤ L (wid x)m+1 (3)

where L is some constant independent of x.

4 The Taylor Model

The Taylor model (TM) is defined as follows.

Definition 4.1 (Taylor model) [8] Let f : x→ R be a function that is (m + 1) times
continuously partially differentiable on an open set containing the domain x. Let c be
the point in x and P the m-th order Taylor polynomial of f around c. Let I be an
interval such that

f (x) ∈ P (x − c) + I for all x ∈ x

Then, the pair (P, I) is called an m-th order Taylor model of f around c. Apparently,
P + I encloses f between two hypersurfaces on x.

Similar to the Taylor form, the Taylor model can be expressed in terms of the
polynomial part and the remainder part, as in (1). Bounding of the polynomial part
p (x) is done in the COSY INFINITY package with the Linear Dominated Bounder
(LDB) [7] and Quadratic Dominated Bounder (QDB) [9], whereas the remainder part
r (x) is computed using interval arithmetic [2].

One of the fundamental properties of the Taylor model as described in [8] is that the
sharpness of the enclosure of the range of the function computed using the Taylor model
scales with the (m + 1)-th order in the width of the domain. That is, Theorem 3.1
also applies to the Taylor model, provided sharp bounds on the polynomial part are
obtained.

5 Asymptotic Expansion for the Taylor Model

Let fTM (x) denote the Taylor model of a function f on box x. Denote the exact
range of the polynomial part as range(p, x), and an enclosure for the remainder term
as RTM (x) . Then, similar to (1) and (2), we can express fTM (x) as

fTM (x) =
[
fTM (x), fTM (x)

]
= range (p, x) + RTM (x) (4)
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Suppose we uniformly subdivide the box using the subdivision factor N , as follows [11]:

xi,j =
[
xi + (j − 1) wid

xi

N
, xi + j wid

xi

N

]
, j = 1, 2, . . . , N

xi =

N⋃

j=1

xi,j ,

x =
N⋃

ji=1

(
x1,j

1
, x2,j

2
, . . . , x

l,jl

)
(5)

The range enclosure computed with the Taylor model for this partition, denoted by
fTM(N) (x) , is

fTM(N) (x) =

N⋃

ji=1

fTM

(
x1,j

1
, x2,j2 , . . . , xl,jl

)

=
N⋃

ji=1

{
range

(
p,x1,j

1
, x2,j

2
, . . . , xl,jl

)

+RTM

(
x1,j

1
, x2,j

2
, . . . , xl,jl

)}

= range (f, x) + eTM(N) (x) (6)

where eTM(N) (x) is the excess width associated with the above uniform subdivision
of the interval vector x, i.e.,

eTM(N) (x) :=
N⋃

ji=1

eTM

(
x1,j

1
, x2,j

2
, . . . , xl,jl

)
(7)

From Theorem 3.1,

wid eTM(N)(x) = σ

(
wid x

N

)(m+1)

+ O

(
wid x

N

)(m+2)

(8)

where σ is some constant independent of x. From (6) and (8),

wid fTM(N) (x)−wid range (f, x) = σ

(
wid x

N

)(m+1)

+ O

(
wid x

N

)(m+2)

(9)

so,

fTM(N) (x) = range (f, x) + σ1

(
wid x

N

)m+1

+ O

(
wid x

N

)m+2

(10)

and

fTM(N) (x) = range (f, x) + σ2

(
wid x

N

)m+1

+ O

(
wid x

N

)m+2

(11)

Comparing the formula (15) from the Appendix with (10) for s = 1, we get

A(y)← fTM(N) (x), A← range (f, x), αk ← σ1, (12)

yσk ←
(

wid x

N

)m+1

, O (yσs+1)← O

(
wid x

N

)m+2

.

Similarly, from (11) and (15), we get

A(y)← fTM(N) (x), A← range (f, x), αk ← σ2, (13)
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yσk ←
(

wid x

N

)m+1

, O (yσs+1)← O

(
wid x

N

)m+2

.

Remark 5.1 It can be seen from the expressions for the infimum (12) and for the
supremum (13) that there exists an asymptotic expansion for the method based on
Taylor model and uniform subdivision. Further, we can accelerate the convergence
process by atleast one order higher than the original sequence i.e. from O

(
1

Nm+1

)

to O
(

1
Nm+2

)
, where N is the subdivision factor and m is the order of the Taylor

model. Thus, for instance, while the first order Taylor model (m = 1) is quadratically
convergent, the extrapolated first order Taylor model is cubically convergent.

Remark 5.2 From (10) and (11), we see that by using a Taylor model of order m
for increasing subdivision factors N, two separate sequences can be constructed which
converge to two different limits. One is the sequence of lower bounds on the range
enclosure converging to the range infimum, and the other is the sequence of upper
bounds on the range enclosure converging to the range supremum. In our work, we
shall construct these two separate sequences of lower and upper bounds of the range
enclosure using Taylor model and extrapolate them to their respective limits (we do not
directly apply extrapolation to the sequence of intervals enclosing the range).

6 Extrapolation Process — Sequence Transfor-

mation

Extrapolation methods (equivalently, convergence acceleration methods or sequence
transformations) are popularly used for accelerating the convergence process of se-
quences [4, 15, 17, 16]. Extrapolation methods basically transform the original se-
quence into another one which converges to the limit more quickly (when the limit
exists).

6.1 Richardson Extrapolation Process for the Romberg

Sequence

Amongst the various extrapolation methods [4, 15], perhaps the most popular and
widely used method is the Richardson extrapolation process (REP). Let K ∈ N, ρ ≥ 2,
and {Aj} , j = 0, 1, . . . , K be the sequence to be accelerated. For ρ = 2, this becomes
the Romberg sequence defined as choice A. The REP can be given as:

ALGORITHM REP-GEOMETRIC:

1. Set A
(j)
0 = Aj , j = 0, 1, . . . , K

2. Compute A
(j)
k by recursion

A
(j)
k = A

(j)
k−1 +

(
A

(j)
k−1 − A

(j−1)
k−1

)

ρk − 1
,

{
k = 1, 2, . . . , K,
j = k, . . . , K.

which is similar to the Aitken’s ∆2 process for the first extrapolated column k = 1.
Let y = 1/ρ in (15). Then, the order of convergence for the extrapolated sequences

is given as:

A
(j)
k − A = O

(
y(k+1)

)



Reliable Computing 15, 2011 257

The sequences
{

A
(j)
k

}
computed using Step 2 of above Algorithm can be arranged in

a two-dimensional array called the Romberg Table, denoted [A]k, cf. Table 1. The
arrows in the table show the flow of computations. The kth column of the Romberg
Table is referred to as the (k − 1)th extrapolated column.

