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Abstract

We demonstrate here a method for the verified solution of nonlinear
ODE models in physiology, computing rigorous bounds on the trajectories
of the state variables, based on the ranges of the uncertain parameters. We
also demonstrate an approach for the propagation of uncertain probability
distributions in one or more model parameters and/or initial conditions.
Assuming an uncertain probability distribution (p-box) for each parame-
ter and/or initial condition of interest, we propagate these distributions
through the dynamic model to the state variables. As a result, we ob-
tain a p-box describing the probability distribution for each state variable
at times of interest. As test problems, we use two physiological models.
The first model simulates the metabolism of glucose in diabetic patients.
The second is a simulation of long-term starvation that models the hu-
man body over time given uncertain metabolic rates. In both problems,
comparisons are made with results obtained from Monte Carlo analysis.
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p-box
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1 Introduction

Physiological models are used to simulate the dynamics of the human body, especially
in cases where experiments on humans is not a viable option. Such simulations can
allow for a large number of numerical experiments to be performed, by adjustment
and control of specific model parameters. Our focus here is on continuous-time phys-
iological models expressed by systems of ordinary differential equations (ODEs) and
formulated as initial value problems (IVPs). Of particular interest is the verified (i.e.,
mathematically and computationally guaranteed) solution of such systems of ODEs,
especially systems that involve uncertainty in initial conditions and/or model param-
eters. Accounting for such uncertainties is particularly important in the context of
physiological models, since in most, if not all, cases, initial values and model parame-
ters are not known exactly. We will assume that, for such uncertain quantities, bounds

∗Submitted: January 26, 2009; Revised: March 16, 2010; Accepted: April 1, 2010.

168



Reliable Computing 15, 2011 169

on their true probability distribution are available. That is, uncertain quantities will
be represented by probability boxes (p-boxes), as described in Section 2.3. Since this
implies that there are infinitely many possible values for the uncertain quantities, it
follows that, even for fixed initial conditions, we have infinitely many possible solu-
tions of the underlying ODE system, corresponding to different values of the uncertain
quantities. Therefore, we seek rigorous, verified bounds on all the possible trajectories.

For determining rigorous bounds on the solution of an ODE system, with or with-
out uncertainties, the use of interval methods (also called validated or verified methods)
is a natural approach, as computations with intervals, as opposed to floating-point
numbers, can provide both mathematically and computationally guaranteed enclo-
sures. Excellent reviews of interval methods for IVPs are available in the literature
[15, 17]. For addressing interval-based ODE problems, there are various packages
available, including AWA [9], VNODE [16], COSY VI [3], and ValEncIA-IVP [19].
In the work described here, we will use a recently developed solver [8] for paramet-
ric ODEs called VSPODE (Verifying Solver for Parametric ODEs), which is used
to produce guaranteed bounds on the solutions of nonlinear dynamic systems with
interval-valued initial states and parameters. Both COSY VI and VSPODE use Tay-
lor models [11, 12, 13], though in different ways, to deal with the uncertain quantities
(parameters and initial values). In this paper, we propose the use of Taylor-model
methods, specifically VSPODE, for propagating uncertainties through nonlinear ODE
models in physiology.

This paper is divided as follows. The next section will provide background on the
tools used here to treat uncertainty. Section 3 describes the general ODE problem to
be addressed, and in Section 4 we outline the specific method that is used to solve
this problem. In Section 5, we present examples and highlight the results of using this
solution method.

2 Background

2.1 Interval Analysis

The real interval vector x = [x, x] provides bounds on the real vector x = [x1, . . . , xn]T,
n ≥ 1. The real vectors x = [x1, . . . , xn]T and x = [x1, . . . , xn]T provide the lower
and upper bounds, respectively, on the components of x. That is, xi ≤ xi ≤ xi or
xi ∈ [xi, xi]. An n-dimensional interval vector can be interpreted geometrically as an
n-dimensional rectangle or box. Basic arithmetic operations are defined on interval
scalars according to x ◦ y = {x ◦ y | x ∈ x, y ∈ y}, ◦ ∈ {+,−,×,÷}, with division
in the case of y containing zero allowed only in extensions of interval arithmetic [7].
Addition and multiplication are commutative and associative but only subdistributive.
Interval versions of the elementary functions can also be defined.

