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Abstract

The problem of enclosing all solutions of an underdetermined system
of equations is considered. A few variants of the algorithm to solve this
problem are compared – some of the features come from the literature and
some are original. The paper discusses both implementational and theo-
retical issues of the problem, including a useful theorem that is proved.
Shared-memory parallelization, using OpenMP is also considered and nu-
merical results for proper test problems are presented.
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1 Introduction and previous work

The following problem is considered: enclose all solutions of the equations system
f(x) = 0, where x ∈ [x, x] and f : R

n → R
m, m < n. This is one of the problems that

can be quite conveniently solved by interval methods while it is difficult to apply other
approaches to it.

The most notable paper on this topic is due to Neumaier [12] in the late eighties. Not
many researchers continued the investigations presented there. Notable exceptions
include [11], where the vectorization of Neumaier’s algorithm was considered and [5],
where methods similar to [12] were used to solve a very specific problem, arising in
homotopy methods. Kolev (e. g. [8]) mentions underdetermined problems, but uses
quite different methods, applying some affine arithmetic notions.

Also some books (e.g. [2], [6], [13]) mention problems with non-square Jacobi matrix,
but do not consider this topic in details.
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2 Basics

The main meta-algorithm used to solve systems of nonlinear equations is the interval
branch-and-prune method. In particular, this approach can be used for underdeter-
mined systems of equations.
What has to be considered carefully, are the rejection/reduction tests, as they are
supposed to seek segments of a continuous manifold now, not isolated points. Several
variants of the interval Newton operator can be applied here, but – as the Jacobi
matrix is non-square for underdetermined systems – some modifications with respect
to well-determined variants might be necessary.
The main algorithm has the following form:

IBP (x(0); f)

// x
(0) is the initial box, f(·) is the interval extension of the function f : R

n → R
m

// Lver is the list of boxes verified to contain a segment of the solution manifold
// Lpos is the list of boxes that possibly contain a segment of the solution manifold
L = Lver = Lpos = ∅ ;

x = x
(0) ;

loop

process the box x, using the rejection/reduction tests ;
if (x does not contain solutions) then discard x ;
else if (x is verified to contain a segment of solution manifold) then push (Lver, x) ;

else if (tests subdivided x into x
(1) and x

(2)) then

x = x
(1) ;

push (L, x
(2)) ;

cycle loop ;
else if (x is small enough) then push (Lpos, x) ;
if (x was discarded or stored) then

x = pop (L) ;
if (L was empty) then exit loop ;

else

bisect (x), obtaining x
(1) and x

(2);

x = x
(1) ;

push (L, x
(2)) ;

end if ;
end loop

How can it be verified that a segment of the solution manifold is contained in a box?
This will be discussed in the later part of the paper.
Now, let us focus on the rejection/reduction tests, i. e. interval Newton operators.

Interval Newton operators

In this paper three main forms of the Newton operator are applied: Hansen’s variant,
Neumaier’s variant and the componentwise Newton operator.

Hansen’s variant. This approach was inspired by Hansen’s technique of finding
feasible points for equality-constrained optimization problems (see e. g. [6]). As the
Jacobi matrix is not square and has no diagonal, we cannot apply the Gauss-Seidel
operator directly. So we create a square submatrix, selecting variables, by the Gauss
elimination with full pivoting, applied to midpoint of the Jacobi matrix.
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Neumaier’s variant. The linear equations system Av = b (being the linearization
of the nonlinear system; v = x − mid x) is transformed to the homogeneous form

Ãd = 0, where d = (v1, . . . , vn, 1)T and Ã = (A | −b). On such a system we perform
a process similar to Hansen’s variant, but we do not create a submatrix – only the
preconditioner and list of pairs (equation number, variable number). Then an extended
Gauss-Seidel step is performed on the preconditioned system with the rectangular
matrix.

Componentwise Newton operator. This technique [4] can be used to any
system of equations (under-, over- or well-determined) without any changes to the
operator itself:

Ncmp(x, f, i, j) = mid xj −
fi(x1, . . . , xj−1, mid xj , xj+1, . . . , xn)

∂fi

∂xj
(x1, . . . , xn)

.