Table 1: The Romberg Table, [A]K with K = 5 (i.e., with 5 extrapolated
columns)

A
(0)
0

ց

A
(1)
0 → A

(1)
1

ց ց

A
(2)
0 → A

(2)
1 → A

(2)
2

ց ց ց

A
(3)
0 → A

(3)
1 → A

(3)
2 → A

(3)
3

ց ց ց ց

A
(4)
0 → A

(4)
1 → A

(4)
2 → A

(4)
3 → A

(4)
4

ց ց ց ց ց

A
(5)
0 → A

(5)
1 → A

(5)
2 → A

(5)
3 → A

(5)
4 → A

(5)
5

7 Error Control in Convergence Acceleration

Process

From the user’s point of view, it is not sufficient to know that for a given sequence An,
the sequence Ân will converge faster. It would be better to have an estimate of the
error (Ân−S) or, still better, to know a sequence of intervals containing the unknown
limit S of the sequence An. Another peculiar characteristic observed in extrapolation
is that the extrapolated sequences usually converge to the true limit from either side
of S. Hence, it is necessary to have an error estimate for the extrapolated sequences.

Amongst the many researchers, Brezinski [3, 4] offered an error control criterion
which was found more useful and practical in almost all cases. He proposed to construct
the sequence of intervals containing the true limit of the sequence under consideration.
The same is discussed in detail in the following sub-section.

7.1 Brezinski’s Error Control Criterion

Let {Sn} be the sequence under consideration. Let S be the limit of the sequence
{Sn}. Let {Tn} and {Vn} be two other sequences obtained by applying REP to {Sn} .
Suppose the sequence {Tn} converges faster than {Sn} , and {Vn} converges faster
than {Tn} , both to the same limit S. Thus, {Sn} , {Tn} , and {Vn} can be successive
columns of the Romberg Table 1.

Let b ∈ R (b is called the Brezinski’s factor). Define

Vn (b) = Vn − b (Vn − Tn) , n ∈ N
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and construct the interval

Jn (b) = [min (Vn (b) , Vn (−b)) , max (Vn (b) , Vn (−b))] (14)

Theorem 7.1 [3] If Tn− S = o (Sn − S) and Vn − S = o (Tn − S), then ∀b 6= 0, ∃N :
∀n ≥ N, S ∈ Jn (b) . Moreover Vn (±b)− S = o (Sn − S) .

Remark 7.1 Brezinski has pointed out a fundamental practical point in [3]: “Under
some assumptions, the theorem given above says that for all n greater than N , S belongs
to some interval. However, such a N is not known without adding supplementary
assumptions. Such an N has been attained if the interval at the step n+1 is contained
in the interval obtained at the step n, whatever n ≥ N may be. This is a good test for
having attained this N”.

Remark 7.2 As pointed out in Theorem 7.1, the Brezinski’s sequence of intervals
Vn (±b) (so, also Jn (b)) can have a rate of convergence faster than {Sn} , at the most
of {Tn} , but not faster than {Tn} . Hence, we lose the benefit of extrapolation by one
column.

Remark 7.3 The value of Brezinski’s factor b in turn affects two factors in con-
structing the Brezinski’s sequence of intervals Jn (b) in (14 ). One is the width of the
sequence of intervals Jn (b) , and the other is the value of N referred to in Theorem
7.1. Larger the value of b, wider is the interval Jn (b), but smaller is N . Whereas,
smaller the value of b, tighter is the interval Jn (b), but larger is N . In general, the
suggested value of b is between 0 and 1, cf. [3].

8 The Proposed REP Based Algorithm for the

Taylor Model

The proposed Algorithm MAIN in Section 8.4 below accepts as inputs the initial
box x, the first order Taylor model fTM , a tolerance parameter ε, and the number
K of extrapolated columns in the Romberg table. It generates as output the table
[TM_Range_approx]K containing the range enclosing intervals. The sequences of the
range enclosing intervals in this table converge (columnwise) increasingly faster than
the sequence of range enclosures obtained with the existing Taylor model. All entries
of this table are range enclosures of desired accuracy ε, with the bottom rightmost
entry possessing the highest accuracy.

We shall now describe the working of Algorithm MAIN. At Step 1, using Algo-
rithm Sequence_infsup, we first obtain the range enclosures with the first order Taylor
model, where the subdivision factor N is increased geometrically. We construct two
separate sequences of lower and upper bounds from the obtained range enclosures.
Next, at Step 2 we extrapolate these sequences to their respective limits (the limits
are the range infimum and range supremum) using the REP. Algorithms Romberg_inf
and Romberg_sup produce the Romberg Tables for the range infimum and supremum.
At Step 3, we apply Brezinski’s error control criterion to these Romberg Tables, and
generate the Brezinski’s tables of nested intervals (referred to as BTNII and BT-

NIS), using Algorithm Range_Approx_infsup. These tables comprise of nested in-
tervals [Cnested]K and [Dnested]K , respectively. At Step 4, we check the width of the
Brezinski’s nested intervals in the BTNII Table [Cnested]

K generated at Step 3. For
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each interval in the table having a width less than the specified tolerance ε, we note
down its infimum and form another Romberg-like Table [CL]K with these infimums as
the corresponding entries. Similarly, at Step 5 we check the width of the Brezinski’s
nested intervals in the BTNIS Table [Dnested]K , and do likewise to construct another
Romberg-like Table [DU ]K with supremums as the corresponding entries. At Step 6,
from the Tables [CL]K and [DU ]K , we construct a Table [TM_Range_approx]K of
intervals enclosing the range. If Table [TM_Range_approx]K is empty, then it means
that the sequences generated using the extrapolation have not yet reached the specified
accuracy, and we therefore need to generate some more elements in the sequence for ex-
trapolation. To obtain a new sequence element, at Step 7, we increase the subdivision
factor to NK+1 = 2K+1, go back to Algorithm Sequence_infsup and execute Steps 2b
and 2c to generate range enclosure fNIE(NK+1)(x) for the new partition NK+1. With
this updated sequence having K + 1 elements, we again execute Steps 2 through 7
of the current MAIN algorithm. The process continues till we obtain range enclosing
interval(s) of desired accuracy ε.

The Table [TM_Range_approx]K may contain several interval entries, as the
Brezinski’s Tables [Cnested]K and [Dnested]K for the infimum and supremum, respec-
tively, may generate more than one interval satisfying the tolerance parameter. These
interval entries enclose the true range with increasing accuracy, as we go column-wise
in the table. The interval at the bottom-right of this table therefore encloses the range
with the highest accuracy (atleast of accuracy ε).

8.1 The Sequence Generation

The algorithm Sequence_infsup accepts as inputs the initial box x, the first order
Taylor model fTM of the given function, and number K of extrapolated columns in

the Romberg table. It returns the sequences of lower bounds
{

A
(j)
0

}K

j=0
and the se-

quences of upper bounds
{

B
(j)
0

}K

j=0
, that are generated for a geometrically increasing

subdivision factor Nj = 2j , j = 0, 1, . . . , K which is given in Section 6.1.

ALGORITHM Sequence_infsup

[{
A

(j)
0

}K

j=0
,

{
B

(j)
0

}K

j=0

]
= Sequence_infsup(x, fTM , K)

Inputs: The initial box x, the first order Taylor model fTM , and the number K of
extrapolated columns in the Romberg table.

Outputs: The sequences of infimums
{

A
(j)
0

}K

j=0
and supremums

{
B

(j)
0

}K

j=0
.