For a real function f(x) : R
n → R that can be evaluated using an expression f(x)

that is a composition of arithmetic operations and elementary functions, the range
of f(x) over x ∈ x can be bounded by substituting x into f(x) and evaluating with
interval operations. That is, f(x) ⊇ {f(x) | x ∈ x}. The tightness of these bounds
depends on the form of the expression f(x). If f(x) is a single-use expression, in
which no variable appears more than once, then the exact function range is obtained.
However, if any variable appears more than once in f(x), then overestimation of the
function range may occur, due to the “dependency” problem [7] of interval arithmetic.
Another source of overestimation that may arise in the use of interval methods is the
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“wrapping” effect. This occurs when an interval vector is used to enclose (wrap) a set
of results that is not an interval vector. If this type of overestimation is propagated
from step to step in an integration procedure for ODEs, it can quickly lead to the loss
of a meaningful enclosure.

2.2 Taylor Models

Makino and Berz have described a remainder differential algebra (RDA) approach for
bounding function ranges and control of the dependency problem of interval arithmetic
[11, 12]. In this method, a function is represented using a model consisting of a Taylor
polynomial and an interval remainder bound. Such a model is called a Taylor model.

One way of forming a Taylor model of a function is by using the Taylor theorem.
Consider a real function f(x) : R

n → R that can be evaluated using the expression
f(x). Assume that f(x) is (q + 1) times partially differentiable on x and let x0 ∈ x.
The Taylor theorem states that for each x ∈ x, there exists a real ζ with 0 < ζ < 1
such that

f(x) = pf(x − x0) + rf(x − x0, ζ), (1)

where pf is a q-th order polynomial (truncated Taylor series) in (x − x0) and rf is a
remainder, which can be quantitatively bounded over 0 < ζ < 1 and x ∈ x using
interval arithmetic or other methods to obtain an interval remainder bound rf . A
q-th order Taylor model Tf = pf + rf for f(x) over x then consists of the polynomial
expression pf and the interval remainder bound rf and is denoted by Tf = (pf , rf). The
expression f(x) can now be bounded for x ∈ x by seeking bounds on the Taylor model
Tf(x−x0) for x ∈ x. This could be done using the interval evaluation Tf(x−x0), but
usually tighter bounds can be obtained using other methods [8, 14, 18].

In practice, it is more useful to compute Taylor models of functions by performing
Taylor model operations. Arithmetic operations with Taylor models can be done
using RDA operations, which include addition, multiplication, reciprocal, and intrinsic
functions [11, 12, 13]. Using these, it is possible to start with simple expressions such as
the constant f(x) = k, for which Tf = (k, [0, 0]), and the identity f(xi) = xi, for which
Tf = (xi0 +(xi −xi0), [0, 0]), and then to compute Taylor models for very complicated
expressions. It has been shown that, compared to other rigorous bounding methods,
the Taylor model often yields sharper bounds for expressions that are even modestly
complicated [11, 12, 18]. The uses and limitations of Taylor models are discussed in
more detail elsewhere [18].

2.3 Probability Boxes (P-boxes)

For some quantity (variable or parameter) x, the cumulative distribution function
(CDF) F (z) gives the probability that x ≤ z. In practice, knowledge of the prob-
ability distribution describing an uncertainty is often itself uncertain. To deal with
imprecise probability distributions, we use probability boxes (p-boxes) [5, 6]. A p-box,
as defined below, is a way to bound probability distributions, in much the same way
that an interval is used to bound real numbers. Furthermore, arithmetic operations
with p-boxes can be performed, again in much the same way as done with intervals.
Computations with p-boxes allow for more information about the uncertainty of a
quantity to be utilized in modeling and analysis.

Formally, a p-box (F, G) is the set of all CDFs enclosed by two bounding CDFs
F (z) and G(z); that is, (F, G) = {H(z)|F (z) ≥ H(z) ≥ G(z)}. Less formally, a



Reliable Computing 15, 2011 171

−0.4 −0.2 0 0.2 0.4
0

20

40

60

80

100

z

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

−0.4 −0.2 0 0.2 0.4
0

20

40

60

80

100

z

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

Figure 1: Examples of p-boxes based on uniform and normal distributions,
respectively.

p-box can be thought of as a set of interval bounds on a cumulative distribution
function, and thus, in practice, computation with p-boxes and intervals are analogous
[5]. The bounding functions F (z) and G(z) are decomposed into interval-mass pairs,
and interval arithmetic is then applied. Therefore, computation with p-boxes involves
the same issues of dependency and wrapping that occur in computations with intervals.
For a p-box represented as n interval-mass pairs, a single arithmetic operation with
another independent p-box provides a result with n2 interval-mass pairs, and a p-box
with n interval-mass pairs must then be used to condense (wrap) this result.