The only issue is to choose pairs (i, j) properly. A few techniques are possible there – e.
g. the Herbort and Ratz heuristic [4], that selects all pairs, for which the corresponding
element of the Jacobi matrix is not zero or the Goualard heuristic [3] that tends to find
a transversal, computing the maximum perfect matching of a biparite graph, described
by the matrix W = (Wij), where:

Wij =

{
|J ij | if 0 ∈ J ij

〈J ij〉 + max |J ij | otherwise
, (1)

where – following conventions from [7] – 〈·〉 denotes the mignitude and | · | – magnitude
of an interval, i. e. the minimal and maximal value of the absolute value of its elements.

3 Main theorem

Theorem 3.1 Consider a box x = (x1, . . . , xn)T . Consider a set J of m vari-

ables. Suppose a Newton operator was computed for each xj, j ∈ J and resulted

in Ncmp(x, f, i, j) ⊂ xj.

Let us denote J = {j1, . . . , jm} and the set of variables not in J – {k1, . . . , kn−m}.
Then:

∀xk1
∈ xk1

. . .∀xkn−m
∈ xkn−m

∃!xj1 ∈ xj1 . . .∃!xjm ∈ xjm f(x1, . . . , xn) = 0 .

The proof can be constructed in a way similar to other Newton operators.
Proof.
Consider the function ϕ(·) = fi(ξ1, . . . , ξj−1, ·, ξj+1, . . . , ξn), defined on the interval xj .

Derivative of this function is ϕ′(xj) =
∂fi(ξ1,...,ξj−1 ,xj,ξj+1 ,...,ξn)

∂xj
.

Function ϕ(xj) can be linearized, using the first-order Taylor form: ϕ(c) + a · (xj − c),

where c = mid xj and a ∈ a =
∂fi(ξ1,...,ξj−1 ,xj ,ξj+1,...,ξn)

∂xj
. This way we can bound

ϕ(·) by a centered form.

Now, assume that the interval c − ϕ(c)
a is contained in xj . This implies that both

extremal functions of the linearization cross the OX axis in the interval xj and conse-
quently ϕ(·) must have a zero in xj .
Moreover, there is only one such zero, as if there were two of them, there would have
been a ζ ∈ xj such that ϕ′(ζ) = 0. Which is impossible as both extremal function
cross OX and a cannot contain 0.
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Now, please note that:

c −
ϕ(c)

a
= mid xj −

fi(ξ1, . . . , ξj−1, mid xj , ξj+1, . . . , ξn)
∂fi(ξ1,...,ξj−1 ,xj ,ξj+1,...,ξn)

∂xj

⊆

midxj −
fi(x1, . . . , xj−1, midxj , xj+1, . . . , xn)

∂fi(x1,...,xn)
∂xj

= Ncmp(x, i, j, f)

Moreover, the above relation holds for all possible values of ξ’s, so when

Ncmp(x, i, j, f) ⊂ intxj ,

this implies that:

∀x1 ∈ x1 . . .∀xj−1 ∈ xj−1∀xj+1 ∈ xj+1 . . .∀xn ∈ xn∃!xj ∈ xjfi(x1, . . . , xn) = 0 .

Now, suppose the above was verified for a few variables – let their indices be j1, j2, . . .,
jl. Then, obviously, as we can substitute jt (for t = 1, . . . , l) into the above formulae
to see that:

∀xk1
∈ xk1

. . .∀xkn−l
∈ xkn−l

∃!xj1 ∈ xj1 . . .∃!xjl
∈ xjl

f(x1, . . . , xn) = 0 .

In particular, it holds for l = m.

Comment. For l > m the above formula cannot hold as we have only m equations
to use for verification. And if we manage to verify it for m variables, we can be sure
that a segment of the solution manifold is contained in the investigated box – and
for all values of variables not belonging to the set J there is a corresponding solution
point.
Theorem 3.1 has an important use in presented algorithms for solving underdetermined
problems. After verifying that a box is guaranteed to contain a segment of the solution
manifold, we store this box without considering it further, though the box might be
relatively large. This idea – original to the author’s best knowledge – allows to reduce
the computational amount significantly.