BEGIN Algorithm

1. Using the COSY INFINITY package [1], automatically construct the first order
Taylor model fTM (x) as

fTM (x) =
[
fTM (x), fTM (x)

]

= range(p, x) + RTM (x)
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where the range(p, x) is computed sharply using the NIE of the first order pol-
ynomial p. Next, set

A
(0)
0 = fTM (x), B

(0)
0 = fTM (x)

2. FOR j = 1, 2, . . . , K

(a) Compute the number of elements in the uniform subdivision partition as
Nj = 2j .

(b) Using Nj , uniformly partition the initial box x as per (5)

(c) For this partition of x, obtain the range enclosure f
TM(Nj) (x) as per (6)

(using again COSY INFINITY as in Step 1)

f
TM(Nj) (x) =

[
f

TM(Nj) (x), f
TM(Nj) (x)

]

=

Nj⋃

j
i
=1

fTM

(
x1,j

1
, x2,j

2
, . . . , xl,jl

)

=
N⋃

ji=1

{
range

(
p,x1,j

1
, x2,j

2
, . . . , xl,jl

)

+RTM

(
x1,j

1
, x2,j

2
, . . . , xl,jl

)
}

where, range
(
p, x1,j

1
, x2,j

2
, . . . , xl,jl

)
is computed sharply using the NIE

of the first order polynomial p.

(d) Set

A
(j)
0 ←− f

TM(Nj) (x), B
(j)
0 ←− f

TM(Nj) (x)

END FOR

3. RETURN
{

A
(j)
0

}K

j=0
and

{
B

(j)
0

}K

j=0
.

END Algorithm

In practice, we need to process in Step 2c only those boxes that remain after the
cutoff test described next.

8.1.1 Cut-off Ttest

This is identical to the well-known cutoff test [14] used in interval global optimization
algorithms to find the minimum of a function, except that we also apply it here to find
the maximum of the function.

Let fTM denote the range enclosure obtained using Taylor model over a box x,
with fTM =

[
fTM , fTM

]
. Let cmax denote the maximum of fTM obtained over all the

subboxes generated with a given N ; similarly, let cmin denote the minimum of fTM

obtained over all these subboxes. Now, if for any box x among these subboxes we have

cmin < fTM < fTM < cmax

then, clearly, the box x is irrelevant in our range finding problem, and so can be
discarded.
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8.2 Algorithm for Romberg Tables for Infimum and

Supremum

After constructing the sequences of lower and upper bounds on the range enclosure,
we obtain the respective Romberg tables by executing Algorithms Romberg_inf and
Romberg_sup based on the REP:

ALGORITHM Romberg_inf

[A]K = Romberg_inf

({
A

(j)
0

}K

j=0
, K

)

Inputs: The sequence of lower bounds
{

A
(j)
0

}K

j=0
, and the number K of columns in

the Romberg Table.
Output: The Romberg Table [A]K containing the extrapolated sequences.

BEGIN Algorithm

1. Construct the Romberg Table for the range infimum, using the REP described
in section 6.1:

A
(j)
k = A

(j)
k−1 +

A
(j)
k−1 − A

(j−1)
k−1

(2k − 1)
,

{
k = 1, 2, . . . , K,
j = k, . . . , K.

[A]K =
{

A
(j)
k , k = 0, 1, . . . , K, j = k, . . . , K

}

2. RETURN the Romberg Table [A]K

END Algorithm

We can have a similar algorithm Romberg_sup with inputs as
{

B
(j)
0

}K

j=0
to gen-

erate the Romberg Table [B]K of extrapolated sequences for the range supremum (the
description of this algorithm is omitted here).

8.3 Algorithm for Generating the Brezinski Tables of In-

tervals

Based on Theorem 7.1 and Remark 7.1, we can have an algorithm to construct the
Brezinski’s Table of nested intervals for the infimum (BTNII) and Brezinski’s Table
of nested intervals for the supremum (BTNIS).

As mentioned in Section 7.1, the number of nested elements in Brezinski’s tables
varies with the value of b. Our aim is to get as many nested elements as possible.
Therefore, in the algorithm, the value of b is varied over a range (chosen here as
0 to 5), and the Brezinski’s tables BTII and BTIS are constructed for each b value,
as per section 7.1. From the BTII and BTIS tables, only the nested intervals are
then picked to create respectively two tables [Cnested]K and [Dnested]K . These tables
contain Brezinski’s nested intervals for the range infimum and supremum, and we
therefore refer to them as Brezinski’s Table of Nested Intervals for Infimum (BTNII)
and (BTNIS) for Supremum. Lastly, from among all the pairs of BTNII and BTNIS

constructed for the various values of b, we output that pair having the maximum
number of nested elements.
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ALGORITHM Range_Approx_infsup

[
[Cnested]K , [Dnested]K

]
= Range_Approx_infsup

(
[A]K , [B]K

)

Inputs: The Romberg Tables [A]K and [B]K .
Outputs: The BTNII and BTNIS Tables [Cnested]

K and [Dnested]K containing
Brezinski’s nested intervals for the range infimum and supremum, respectively.

BEGIN Algorithm

1. FOR b = 0, 0.1, . . . , 5 DO

(a) From the Romberg Table [A]K , construct Brezinski’s table [C]K of inter-
vals for the infimum (BTII) as follows (cf. equation 14):

V
(j)

k+2 (b) = A
(j)
k+2 − b

(
A

(j)
k+2 −A

(j)
k+1

)
,

{
k = 0, 1, . . . , K − 2,
j = k + 2, . . . , K.

C
(j)
k+2 =




min

(
V

(j)
k+2 (+b) , V

(j)
k+2 (−b)

)
,

max
(
V

(j)
k+2 (+b) , V

(j)
k+2 (−b)

)



 ,

{
k = 0, 2, . . . , K − 2,
j = k + 2, . . . , K.

(b) Similarly, from the Romberg Table [B]K , construct Brezinski’s Table [D]K

of intervals for the supremum (BTIS).

(c) Check for nestedness1 of the intervals in Tables [C]K . Form another Ta-
ble [Cnested]K

b
(referred to as BTNII) with these nested intervals as the

corresponding entries.

(d) Do likewise for the nested intervals in [D]K , to form the Table [Dnested]K
b

(referred to as BTNIS).

END FOR

2. Find the value of b for which the maximum number of nested intervals exist in
the BTNII and BTNIS Tables [Cnested]

K

b
and [Dnested]K

b
. Set b′ equal to this

b value.

3. Set [Cnested]K ← [Cnested]Kb′ , [Dnested]K ← [Dnested]Kb′

4. RETURN [Cnested]
K and [Dnested]K .

END Algorithm

8.4 Proposed MAIN Algorithm

We now present the Algorithm MAIN to obtain range enclosures of higher order
convergence.

ALGORITHM MAIN

1Nestedness is checked columnwise, for consecutive intervals in each column.
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[TM_Range_approx]K = MAIN (x, fTM , K, ε)

Inputs: Initial box x, the first order Taylor model fTM , a tolerance parameter ε, the
number K of extrapolated columns in Romberg table (initially, one may start with,
say, K = 5).
Output: The Table [TM_Range_approx]K containing the range approximating in-
tervals. The bottom right most entry of the table gives the range enclosure of highest
accuracy (atleast of accuracy ε).