A p-box may be constructed from any available information about an uncertain
quantity, including, but not limited to, any combination of its maximum, minimum,
mean, median, or standard deviation. An interval is the special case of a p-box for
which only the maximum and minimum are known. P-boxes may also be created
by assuming a particular form of probability distribution for the bounding functions
F (z) and G(z). Two such p-boxes are shown in Figure 1. The first is a “uniform”
p-box, constructed using uniform distributions with median 0 but uncertain outer
bounds [−0.4,−0.32] and [0.32, 0.4]. The second is a “normal” p-box, constructed by
bounding all normal distributions (truncated at 99% confidence) with mean of zero
and standard deviation in the interval [0.1, 0.15]. It is important to note that the
true probability distribution simply lies between the bounding functions and does not
necessarily take the same form as a bounding function; that is, a distribution within
a p-box bounded by uniform distributions is not necessarily also uniform. Also, all
p-boxes may be bounded by intervals that include all possible values of z.

3 Problem Statement

We investigate physiological models of the form

y
′(t) = f(y, θ), y(t0) = y0 ∈ y0, θ ∈ θ, (2)

where t ∈ [t0, tm] for some tm > t0. Here y ∈ R
n is a vector of state variables with

initial value y0, and θ ∈ R
p is a vector of time-invariant parameters. The intervals y0

and θ enclose p-boxes that bound probabilistic uncertainties in the initial states and
parameters, respectively. We treat f(y, θ) as a general nonlinear function, which we
assume can be represented by an expression f(y, θ) that is a composition of a finite
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number of standard functions. It is also assumed that f(y, θ) is (k − 1) times contin-
uously differentiable with respect to y and (q + 1) times continuously differentiable
with respect to θ. Here, k is the order of the truncation error in the interval Taylor
series (ITS) method used by VSPODE, and q is the order of the Taylor model used in
VSPODE to represent dependence on parameters and initial values. Our specific goals
are (1) to obtain a rigorously guaranteed enclosure of the state variables y at all times
of interest from t0 to tm, and (2) to obtain an enclosure (p-box) of the probability
distribution for the values of y within these enclosures.

4 Solution Procedure

In this section, we outline the method used by VSPODE for solving the problem de-
scribed in the previous section. Specifically, it is desired to determine a rigorously ver-
ified enclosure of all possible solutions to the IVP expressed in Eq. (2). We denote by
y(t; tj , yj , θ) the set

{
y(t; tj , yj , θ) | yj ∈ yj , θ ∈ θ

}
, where yj = y(tj) and y(t; tj , yj , θ)

denotes a solution of y′(t) = f(y, θ) for the initial condition y = yj at t = tj . We will
summarize a method for determining enclosures yj of the state variables at each time
step j = 1, . . . , m, such that y(tj ; t0, y0, θ) ⊆ yj .

Assume that at tj we have an enclosure yj of y(tj ; t0, y0, θ), and that we want
to carry out an integration step to compute the next enclosure yj+1. Then, in the
first phase of the method, the goal is to find a step size hj = tj+1 − tj > 0 and a
rough enclosure ỹj of the solution such that a unique solution y(t; tj , yj , θ) ∈ ỹj is
guaranteed to exist for all t ∈ [tj , tj+1], all yj ∈ yj , and all θ ∈ θ. We apply a
traditional interval method, with high order enclosure, to the parametric ODEs by
using an interval Taylor series (ITS) with respect to time. That is, we determine hj

and ỹj such that for yj ⊆ ỹ
0
j ,

ỹj =

k−1∑

i=0

[0, hj ]
i
f
(i)(yj , θ) + [0, hj ]

k
f
(k)(ỹ0

j , θ) ⊆ ỹ
0
j . (3)

Here k denotes the order of the Taylor series, ỹ
0
j is an initial estimate of ỹj , and the

f(i) are the Taylor coefficients of y(t) with respect to time, which can be obtained
recursively in terms of y′(t) = f(y, θ) using automatic differentiation. When Eq. (3) is
satisfied, it demonstrates [4] that there exists a unique solution y(t; tj , yj , θ) ∈ ỹj for
all t ∈ [tj , tj+1], all yj ∈ yj , and all θ ∈ θ.