4 Numerical experiments

Numerical experiments were performed on a computer with 16 cores, i. e. 8 Dual-
Core AMD Opterons 8218 with 2.6GHz. The machine ran under control of a Fedora
10 Linux operating system.
The solver was implemented in C++, C-XSC 2.2.3 library [15] was used for interval
computations and perfect weighted matchings were computed using a free implemen-
tation of the Hungarian algorithm [17]. The GCC 4.3.2 compiler was used.
The following test problems were considered.
The first one is a curve on a plane; it is the sum of two concentric circles:

(x2
1 + x

2
2 − 4) · (x2

1 + x
2
2 − 1) = 0 , (2)

x1, x2 ∈ [−3, 5] .

The second example is borrowed from [11] and [12], where it is called the hippopede
problem:

x
2
1 + x

2
2 − x3 = 0 , x

2
2 + x

2
3 − 1.1x3 = 0 . (3)

x1 ∈ [−1.5, 1.5], x2 ∈ [−1, 1], x3 ∈ [0, 4] .



Reliable Computing, 2011 211

The following problem, called Puma (see e. g. [11], [12]) arose in the inverse kinematics
of a 3R robot and is one of typical benchmarks for nonlinear system solvers:

x
2
1 + x

2
2 − 1 = 0 , x

2
3 + x

2
4 − 1 = 0 , (4)

x
2
5 + x

2
6 − 1 = 0 , x

2
7 + x

2
8 − 1 = 0 ,

0.004731x1x3 − 0.3578x2x3 − 0.1238x1 − 0.001637x2 − 0.9338x4 + x7 = 0 ,

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − 0.07745x2 − 0.6734x4 − 0.6022 = 0 ,

x6x8 + 0.3578x1 + 0.004731x2 = 0 ,

−0.7623x1 + 0.2238x2 + 0.3461 = 0 ,

x1, . . . , x8 ∈ [−1, 1] .

In the above form it is a well-determined (8 equations and 8 variables) problem with
16 solutions that are easily found by several solvers. To make it underdetermined the
last one or two equations was dropped. Both variants (with 7 and 6 equations) were
considered in numerical experiments.
The last problem arose in aircraft equilibrium problems (see [12], [14]):

−3.933x1 + 0.107x2 + 0.126x3 − 9.99x5 − 45.83x7 − 7.64x8 +

−0.727x2x3 + 8.39x3x4 − 684.4x4x5 + 63.5x4x7 = 0 , (5)

−0.987x2 − 22.95x4 − 28.37x6 + 0.949x1x3 + 0.173x1x5 = 0 ,

0.002x1 − 0.235x3 + 5.67x5 + 0.921x7 − 6.51x8 − 0.716x1x2 +

−1.578x1x4 + 1.132x4x7 = 0 ,

x1 − x4 − 0.168x6 − x1x2 = 0 ,

−x3 − 0.196x5 − 0.0071x7 + x1x4 = 0 .

This problem has 5 equations in 8 variables, but [12] considers a variant with 6 variables
only: we set x6 = 0.1 and x8 = 0. Both variants - with 6 and 8 variables were
considered in our experiments. As neither in [12], nor in [14] any bound were given,
we set xi ∈ [−2, 2].
The following methods are compared in the tables:

• Hansen – Hansen’s variant,

• Neum – Neumaier’s variant,

• c+HR – the componentwise Newton operator with pairs chosen according to the
Herbort and Ratz [4] heuristic (static lists are created on the beginning of the
program).

• c+Gou – componentwise Newton operator with the Goualard technique [3] for
pairs choosing; lists are recomputed for each box.

• c+GE – the componentwise Newton operator; pairs chosen by Gaussian elimi-
nation on midpoint of the Jacobi matrix; lists recomputed for each box.

• c+GouGE – as c+GE, but the Goualard matrix (1) is used instead of the Jacobi
matrix.

In early experiments also the author considered also the variants of Ncmp method with
static lists created by Gou, GE and GouGE heuristics. The results were very poor
and these experiments are not presented.
Compared quantities are:
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Figure 1: Boxes, covering the solution manifold, computed for problem (2) by
Hansen’s variant of the algorithm (and zoom of a part the set)

• fun.evals, grad.evals – numbers of functions evaluations and its gradients evalu-
ations,

• pos.boxes, verif.boxes – number of elements in the computed lists of boxes that
possibly contain a segment of the solution manifold and that are verified to
contain it,

• Leb.pos., Leb.verif. – Lebesgue measures (total hypervolumes) of boxes from
both lists,

• time – computation time in seconds.

On Figure 2 we have the solution computed by one of the algorithms (the others
performed similarly) for Problem (2).