BEGIN Algorithm

1. Execute the algorithm Sequence_infsup given in section 8.1 to generate two
separate sequences of infimums and supremums:

[{
A

(j)
0

}K

j=0
,

{
B

(j)
0

}K

j=0

]
= Sequence_infsup (x, fTM , K)

2. Execute the algorithm Romberg_inf and Romberg_sup described in section 8.2
to generate two separate Romberg tables for the lower bound and upper bound
of the range enclosures:

[A]K = Romberg_inf

({
A

(j)
0

}K

j=0
, K

)

and

[B]K = Romberg_sup

({
B

(j)
0

}K

j=0
, K

)

3. Execute the algorithm Range_Approx_infsup described in section 8.3 to com-
pute Brezinski’s Tables of nested intervals for the infimum and supremum of the
true range enclosure. (BTNII and BTNIS):

[
[Cnested]K , [Dnested]K

]
= Range_Approx_infsup

(
[A]K , [B]K

)

4. Check the width of the Brezinski’s nested intervals in the BTNII Table
[Cnested]K : For each interval in the table having a width less than ε, note down
its infimum. From another Romberg-like Table [CL]K with these infimums as
the corresponding entries.

5. Likewise, check the width of the nested intervals in the BTNIS Table
[Dnested]K . For each interval having a width less than ε, note down its supre-
mum. Form another Romberg-like Table [DU ]K with these supremums as the
corresponding entries.

6. Construct intervals whose lower and upper endpoints are the corresponding en-
tries of [CL]K and [DU ]K , respectively. Construct a Table of range approxima-
tions [TM_Range_approx]K based on these intervals:

7. IF Table [TM_Range_approx]K is non-empty THEN go to the next Step 8,
ELSE do the following:

(a) Set j = K + 1.

(b) Go to algorithm Sequence_infsup (cf. section 8.1) and do Steps 2a to 2c
to generate range enclosure fTM(NK+1)(x) for the new partition NK+1 =

2K+1. Then, execute Step 2d to obtain

A
(K+1)
0 ←− f

TM(NK+1) (x), B
(K+1)
0 ←− f

TM(NK+1) (x)
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(c) With
{

A
(j)
0

}K+1

j=0
and

{
B

(j)
0

}K+1

j=0
, and setting K = K + 1, execute Step

2 through Step 7 of the current MAIN algorithm (in practice, additional
processing is required only for the newest entries, as the existing entries of
the tables remain unchanged).

8. RETURN [TM_Range_approx]K .

END Algorithm

In the above algorithm, instead of partitioning the box x uniformly with geometric
progression i.e., for Nj = 2j , j = 1, 2, . . ., we can also partition it with Nj varying
in arithmetic progression [16], i.e., for Nj = j + 1, j = 1, 2, . . . and compute the
range enclosures. The order of convergence for the sequences of lower and upper
bounds (generated from these enclosures) also can be accelerated using the same MAIN
algorithm discussed in section 8.4 with a little modification.

It is found from the numerical experiments that more computational cost and time
is involved in the extrapolation of sequences generated using arithmetic progression.

9 Numerical Results

We demonstrate the effectiveness of the proposed technique on several multidimen-
sional examples. All computations are carried out on a SUN FIRE 280 R machine
with dual 750 MHz UltraSparc III processors and 2 GB RAM for the computations. In
all our examples, we construct the approximate range with the tolerance of ε = 10−10.

Example 9.1 The 1-dimensional example of Cornelius and Lohner [5]

f (x) =
x2 − 5x + 9

x− 5

Domain: [1, 3] ,
True Range: [−1.5,−1.0],
TM Order: 1.

Example 9.2 The 1-dimensional example of Gritton [8]

f2(x) = (−371.93625 − 791.2465656x + 4044.944143x2 + 978.1375167x3

−16547.8928x4 + 22140.72827x5 − 9326.549359x6 − 3518.536872x7

+4782.532296x8 − 1281.47944x9 − 283.4435875x10 + 202.6270915x11

−16.17913459x12 − 8.88303902x13 + 1.575580173x14 + 0.1245990848x15

−0.03589148622x16 − 0.0001951095576x17 + 0.0002274682229x18

Domain: [0.4, 2.4] ,
True Range: [−216.7375283770099247 . . . , 6.2829979690900121 . . .],
TM Order: 1

Example 9.3 The 3-dimensional example of Makino and Berz [8]

f(x, y, z) =
4 tan(3y)

3x + x
√

6x

−7(x−8)

− 120 − 2x− 7z(1 + 2y)− sinh

(
0.5 +

6y

8y + 7

)

+
(3y + 13)2

3z
− 20z(2z − 5) +

5x tanh(0.9z)√
5y

− 20y sin(3z)
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f4(x, y, z) = f(x, y, z) +

10∑

j=1

(f(x, y, z)− f(x, y, z))

Domain: [1.75, 2.25] × [0.75, 1.25]2 ,
True Range: [−10.390145290239591 . . . , 17.296315827104715 . . .],
TM Order: 1

Example 9.4 The 6-dimensional example (trigonometric) of Makino and Berz [8]

f5(x) =

6∑

i=1

fi(x)2, fi(x) = 6−
6∑

j=1

cos xj + i(1− cos xi)− sin xi

Domain: [0.75, 2.75]6,
True Range: [22.181076453959111 . . . , 1987.092100251149480 . . .],
TM Order: 1.

Example 9.5 The 7-dimensional example (trigonometric) of Makino and Berz [8]

f5(x) =
7∑

i=1

fi(x)2, fi(x) = 7−
7∑

j=1

cos xj + i(1− cos xi)− sin xi

Domain: [0.75, 2.75]7,
True Range: [38.079169919521753 . . . , 3127.9894468042180 . . .],
TM Order: 1.

The results generated with the proposed algorithm are reported in Tables 2 to 7.
Tables 8 and 9 report the total number of boxes processed and the computational time
taken to reach the tolerance ε = 10−10, with the proposed extrapolation based method
and with the existing Taylor model and uniform subdivision method. The description
of the tabulated results is given below:

• For each example, the results are separately listed as ‘Table a’, ‘Table b’, and
‘Table c’.

• ‘Table a’ shows the Brezinski’s table [C]K of intervals for the infimum (BTII),
the overestimation of the intervals in [C]K (which is the width of the Brezinski’s
interval given in [C]K) and the order of convergence of the same.

• Similarly, ‘Table b’ shows the Brezinski’s table [D]K of intervals for the supre-
mum (BTIS), the overestimation of the intervals in [D]K (which is again the
width of the Brezinski’s interval given in [D]K) and the order of convergence of
the same.

• A star entry in ‘Table a’ and ‘Table b’ signifies that the corresponding (n + 1)th

interval is not nested in the previous nth interval, and hence does not satisfy the
Brezinski’s nestedness condition mentioned in Remark 7.1. Similarly, a hash (#)
entry in the tables signifies that the computed quotient value is erratic, because
the numerical zero (i.e., zero within machine precision) is already reached for
the corresponding range overestimations.

• In ‘Table c’ we show the range enclosing intervals constructed from the infimums
and supremums of the nested intervals (non-nested intervals are marked with a
‘star’) given in Tables BTII and BTIS. The first column titled ‘Original’ shows
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the range computed using the Taylor model and uniform subdivision, whereas
columns k = 1, . . . , K, show the range enclosures constructed from Tables [C]K

and [D]K . The rate of convergence for the respective columns are shown in the
columns titled ‘Ratio’.