In the second phase of the method, we compute a tighter enclosure yj+1 ⊆ ỹj

such that y(tj+1; t0, y0, θ) ⊆ yj+1. This is done by using an ITS approach to compute
Tyj+1(y0, θ), a Taylor model of yj+1 in terms of the initial values y0 and parameters
θ, and then obtaining the enclosure yj+1 by bounding Tyj+1(y0, θ) over y0 ∈ y0 and
θ ∈ θ. For the Taylor model computations, we begin by representing the interval
initial states and parameters by the Taylor models (identity functions) Ty0 and Tθ,
respectively. Then, we can determine Taylor models T

f(i)
of the Taylor series coeffi-

cients f(i)(yj , θ) by using RDA operations to compute T
f(i)

= f(i)(Tyj
, Tθ). Using an

interval Taylor series for yj+1 with coefficients given by T
f(i)

, and using the mean value
theorem, one can obtain Tyj+1(y0, θ), the desired Taylor model of yj+1 in terms of the
parameters θ and initial states y0. To control the wrapping effect, the state enclosures
are propagated using a new type of Taylor model consisting of a polynomial and a
parallelepiped (as opposed to an interval) remainder bound. Complete details of the
computation of Tyj+1(y0, θ) using VSPODE are given by Lin and Stadtherr [8].
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Table 1: Parameter values and initial states for diabetes model.

Value Units Value Units
p1 0 min−1 V1 12 L
p2 0.025 min−1 n 5/54 min−1

p3 0.000013 mU/L Gmeal 9.259 mmol/min
Gb 4.5 mmol/L U 50/3 mU/min
Ib 4.5 mU/L I(0) 0.02 mmol/L

G(0) [4.5, 4.6] mmol/L X(0) [0.05, 0.075] mmol/L

Using the method summarized above, we can obtain, for a specified time of interest
tk, a Taylor model Tyk

(y0, θ) that gives the state variables yk = y(tk) as a polynomial
pyk

(y0, θ) in terms of the initial states y0 ∈ y0 and the parameters θ ∈ θ, plus a small
remainder bound. If probability distributions (p-boxes) are available for y0 and for θ,
then these can be substituted directly into Tyk

(y0, θ), and a p-box giving bounds on
the probability distribution for yk can be computed using standard p-box operations.
For this purpose, we use our own skeletal Matlab implementation of p-box arithmetic.

5 Examples

As test problems, we will apply the method outlined above to two physiological models.
The first simulates the metabolism of glucose in diabetic patients, and the second
models the effects of long-term starvation on the human body. For both examples,
VSPODE was used with its default ITS order k = 17 and default Taylor model order
q = 5. When Monte Carlo (MC) simulations are run for purposes of comparison, they
are done in Matlab, using the ode45 routine with default tolerances.

5.1 Diabetes Model

This physiological model for blood glucose in diabetic patients is an example of a
model that investigates biological feedback control systems. The Bergman “minimal”
model [2] represents the effects of insulin infusion U in response to a glucose input
Gmeal for a diabetic patient. The model is

dG

dt
= −p1G − X(G + Gb) +

Gmeal

V1
,

dX

dt
= −p2X + p3I,

dI

dt
= −n(I + Ib) +

U

V1
.

I is the blood insulin concentration and X is the “remote” (or effective) insulin con-
centration. Here we will do an “open-loop” simulation to determine the effects on G

and X of a slow meal of Gmeal = 100 g/hr begun at t = 0 with uncertain initial states
G(0) and X(0). Model parameter values [1, 10] are given in Table 1. The intervals
given in Table 1 for G(0) and X(0) enclose the p-boxes that represent the uncertainty
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Figure 2: P-boxes for uncertainty in G(0) and X(0) in diabetes model.
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Figure 3: VSPODE enclosures (solid curves) for G and X over t = [0, 50] min,
with comparison to MC simulation results (shaded areas).

on these initial conditions. For both quantities, we will assume p-box bounds based
on uniform distributions, as shown in Figure 2.

VSPODE was first used to determine rigorous enclosures of the trajectories for G

and X from t0 = 0 to tm = 50 min. These results (solid curves) are shown in Figure
3. We checked the tightness of the VSPODE bounds by comparison to the results
of an MC simulation with 50000 trials. For each trial, real values of G(0) and X(0)
were selected at random from within their specified interval bounds. Bounds obtained
from MC analysis are not guaranteed and in general will yield an inner estimate of
the true bounds (the rigorous VSPODE bounds represent an outer estimate). The
MC simulation results are shown by the shaded areas in Figure 3. Clearly, VSPODE
provides very tight bounds on these trajectories.