Table 1: Results for Problem (2), ε = 10
−5.

method Hansen Neum c+HR c+Gou c+GE c+GouGE
fun.evals 140979 6844 801803 142912 142913 142912
grad.evals 141922 8066 401033 143496 143496 143496
pos.boxes 65605 160 191401 66014 66014 66014
verif.boxes 3390 1200 7080 3614 3614 3614
Leb.pos. 2e-6 3e-9 7e-6 2e-6 2e-6 2e-6
Leb.verif. 0.58 0.60 0.51 0.55 0.55 0.55
time (sec.) 2.20 0.13 5.24 1.86 1.72 1.81

5 Computational results

Numerical experiments have shown that in most cases the best method was either the
Neumaier’s algorithm or the Herbort and Ratz technique.
Methods, recomputing the lists of pairs for the componentwise Newton step performed
worse, usually. It is worth noting that all three variants (Gou, GE, GouGE) performed
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Table 2: Results for Problem (3), ε = 10
−5.

method Hansen Neum c+HR c+Gou c+GE c+GouGE
fun.evals 11820182 186174 30065516 31081749 27462889 26863397
grad.evals 17198176 211968 13051004 39050540 33532252 60759260
pos.boxes 1378660 20864 1549332 4198728 3647752 5626484
verif.boxes 3400 4120 588 788 564 788
Leb.pos. 4e-10 4e-12 3e-10 7e-10 7e-10 1e-9
Leb.verif. 0.001991 0.002829 0.004804 0.004803 0.001244 0.004803
time (sec.) 170 3 127 328 253 433

Table 3: Results for Problem (4) without the last equation, ε = 10
−4.

method Hansen Neum c+HR c+Gou c+GE c+GouGE
fun.evals 39040127 3776850 154679461 110980461 123275719 117086109
grad.evals 47802356 4302186 60371164 145022192 177525642 183190672
pos.boxes 1245564 124968 2197904 3763096 4315908 4351128
verif.boxes 12964 20056 440 484 360 376
Leb.pos. 2e-29 2e-32 4e-29 4e-29 2e-29 5e-29
Leb.verif. 6e-12 3e-11 5e-15 3e-20 3e-20 8e-18
time (sec.) 1563 159 1116 2777 2779 3044

Table 4: Results for Problem (4) without two last equations, ε = 10
−1.

method Hansen Neum c+HR c+Gou c+GE c+GouGE
fun.evals 1682802 1263426 3099287 2246536 2568064 2432272
grad.evals 1882224 1451424 1173888 2502720 3057324 3037824
pos.boxes 90776 61568 70968 117144 136736 134496
verif.boxes 432 1600 0 16 72 88
Leb.pos. 6e-7 2e-7 6e-7 9e-7 7e-7 8e-7
Leb.verif. 2e-9 5e-8 0 2e-11 5e-10 6e-10
time (sec.) 57 49 23 50 49 54

Table 5: Results for Problem (5) with 6 variables, ε = 10
−3.

method Hansen Neum c+HR c+Gou c+GE c+GouGE
fun.evals 4183290 819720 1157504 6645338 3469047 3216334
grad.evals 5795160 1024850 222015 10923640 5487600 11548340
verif.boxes 0 0 149 0 0 0
Leb.pos. 2e-14 3e-15 2e-17 5e-14 2e-14 4e-14
Leb.verif. 0 0 3e-13 0 0 0
time (sec.) 223 46 9 327 149 310

similarly. Moreover, GE was significantly better than the two other ones in Tables 5
and 6. So, probably, computing the maximum perfect matching might be replaced
by simple Gaussian elimination – known much better for researchers dealing with
numerical computations, simpler and probably less expensive.
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Table 6: Results for Problem (5), ε = 10
−1.

method Hansen Neum c+HR c+Gou c+GE c+GouGE
fun.evals 83926845 32204420 139333524 82585776 59874378 117011038
grad.evals 101122600 36138220 25886790 92489260 64409105 250960280
pos.boxes 5348354 1955575 1948669 4513924 3917502 9839533
verif.boxes 26228 56168 21768 0 21553 0
Leb.pos. 0.000276 0.018141 0.000159 0.000394 0.000201 0.001231
Leb.verif. 6e-5 0.005801 0.001677 0 0.001572 0
time (sec.) 4185 1705 1087 2954 1906 7109