• All the intervals of ‘Table c’ enclose the true function range, but only the entries
towards the bottom of the last few columns are found to satisfy the desired
accuracy (this can be seen from the overestimation given in parenthesis). In
any case, the remaining intervals are also listed to clearly show the convergence
order for each extrapolated column. The final output of the algorithm is Table
[TM_Range_approx]K consisting of range enclosures of the desired accuracy.

Due to lack of space we have reported the results of only two examples (Exam-
ples 9.1 and 9.5) in the appendix. The results of the remaining examples (Example 9.2
to 9.4) are available on http://www.sc.iitb.ac.in/ nataraj/.

9.1 Discussion

Based on the results in Tables 2 to 7, we make the following observations.

• As given by theory, the range enclosures computed using the existing first order
Taylor model converge quadratically, as can be seen from the columns titled
‘Ratio’ in ‘Table c’ for each example.

• From the existence of an asymptotic expansion shown for the proposed
extrapolation-based first order Taylor model, we see that using extrapolation it
is possible to obtain atleast cubically converging sequences i.e., one order higher
than the original one. We can see this happening practically from the results
given in ‘Table c’ for each example. The column titled ‘Ratio’ corresponding
to the second extrapolated column (k = 2) shows the sequence converging with
the order O

(
1

N3

)
.

• Even though the theory says that we can extrapolate the sequence by just one
column, we find that extrapolation did work beyond one column, when the
original sequence converges smoothly with the order O

(
h2 = 1

4

)
. We observe

the same from the ratio entries in the ‘a’, ‘b’ and ‘c’ parts of Tables 2 to 7 that
the sequences converge with O

(
1

Nk+2

)
.

• With the proposed extrapolation based Taylor model technique, the number of
subdivisions required to achieve the desired accuracy is significantly less than for
the conventional first order Taylor model method. From Tables 8 and 9, we see
that to achieve the desired accuracy, the former gives the average percentage
reduction in the total number of boxes processed as 51.4%, and the average
reduction in case of the computational time as 51.3%.

• In all the examples, the intervals in Table [TM_Range_approx]K enclose the
true range of the function.

• The expressions given for the REP involves only a few elementary arithmetic op-
erations, such as addition, subtraction, and division. Therefore, little additional
work is required to construct the Romberg tables. Similarly, little additional
computational cost is needed to construct the Brezinski’s Tables of approximat-
ing intervals for infimum (BTII) and supremum (BTIS), since it involves only
a few additions and multiplications. Hence, with little additional computational
work, we can achieve much better accuracy than with the original sequence.
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10 Conclusions

In this paper, we proposed the extrapolated Taylor model based on the first order Tay-
lor model and extrapolation. We showed that using extrapolation, we can accelerate
the convergence rate from quadratic to cubic. Although theoretically, the proposed
method accelerates convergence order by one, in practice we find that even higher
convergence orders are usually obtainable.

We also numerically demonstrated the proposed method on univariate and mul-
tivariate examples. Summarizing the results of the numerical tests, we see that the
proposed technique based on extrapolation works well, and generates range approxi-
mating intervals of high accuracy. We see that there is a significant reduction in the
computational burden in two ways. Firstly, the number of subdivisions required by the
proposed method is significantly smaller than for the existing Taylor model. Secondly,
the polynomial part is bounded using the simplest tool of NIE; therefore there is no
need to apply LDB, QDB or Bernstein method for polynomial range bounding as in
[7, 9, 13]. Moreover, the proposed method can be similarly applied to higher order
Taylor models, but then the LDB, QDB or Bernstein method may needed to be used
for the polynomial range bounding.
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A Numerical Examples

Table 2: ‘a’ Example 9.1: The Brezinski’s Table of Intervals for Infimum (BTII)
with maximum error (width of the interval) and convergence order for various
subdivision factors with b = 3

N k = 1 Ratio

4 [−1.51315641534,−1.48844411376] (2.5e–2)
8 [−1.50188332584,−1.49824053907] (3.6e–3) 6.78
16 [−1.50025361337,−1.49975507311] (5.0e–4) 7.30
32 [−1.50003296762,−1.49996760882] (6.5e–5) 7.63
64 [−1.50000420462,−1.49999583253] (8.4e–6) 7.81
128 [−1.50000053096,−1.49999947140] (1.1e–6) 7.90
256 [−1.50000006671,−1.49999993344] (1.3e–7) 7.95

O(h3) = 8

N k = 2 Ratio

8 [−1.50016037673,−1.49986504389] (3.0e–4)
16 [−1.50001202180,−1.49998898612] (2.3e–5) 12.82
32 [−1.50000082889,−1.49999920688] (1.6e–6) 14.20
64 [−1.50000005453,−1.49999994667] (1.1e–7) 15.04
128 [−1.50000000349,−1.49999999654] (7.0e–9) 15.50
256 [−1.50000000022, −1.49999999978] (4.4e–10) 15.75

O(h4) = 16

N k = 3 Ratio

16 [−1.50000129147,−1.49999892894] (2.4e–6)
32 [−1.50000004924,−1.49999995517] (9.4e–8) 25.11
64 [−1.50000000171,−1.49999999837] (3.3e–9) 28.12
128 [−1.50000000006, −1.49999999995] (1.1e–10) 29.93
256 [−1.50000000000, −1.49999999999] (3.6e–12) 30.89

O(h5) = 32
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N k = 4 Ratio

32 [−1.50000000563, −1.49999999535] (1.0e–8)
64 [−1.50000000011,−1.49999999990] (2.1e–10) 49.88
128 [−1.50000000000,−1.49999999999] (3.7e–12) 55.98
256 [−1.50000000000,−1.49999999999] (6.8e–14) 54.56#

O(h6) = 64

N k = 5 Ratio

64 [−1.50000000001,−1.49999999999] (2.3e–11)
128 [−1.50000000000,−1.49999999999] (2.4e–13) 96.78
256 [−1.50000000000,−1.49999999999] (9.1e–15) 26.37#

O(h7) = 128

N k = 6 Ratio

128 [−1.50000000000, −1.49999999999] (2.4e–13)
256 [−1.50000000000, −1.49999999999] (9.3e–15) 3.71#

O(h8) = 256

N k = 7 Ratio

256 [−1.50000000000, −1.49999999999] (1.1e–14) –

O(h9) = 512

Comments: In the above Table 2 ‘a’, we observe the following: i) Sufficient nestedness
in all the columns (k = 1 to k = 6). ii) In the 6th extrapolated column (k = 6), for
the uniform subdivision factor N = 256 the reduction in the overestimation for range
infimum is 1.40e+7 times (from 1.3e–7 to 9.3e–15). iii) The rate of convergence of the
range infimum sequences (obtained using first order TM) given in column (k = 1) is
one order higher O

(
1

Nm+2

)
than the theoretical rate of convergence O

(
1

Nm+1

)
and is

accelerated in the subsequent extrapolated columns from O
(

1
N3

)
in column (k = 1)

to O
(

1
N9

)
in column (k = 7).