The Taylor model from VSPODE at t = tm was then used to compute bounds
on the probability distributions for G(tm) and X(tm). These are shown as p-boxes
(solid curves) in Figure 4. This shows, for example, that the probability of G(tm)
being less than 16 mmol/L is rigorously bounded by the interval [0.076, 0.281]. For
comparison, probability bounds were also determined using MC simulation, as shown
by the shaded areas in Figure 4. These are the results of 500 MC simulations consisting
of 10000 trials each. For each simulation, uniform probability distributions were chosen
randomly from within the input p-boxes for the initial conditions (Figure 2), and then
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Figure 4: P-box enclosures (solid curves) of probability distributions for G and
X at t = 50 min, with comparison to MC simulation results (shaded areas).

the ODE model was integrated for 10000 different inputs chosen according to these
probability distributions. The results obtained from the Taylor model are clearly
consistent with the MC results. It is important to note: (1) Probability bounds
obtained from MC analysis are not rigorous, but those obtained from the Taylor model
analysis are. For the number of MC trials done here, which is relatively many to ensure
meaningful results, the computation time was quite large, about 4 hours (vs. about
5 seconds for the rigorous Taylor model approach). (2) The probability bounds from
MC become quite narrow at the median, less so than those obtained from the Taylor
model analysis. This reflects the use of only uniform distributions in the MC analysis.
A p-box with uniform bounds also contains non-uniform distributions, and this is
accounted for in the bounds from Taylor model analysis. (3) There is likely to be
significant overestimation of the probability bounds obtained from the Taylor model,
due to mostly to the dependency problem that occurs when p-box operations are done.
This problem can be greatly ameliorated by using subinterval reconstitution [6], which
we will apply to this example in future work.

5.2 Long-Term Starvation Model

After depletion of glucose reserves (3-4 days fasting), energy to sustain the human
body comes from fat, F (t), protein stored in muscle mass, M(t), and (for brain func-
tion) ketone bodies, K(t). The long-term starvation model proposed by Song and
Thomas [20] uses material and energy balances to model the dynamics of these three
components. This model is given by

dF

dt
= F

(
−

a

1 + K
−

1

λF

(
C + κL0

F + M
+ κ

))
,

dM

dt
= −

M

λM

(
C + κL0

F + M
+ κ

)
,

dK

dt
=

V aF

1 + K
− b.

Song and Thomas [20] set all parameters and initial values (Table 2) at standard
literature values, except for κ, a proportionality constant for the effect of body mass on
metabolic rate, and b, the rate of ketone use in the brain. The standard literature value
for κ does not apply as it is an average over “normal” (not starving) individuals, and



176 J. A. Enszer, M. A. Stadtherr, Uncertainty in Physiological Models

Table 2: Parameter values and initial states for starvation model.

Value Units Value Units
a 0.013 kg/d V 0.9 (kg fat)/(kg ketone)
C 772.3 kcal/d F (0) 25 kg
L0 30.4 kg M(0) 43.6 kg
λF 7777.8 kcal/kg K(0) 0.02 kg
λM 1400 kcal/kg b [0.05, 0.075] kg/d
κ [8.22, 13.7] kcal/(kg d)
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Figure 5: P-boxes for uncertainty in κ and b in starvation model.

only rough estimates are available for b. For these two parameters, Song and Thomas
[20] considered values in the intervals shown in Table 2, assuming a normal distribution
of values for κ and a uniform distribution for b. We have introduced uncertainty in
these distributions by taking the standard deviation for κ to be [0.548, 0.685], and the
upper and lower bounds for b to be [0.0725, 0.075] and [0.05, 0.0525], respectively. The
resulting p-boxes for κ and b are shown in Figure 5.

The results of using VSPODE to rigorously bound the trajectories for M(t) and
K(t) for tm = 25 days are shown in Fig. 6, again with comparison to results obtained
by MC simulation. Since death is certain when the ketone mass becomes zero, this
shows that the individual being modeled would potentially be near death at day 25.
Figure 7 gives the results of using the VSPODE Taylor model at tm = 25 days to
determine p-boxes for M(tm) and K(tm), along with results of MC analysis (500
simulations consisting of 10000 trials each). As noted previously, we anticipate that
the use of subinterval reconstitution [6] will result in significantly less overestimation
in the p-box bounds.

6 Concluding Remarks

Mathematical models of physiological dynamics often involve uncertain parameters
and/or initial states. We have demonstrated here an approach for dealing rigorously
with this uncertainty. With this approach, guaranteed bounds on the state trajectories
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Figure 6: VSPODE enclosures (solid curves) for M and K over t = [0, 25] days,
with comparison to MC simulation results (shaded areas).
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Figure 7: P-box enclosures (solid curves) of probability distributions for M and
K at t = 25 days, with comparison to MC simulation results (shaded areas).

can be determined, as well as guaranteed bounds on the probability distributions of
the states. In future work, we will reduce overestimation of the probability bounds by
using subinterval reconstitution.
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