Table 7: Parallelization of algorithms for Problem (4) with 7 equations.

method \ threads num. 1 2 4 6 8 10 12
Hansen time (sec.) 1563 810 405 286 209 176 140

speedup 1 1.93 3.86 5.47 7.48 8.88 11.16
Neum time (sec.) 159 82 41 28 21 17 14

speedup 1 1.94 3.88 5.68 7.57 9.35 11.36
c+HR time (sec.) 1116 589 304 201 152 124 105

speedup 1 1.89 3.67 5.55 7.34 9.0 10.63
c+Gou time (sec.) 2777 1453 725 533 373 307 254

speedup 1 1.91 3.83 5.21 7.45 9.05 10.93

Table 8: Parallelization of algorithms for Problem (5) with 8 variables.

method \ threads num. 1 2 4 6 8 10 12
Hansen time (sec.) 4185 2201 1113 758 579 471 400

speedup 1 1.90 3.76 5.52 7.23 8.89 10.46
Neum time (sec.) 1705 907 456 309 244 194 162

speedup 1 1.88 3.74 5.52 6.99 8.79 10.52
c+HR time (sec.) 1087 567 295 195 150 122 104

speedup 1 1.92 3.68 5.57 7.25 8.91 10.45
c+Gou time (sec.) 2954 1559 780 526 400 326 276

speedup 1 1.89 3.79 5.62 7.38 9.06 10.70

Parallelization of algorithms

OpenMP [16] was used for the shared-memory parallelization. The general idea was
similar to the one in [1]: main loop of the IBP algorithm was executed concurrently
in a few threads, push/pop operations were guarded by locks (each of the lists had a
different lock, obviously) and there was a variable, representing the number of working
threads, used to finish the computations (as OpenMP gives us no condition variables,
an active wait had to be used – contrary to [9], where we used POSIX threads).

As already investigated in [9] the C-XSC library – at least in version 2.2.3 – is not
well suited for multi-threaded computations. In particular, computing the midpoint
of an interval had to be replaced by an arithmetic operation; also matrix-matrix and
matrix-vector multiplications had to be implemented manually as original functions
are not reentrant.

Parallelization increased the efficiency of the algorithms in all investigated cases.

The observed speedup was worse than the one observed in similar experiments of [1]
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(they investigated well-determined systems of equations, but that should make no
difference). It seems a few reasons may cause worse performance in our experiments –
like different compiler or different computer architecture. It is worth noting that early
experiments were performed on earlier version on GCC (4.1.2) and the parallel version
performed yet far worse.

Nevertheless, speedups reported in [1] seem rather optimistic. Please note that differ-
ent threads have to synchronize several times:

• taking a box from the list,

• putting a box to one of the lists (only threads manipulating on the same list at
a time),

• allocating memory while bisecting a box – the memory is a resource of a process,
not a thread; the synchronization is done under the covers and is probably highly
dependent on OS, version of the kernel and glibc (GNU C library), etc.

Moreover, the implementation considered in [1] was putting both boxes to the queue
after the bisection and taking one from the queue – our algorithm puts one of the boxes
to the queue and processes the other one, which should increase the concurrency.

All of the algorithms parallelized relatively well, but the speedup was not linear. No
significant difference in the speedup between different variants of the algorithm was
observed.

6 Conclusions

We investigated several variants of an IBP method for solving underdetermined sys-
tems of nonlinear equations. Considered variants of the Newton operator were either
taken from the literature directly or modified only slightly.

However the use of them was different than traditional (e. g. [10], [11]). Theorem 3.1,
presented and proved in the paper, allowed us to enclose some parts of the solution
manifold by boxes verified to contain its segment. Consequently, the resulting list of
such “verified” boxes will contain some boxes of diameter larger than the prescribed
accuracy ε; the author decided to store such boxes as solutions, but it would depend
on the application, if such approach is acceptable and useful.

As we can infer from Figure 2, the solution manifold is covered quite precisely.

In most cases the Neumaier’s method was the best, but the Herbort and Ratz technique
outperformed it sometimes.