Table 3: ‘b’ Example 9.1: The Brezinski’s Table of Intervals for Supremum
(BTIS) with maximum error (width of the interval) and convergence order for
various subdivision factors with b = 3

N k = 1 Ratio

4 [−1.091340220385, −0.910191460055] (1.8e–1)
8 [−1.022529166945, −0.977996492562] (4.5e–2) 4.06
16 [−1.005431630769, −0.994639419273] (1.1e–2) 4.12
32 [−1.001330263297, −0.998678743133] (2.7e–3) 4.07
64 [−1.000329050679, −0.999672078543] (6.6e–4) 4.04
128 [−1.000081821655, −0.999918319598] (1.6e–4) 4.02
256 [−1.000020400239, −0.999979617420] (4.1e–5) 4.01

O(h3) = 8
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N k = 2 Ratio

8 [−1.000406547029, −0.999975395201] (4.3e–4)*
16 [−1.000100469231, −0.999905636603] (1.9e–4)*
32 [−1.000013366588, −0.999986776468] (2.7e–5) 7.32
64 [−1.000001689927, −0.999998313981] (3.4e–6) 7.87
128 [−1.000000211765, −0.999999788349] (4.2e–7) 7.97
256 [−1.000000026486, −0.999999973517] (5.3e–8) 7.99

O(h3) = 8

N k = 3 Ratio

16 [−1.000028108677, −0.999952941397] (7.5e–5)
32 [−1.000000469047, −0.999999276491] (1.2e–6) 63.03
64 [−1.000000011230, −0.999999983400] (2.8e–8) 42.85
128 [−1.000000000310, −0.999999999552] (7.6e–10) 36.69
256 [−1.000000000009, −0.999999999986] (2.2e–11) 34.19

O(h4) = 16

N k = 4 Ratio

32 [−1.000001078928, −0.999999269689] (1.8e–6)
64 [−1.000000013386, −0.999999989280] (2.4e–8) 75.05
128 [−1.000000000268, −0.999999999762] (5.0e–10) 47.62
256 [−1.000000000007, −0.999999999993] (1.3e–11) 38.87

O(h5) = 32

N k = 5 Ratio

64 [−1.000000006824, −0.999999990350] (1.6e–8)
128 [−1.000000000057, −0.999999999932] (1.3e–10) 131.3
256 [−1.000000000007, −0.999999999999] (1.4e–12) 87.82

O(h6) = 64

N k = 6 Ratio

128 [−1.000000000039, −0.999999999972] (6.6e–11)
256 [−1.000000000002, −0.999999999999] (2.8e–13) 235.7

O(h7) = 128

N k = 7 Ratio

256 [−1.000000000006,−0.999999999999] (1.3e–13) –

O(h8) = 256

Comments: In the above Table 3 ‘b’, we observe the following: i) Sufficient nestedness
in all the columns (k = 1 to k = 7) except for the first two entries in the column (k = 2).
ii) In the 7th extrapolated column (k = 7) for the uniform subdivision factor N = 256,
the reduction in the overestimation for range infimum is 3.15e+8 times (from 4.1e–
5 to 1.3e–13). iii) The range supremum sequences (obtained using first order TM)
given in column (k = 1) converge with the same rate as that of the theoretical rate
of convergence O

(
1

Nm+1

)
and is accelerated in the subsequent extrapolated columns

from O
(

1
N2

)
in column (k = 1) to O

(
1

N8

)
in column (k = 7).
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Table 4: ‘c’ Example 9.1: Range enclosures (and overestimation) with conver-
gence order for b = 3

N Original Ratio

2 [−1.533750000001, −0.879999999999] (1.6e–1)
4 [−1.504918981483, −0.970574380165] (3.4e–2) 4.48
8 [−1.500669063581, −0.992840717357] (7.8e–3) 4.39
16 [−1.500087433282, −0.998236823105] (1.9e–3) 4.23
32 [−1.500011181352, −0.999562583188] (4.5e–4) 4.13
64 [−1.500001413921, −0.999891069255] (1.1e–4) 4.07
128 [−1.500000177772, −0.999972820284] (2.7e–5) 4.03
256 [−1.500000022286, −0.999993211693] (6.8e–6) 4.02

O(h2) = 4

N k = 1 Ratio
8 [−1.501883325839, −0.977996492562] (2.4e–2)
16 [−1.500253613367, −0.994639419273] (5.6e–3) 4.25
32 [−1.500032967617, −0.998678743133] (1.4e–3) 4.15
64 [−1.500004204615, −0.999672078543] (3.3e–4) 4.08
128 [−1.500000530957, −0.999918319598] (8.2e–5) 4.04
256 [−1.500000022286, −0.999993211693] (6.8e–6) 4.02

O(h2) = 4

N k = 2 Ratio

32 [−1.500000828888, −0.999986776468] (1.4e–5)
64 [−1.500000054526, −0.999998313981] (1.7e–6) 8.07
128 [−1.500000003498, −0.999999788349] (2.2e–7) 8.09
256 [−1.500000000222, −0.999999973518] (2.7e–8) 8.06

O(h3) = 8

N k = 3 Ratio

32 [−1.500000049244, −0.999999276491] (7.7e–7)
64 [−1.500000001712, −0.999999983400] (1.8e–8) 42.2
128 [−1.5000000000566, −0.999999999552] (5.1e–10) 36.3
256 [−1.500000000002, −0.999999999987] (1.5e–11) 33.9

O(h4) = 16

N k = 4 Ratio

64 [−1.500000000108, −0.999999989280] (1.1e–8)
128 [−1.500000000002, −0.999999999762] (2.4e–10) 45.7
256 [−1.500000000004, −0.999999999994] (6.4e–12) 37.7

O(h5) = 32

N k = 5 Ratio

128 [−1.500000000001, −0.999999999932] (6.9e–11)
256 [−1.500000000001, −0.999999999993] (7.7e–13) 89.6

O(h6) = 64
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N k = 6 Ratio

256 [−1.500000000001,−0.999999999999] (1.5e–13) –

O(h7) = 128

Comments: In the above Table 4 ‘c’, for the uniform subdivision factor N = 256, the
range overestimation (for the sequences obtained using first order Taylor model) in
the first column (Original) is 6.81e–6. The second extrapolated column (k = 2) gives
a reduction in the overestimation by 764 times (from 2.04e–5 to 2.67e–8), whereas in
the 6th extrapolated column (k = 6) the reduction is 1.34e+8 times (from 2.04e–5 to
1.52e–13). The rate of convergence of excess width is given in the column (Ratio).
Here, we see that the excess width obtained with the first order Taylor model (given
in column Ratio) goes down with O

(
1

N2

)
. The rate of convergence is accelerated in

the subsequent extrapolated columns from O
(

1
N2

)
in column (k = 1) to O

(
1

N7

)
in

column (k = 6).