These results show some interesting phenomenons, analysis of which is beyond the
scope of this paper. Great performance of the Neumaier’s method is particularly
interesting. As investigated in a related paper [10], it outperforms the Hansen’s method
not because of the uniform structure of the linear system, but rather thanks to a
different linearization – using the rectangular Jacobi matrix, not its square submatrix.
It is worth noting that linearization used in the Hansen’s technique is often more
precise, which makes the superiority of Neumaier’s method even more surprising. Some
possible reasons of this unexpected behavior are analyzed in [10], but the topic requires
further studies.

Other minor result was the suggestion to change the Goualard method, by substituting
computation of the maximal perfect matching with the well-known Gauss elimination.

The parallelization of all algorithms increased the efficiency of computations, but the
speedup was slightly smaller than the expected one. Further research is going to
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identify the bottlenecks and improve the parallelization, possibly using other tolls for
multi-threaded computations, e. g. TBB.

Acknowledgments

The research has been supported by the Polish Ministry of Science and Higher Ed-
ucation under grant N N514 416934. Thanks to Adam Woźniak for helping me to
prepare the figures. The computer on which experiments were performed is shared
with the Institute of Computer Science of our University. Thanks to Jacek Błaszczyk
for maintaining it. The author is also very grateful to Sergey P. Shary for interesting
remarks during the SCAN 2008 conference and for pointing out paper [12] and to
Tibor Csendes and Ali Baharev for other fruitful discussions.

References

[1] Beelitz, T., Lang, B., Bischof, C. H.; Efficient task scheduling in the parallel

result-verifying solution of nonlinear systems, Reliable Computing 12, pp. 141–
151, 2006.

[2] Gavriliu, M.; Towards more efficient interval analysis: corner forms and a

remainder interval method, PhD thesis, California Institute of Technology,
Pasadena, California, 2005.

[3] Goualard, F., Jermann, C.; On the selection of a transversal to solve nonlinear

systems with interval arithmetic, LNCS 3991, pp. 332–339, 2006.

[4] Herbort, S., Ratz, D.; Improving the efficiency of a nonlinear-system-solver

using the componentwise Newton method, (1997), available on the web at
http://www.uni-karlsruhe.de/~iam/html/reports/rep9702.ps.gz .

[5] Kearfott, R. B., Xing, Z.; An interval step control for continuation methods, SIAM
Journal of Numerical Analysis 31, pp. 892–914, 1994.

[6] Kearfott, R. B.; Rigorous Global Search: Continuous Problems, Kluwer, Dor-
drecht, (1996).

[7] Kearfott, R. B., Nakao, M. T., Neumaier, A., Rump, S. M., Shary, S. P., van
Hentenryck, P.; Standardized notation in interval analysis, available on the web
at http://www.mat.univie.ac.at/~neum/software/ int/notation.ps.gz .

[8] Kolev, L. V.; An improved interval linearization for solving nonlinear problems,
Reliable Computing 37, pp. 213–224, 2004.

[9] Kubica, B. J., Woźniak, A.; A multi-threaded interval algorithm for the Pareto-

front computation in a multi-core environment, presented at PARA 2008 Confer-
ence, Trondheim, Norway (2008), accepted for publication in LNCS 6126–6127.

[10] Kubica, B. J.; Performance inversion of interval Newton narrowing operators,
presented at XII Conference on Evolutionary Algorithms and Global Optimiza-
tion (KAEiOG 2009), Zawoja, Poland. Prace Naukowe Politechniki Warszawskiej.
Elektronika 169, pp. 111–119, 2009.

[11] Nataraj, P. S. V., Prakash, A. K.; A parallelized version of the covering algo-

rithm for solving parameter-dependent systems of nonlinear equations, Reliable
Computing 8, pp. 123–130, 2002.



Reliable Computing, 2011 217

[12] Neumaier, A.; The enclosure of solutions of parameter-dependent systems of equa-

tions, in Reliability in Computing (ed. Moore, R.), Academic Press, 1988.

[13] Neumaier, A.; Interval methods for systems of equations, Cambridge University
Press, Cambridge, 1990.

[14] Rheinboldt, W. C.; Computation of critical boundaries on equilibrium manifolds,
SIAM Journal of Numerical Analysis 19, pp. 653–669, 1982.

[15] C-XSC interval library http://www.xsc.de .

[16] OpenMP http://www.openmp.org .

[17] Hungarian algorithm free implementation in C++ by John Waever http://

johnweaver.zxdevelopment.com/2007/05/22/munkres-code-v2/ .