Table 5: ‘a’ Example 9.5: The Brezinski’s Table of Intervals for Inimum (BTII)
with maximum error (width of the interval) and convergence order for various
subdivision factors with b = 5

N k = 1 Ratio

4 [−278.26849379651, 408.1274547577] (686.2)
8 [−14.645048779726, 94.70429526917] (109.1) 6.28
16 [26.785409506447, 49.87820284031] (23.1) 4.74
32 [35.500422521271, 40.72146570850] (5.2) 4.42
64 [37.465264060335, 38.70102141865] (1.2) 4.23
128 [37.929542194080, 38.22979028988] (3.0e–1) 4.12
256 [38.042243807610, 38.11622005554] (7.4e–2) 4.06
512 [38.069998466246, 38.08835687159] (1.8e–2) 4.03

O(h2) = 4

N k = 2 Ratio

8 [18.686888471132, 54.258113093786] (35.6)
16 [36.876534397946, 39.301987357007] (2.4) 14.67
32 [37.921633779039, 38.237151005457] (3.2e–1) 7.69
64 [38.059312989152, 38.099029239720] (3.9e–2) 7.94
128 [38.076686386975, 38.081652811989] (4.9e–3) 7.997
256 [38.078859665509, 38.079480108951] (6.2e–4) 8.005
512 [38.079131158077, 38.079208676152] (7.7e–5) 8.004

O(h3) = 8
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N k = 3 Ratio

16 [37.658124852138, 38.735964915484] (1.1)
32 [38.075444998157, 38.082023988309] (6.6e–3) 163.8
64 [38.079082603311, 38.079230121852] (1.5e–4) 44.60
128 [38.079168993501, 38.079170003470] (1.0e–6) 146.1
256 [38.079169810497, 38.079170002329] (1.9e–7) 5.26
512 [38.079169909145, 38.079169929068] (1.9e–8) 9.63

O(h4) = 16

N k = 4 Ratio

32 [38.055835707960, 38.094000350082] (3.8e–2)
64 [38.079101927827, 38.079238014713] (1.4e–4) 280.4
128 [38.079167803529, 38.079172040918] (4.2e–6) 32.12
256 [38.079169853777, 38.079169985367] (1.3e–7) 32.20
512 [38.079169917468, 38.079169921563] (4.1e–9) 32.13

O(h5) = 32

N k = 5 Ratio

64 [38.078900006680, 38.079574918151] (6.7e–4)
128 [38.079169917552, 38.079169925338] (7.7e–9) 8.6e+4
256 [38.079169919319, 38.079169919741] (4.2e–10) 18.48#
512 [38.079169919510, 38.079169919519] (9.4e–12) 45.06#

O(h6) = 64

N k = 6 Ratio

128 [38.079166730533, 38.079172048720] (5.3e–6)
256 [38.079169919439, 38.079169919590] (1.5e–10) 3.4e+4
512 [38.079169919514, 38.079169919516] (1.7e–12) 89.86#

O(h7) = 128

N k = 7 Ratio

256 [38.079169911203, 38.079169931983] (2.1e–8)
512 [38.079169919515, 38.079169919516] (6.3e–13) 3.2e+4#

O(h8) = 256

N k = 8 Ratio

512 [38.079169919490, 38.079169919531] (4.1e–11) –

O(h9) = 512

Comments: In the above Table 5 ‘a’, we observe the following: i) Sufficient nestedness
in all the columns (k = 1 to k = 8). ii) In the 7th extrapolated column (k = 7) for
the uniform subdivision factor N = 512, the reduction in the overestimation for range
infimum is 2.9e+10 times (from 1.84e–2 to 6.32e–13). iii) The rate of convergence of
the range infimum sequences (obtained using first order TM) given in column (k = 1)
is same as that of the theoretical rate of convergence O

(
1

Nm+1

)
and is accelerated in

the subsequent extrapolated columns from O
(

1
N2

)
in column (k = 1) to O

(
1

N9

)
in

column (k = 8).
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Table 6: ‘b’ Example 9.5: The Brezinski’s Table of Intervals for Supremum
(BTIS) with maximum error (width of the interval) and convergence order for
various subdivision factors with b = 5

N k = 1 Ratio

4 [2723.6116728775, 3549.5489453687] (826.4)
8 [3015.7875147606, 3241.7725387735] (225.9) 3.65
16 [3098.9485661174, 3157.2040806185] (58.3) 3.88
32 [3120.6220639144, 3135.3774093629] (14.7) 3.95
64 [3126.1349921112, 3129.8464133026] (3.7) 3.975
128 [3127.5242985951, 3128.4549055184] (9.3e–1) 3.988
256 [3127.8729703049, 3128.1059619096] (2.3e–1) 3.994
512 [3127.9603041396, 3128.0185942819] (5.8e–2) 3.997

O(h2) = 4

N k = 2 Ratio

8 [3122.0940704619, 3133.2373309705] (11.1)
16 [3127.4731490258, 3128.4784395960] (1.0) 11.08
32 [3127.9340908707, 3128.0435004839] (1.1e–1) 9.19
64 [3127.9829593369, 3127.9958649536] (1.3e–2) 8.48
128 [3127.5242985951, 3128.4549055184] (9.3e–1) 3.988
256 [3127.9893495791, 3127.9895437927] (1.9e–4) 8.10
512 [3127.9894347281, 3127.9894588659] (2.4e–5) 8.05

O(h3) = 8

N k = 3 Ratio

16 [3127.8931026856, 3128.0998317488] (2.1e–1)
32 [3127.9853286462, 3127.9939962239] (8.7e–3) 23.85
64 [3127.9892477538, 3127.9896587325] (4.1e–4) 21.09
128 [3127.9894361075, 3127.9894578913] (2.2e–5) 18.87
256 [3127.9894461886, 3127.9894474318] (1.2e–6) 17.52
512 [3127.9894467673, 3127.9894468415] (7.4e–8) 16.78

O(h4) = 16

N k = 4 Ratio

32 [3127.9883453805, 3127.9905404715] (2.2e–3)
64 [3127.9894127543, 3127.9894802356] (6.8e–5) 32.53
128 [3127.9894457909, 3127.9894478051] (2.0e–6) 33.50
256 [3127.9894467736, 3127.9894468346] (6.1e–8) 32.99
512 [3127.9894468032, 3127.9894468051] (1.9e–9) 32.16

O(h5) = 32

N k = 5 Ratio

64 [3127.9894462684, 3127.9894468349] (5.7e–7)
128 [3127.9894467788, 3127.9894468269] (4.8e–8) 11.77
256 [3127.9894468037, 3127.9894468047] (9.9e–10) 48.41
512 [3127.9894468042, 3127.9894468043] (4.4e–11) 22.77

O(h6) = 64
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N k = 6 Ratio

128 [3127.9894467949, 3127.9894468147] (1.9e–8)
256 [3127.9894468042, 3127.9894468043] (1.4e–10) 137.40
512 [3127.9894468042, 3127.9894468043] (3.5e–11) 4.11#

O(h7) = 128

N k = 7 Ratio

256 [3127.9894468042, 3127.9894468043] (5.8e–11)
512 [3127.9894468042, 3127.9894468043] (4.0e–11) 1.45#

O(h8) = 256

N k = 8 Ratio

512 [3127.9894468042, 3127.9894468043] (4.6e–11) –

O(h9) = 512

Comments: In the above Table 6 ‘b’, we observe the following: i) Sufficient nestedness
in all the columns (k = 1 to k = 8). ii) In the 7th extrapolated column (k = 7) for
the uniform subdivision factor N = 512, the reduction in the overestimation for range
supremum is 1.46e+9 times (from 5.83e–2 to 4.00e–11). iii) The rate of convergence of
the range supremum sequences (obtained using first order TM) given in column (k = 1)
is same as that of the theoretical rate of convergence O

(
1

Nm+1

)
and is accelerated in

the subsequent extrapolated columns from O
(

1
N2

)
in column (k = 1) to O

(
1

N9

)
in

column (k = 8).

Table 7: ‘c’ Example 9.5: Range enclosures (and overestimation) with conver-
gence order for b = 5

N Original Ratio

2 [−209.62889894109, 3466.9552181196] (586.7)
4 [−3.7101143748365, 3219.1740363722] (132.9) 4.41
8 [29.094688839834, 3151.3785291683] (32.4) 4.11
16 [36.022526839995, 3133.9018748180] (7.9) 4.06
32 [37.5888397961666, 3129.475271183] (1.9) 4.03
64 [37.959567003661, 3128.3618448261] (4.9e–1) 4.02
128 [38.049641432402, 3128.0826627491] (1.2e–1) 4.008
256 [38.071834306781, 3128.0127652677] (3.1e–2) 4.004
512 [38.077341828386, 3127.9952782250] (7.7e–3) 4.002

O(h2) = 4
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N k = 1 Ratio

8 [−14.645048779726, 324.1772538773] (166.5)
16 [26.785409506447, 315.7204080618] (40.5) 4.11
32 [35.500422521271, 313.5377409363] (9.9) 4.06
64 [37.465264060335, 312.9846413302] (2.5) 4.03
128 [37.929542194080, 312.8454905518] (6.2e–1) 4.02
256 [38.042243807610, 312.8105961909] (1.5e–1) 4.009
512 [38.069998466246, 312.8018594282] (3.8e–2) 4.004

O(h2) = 4

N k = 2 Ratio

16 [36.876534397946, 3128.4784395960] (1.7)
32 [37.921633779039, 3128.0435004839] (2.1e–1) 7.99
64 [38.059312989151, 3127.9958649536] (2.6e–2) 8.05
128 [38.076686386975, 3127.9902309997] (3.3e–3) 8.04
256 [38.078859665509, 3127.9895437927] (4.1e–4) 8.02
512 [38.079131158076, 3127.9894588659] (5.1e–5) 8.01

O(h3) = 8

N k = 3 Ratio

32 [38.075444998157, 3127.9939962239] (8.3e–3)
64 [38.079082603310, 3127.9896587325] (2.9e–4) 27.65
128 [38.079168993500, 3127.9894578913] (1.2e–5) 24.91
256 [38.079169810497, 3127.9894474318] (7.4e–7) 16.31
512 [38.079169909145, 3127.9894468415] (4.8e–8) 15.47

O(h4) = 16

N k = 4 Ratio

64 [38.079101927826, 3127.9894802356] (1.0e–4)
128 [38.079167803529, 3127.9894478051] (3.1e–6) 32.54
256 [38.079169853777, 3127.9894468346] (9.6e–8) 32.40
512 [38.079169917468, 3127.9894468051] (3.0e–9) 31.77

O(h5) = 32

N k = 5 Ratio

128 [38.079169917553, 3127.9894468269] (2.5e–8)
256 [38.079169919319, 3127.9894468047] (7.2e–10) 34.32
512 [38.079169919510, 3127.9894468043] (6.0e–11) 11.97#

O(h6) = 64

N k = 6 Ratio

256 [38.079169919439, 3127.9894468043] (1.9e–10)
512 [38.079169919514, 3127.9894468043] (5.2e–11) 3.56#

O(h7) = 128

N k = 7 Ratio

512 [38.079169919515, 3127.9894468043] (5.4e–11) –

O(h8) = 256
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Comments: In the above Table 7 ‘c’, for the uniform subdivision factor N = 512, the
range overestimation (for the sequences obtained using first order Taylor model) in
the first column (Original) is 7.66e–3. The second extrapolated column (k = 2) gives
a reduction in the overestimation by 754 times (from 3.83e–2 to 5.08e–5), whereas in
the 6th extrapolated column (k = 6) the reduction is 1.4e+8 times (from 3.83e–2 to
5.18e–11). The rate of convergence of excess width is given in the column (Ratio).
Here, we see that the excess width obtained with the first order Taylor model (given
in column Ratio) goes down with O

(
1

N2

)
. The rate of convergence is accelerated in

the subsequent extrapolated columns from O
(

1
N2

)
in column (k = 1) to O

(
1

N8

)
in

column (k = 7).

Table 8: Comparison of the number of boxes processed to achieve range ac-
curacy of ε = 10−10 with the Taylor model method of Berz [8] and proposed
extrapolated Taylor model method

No. of boxes processed

Example dim Taylor model Proposed % Reduction
Number l method [8] extrapolated with the proposed

Taylor model method method

9.1 1 107 51 52.34
9.2 1 595 397 33.23
9.3 3 14059 4874 65.33
9.4 6 103 44 57.28
9.5 7 108 44 59.26

Table 9: Computational time taken (in secs.) to achieve range accuracy of
ε = 10−10 with the Taylor model method of Berz [8] and proposed extrapolated
Taylor model method

Computational time required (in secs.)

Example dim Taylor model Proposed % Reduction
Number l method [8] extrapolated with the proposed

Taylor model method method

9.1 1 0.39 0.18 54.57
9.2 1 2.74 1.85 32.50
9.3 3 390.38 124.05 68.22
9.4 6 0.69 0.32 53.09
9.5 7 0.75 0.40 48.11
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B Asymptotic Expansion

A given infinite sequence {An} can be related to a function A(y) that is known,
and hence is computable, for 0 < y ≤ b with some b > 0, the variable y being
continuous or discrete. This relation takes the form An = A (yn) , n = 0, 1, . . . , for
some monotonically decreasing sequence {yn} ⊂ (0, b] that satisfies limn→∞ yn = 0.
Thus, in case limy→0+ A(y) = A, limn→∞ A(n) = A as well. Consequently, computing
limn→∞ A(n) amounts to computing limy→∞ 0 + A(y) in such a case, and this is
precisely what we want to do.

Again, in many cases of interest, the function A(y) may have a well-defined ex-
pansion for y → 0+ whose form is known. For example A(y) may satisfy for some
positive integer s

A(y) = A +

s∑

k=1

αkyσk + O (yσs+1) as y → 0+, (15)

where σk 6= 0, k = 1, 2, . . . , s + 1, with Re σ1 < Re σ2 < . . . < Re σs+1, and αk are
constants independent of y. This expansion is also known as asymptotic expansion.
Obviously, Re σ1 > 0 guarantees that limy→0+ A(y) = A. The σk are assumed to
be known, but we need not know the coefficients αk. The existence of an asymp-
totic expansion for some given sequence is a necessary theoretical condition for the
applicability of an extrapolation method.

The idea of extrapolation is to somehow eliminate the term yσ1 from the expansion
in (15) and obtain a new approximation A1 (y) to A whose error is A1 (y)−A = O (yσ2)
as y → 0+. This is the procedure followed in the well-known Richardson extrapolation
process.


