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Abstract

Traditional data processing in science and engineering starts with com-
puting the basic statistical characteristics such as the population mean E
and population variance V . In computing these characteristics, it is usu-
ally assumed that the corresponding data values x1, . . . , xn are known
exactly. In many practical situations, we only know intervals [xi, xi] that
contain the actual (unknown) values of xi or, more generally, a fuzzy
number that describes xi. In this case, different possible values of xi lead,
in general, to different values of E and V . In such situations, we are
interested in producing the intervals of possible values of E and V – or
fuzzy numbers describing E and V . There exist algorithms for producing
such interval and fuzzy estimates. However, these algorithms are more
complex than the typical data processing formulas and thus, require a
larger amount of computation time. If we have several processors, then,
it is desirable to perform these algorithms in parallel on several proces-
sors, and thus, to speed up computations. In this paper, we show how the
algorithms for estimating variance under interval and fuzzy uncertainty
can be parallelized.
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1 Computing Statistics is Important

Traditional data processing in science and engineering starts with computing the basic
statistical characteristics such as the population mean

E =
1

n
·

n∑

i=1

xi

and population variance

V =
1

n
·

n∑

i=1

(xi − E)2.

2 Additional Problem

Traditional engineering statistical formulas assume that we know the exact values xi of
the corresponding quantities. In practice, these values come either from measurements
or from expert estimates. In both cases, we get only approximations x̃i to the actual
(unknown) values xi.

When we use these approximate values x̃i 6= xi to compute the desired statistical
characteristics such as E and V , we only get approximate valued Ẽ and Ṽ for these
characteristics. It is desirable to estimate the accuracy of these approximations.

3 Case of Measurement Uncertainty

Measurements are never 100% accurate. As a result, the result x̃ of the measurement
is, in general, different from the (unknown) actual value x of the desired quantity. The

difference ∆x
def
= x̃− x between the measured and the actual values is usually called a

measurement error.
The manufacturers of a measuring device usually provide us with an upper bound

∆ for the (absolute value of) possible errors, i.e., with a bound ∆ for which we guar-
antee that |∆x| ≤ ∆. The need for such a bound comes from the very nature of a
measurement process: if no such bound is provided, this means that the difference
between the (unknown) actual value x and the observed value x̃ can be as large as
possible.

Since the (absolute value of the) measurement error ∆x = x̃−x is bounded by the
given bound ∆, we can therefore guarantee that the actual (unknown) value of the
desired quantity belongs to the interval [x̃ − ∆, x̃ + ∆].

4 Traditional Probabilistic Approach to Describ-

ing Measurement Uncertainty

In many practical situations, we not only know the interval [−∆, ∆] of possible values
of the measurement error; we also know the probability of different values ∆x within
this interval [13].

In practice, we can determine the desired probabilities of different values of ∆x by
comparing the results of measuring with this instrument with the results of measuring
the same quantity by a standard (much more accurate) measuring instrument. Since
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the standard measuring instrument is much more accurate than the one used, the
difference between these two measurement results is practically equal to the measure-
ment error; thus, the empirical distribution of this difference is close to the desired
probability distribution for measurement error.

5 Interval Approach to Measurement Uncertainty

As we have mentioned, in many practical situations, we do know the probabilities of
different values of the measurement error. There are two cases, however, when this
determination is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fundamen-
tal science. When a Hubble telescope detects the light from a distant galaxy,
there is no “standard” (much more accurate) telescope floating nearby that we
can use to calibrate the Hubble: the Hubble telescope is the best we have.

• The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration is so
costly – usually costing ten times more than the sensor itself – that manufac-
turers rarely do it.

In both cases, we have no information about the probabilities of ∆x; the only infor-
mation we have is the upper bound on the measurement error.

In this case, after performing a measurement and getting a measurement result x̃,
the only information that we have about the actual value x of the measured quantity
is that it belongs to the interval x = [x̃ − ∆, x̃ + ∆]. In this situation, for each i, we
know the interval xi of possible values of xi, and we need to find the ranges E and V

of the characteristics E and V over all possible tuples xi ∈ xi.

6 Case of Expert Uncertainty

An expert usually describes his/her uncertainty by using words from the natural lan-
guage, like “most probably, the value of the quantity is between 6 and 7, but it is
somewhat possible to have values between 5 and 8”. To formalize this knowledge, it
is natural to use fuzzy set theory, a formalism specifically designed for describing this
type of informal (“fuzzy”) knowledge [9, 12].

As a result, for every value xi, we have a fuzzy set µi(xi) which describes the
expert’s prior knowledge about xi: the number µi(xi) describes the expert’s degree of
certainty that xi is a possible value of the i-th quantity.

An alternative user-friendly way to represent a fuzzy set is by using its α-cuts
{xi |µi(xi) > α} (or {xi |µi(xi) ≥ α}). For example, the α-cut corresponding to
α = 0 is the set of all the values which are possible at all, the α-cut corresponding
to α = 0.1 is the set of all the values which are possible with degree of certainty at
least 0.1, etc. In these terms, a fuzzy set can be viewed as a nested family of intervals
[xi(α), xi(α)] corresponding to different level α.



Reliable Computing 15, 2011 63

7 Estimating Statistics under Fuzzy Uncertainty:

Precise Formulation of the Problem

In general, we have fuzzy knowledge µi(xi) about each value xi; we want to find
the fuzzy set corresponding to a given characteristic y = C(x1, . . . , xn). Intuitively,
the value y is a reasonable value of the characteristic if y = f(x1, . . . , xn) for some
reasonable values xi, i.e., if for some values x1, . . . , xn, x1 is reasonable, and x2 is
reasonable, . . . , and y = f(x1 . . . , xn). If we interpret “and” as min and “for some”
(“or”) as max, then we conclude that the corresponding degree of certainty µ(y) in y
is equal to

µ(y) = max{min(µ1(x1), . . . , µn(xn))|C(x1, . . . , xn) = y}.

8 Reduction to the case of interval uncertainty

It is known that the above formula (called extension principle) can be reformulated
as follows: for each α, the α-cut y(α) of y is equal to the range of possible values
of C(x1, . . . , xn) when xi ∈ xi(α) for all i. Thus, from the computational viewpoint,
the problem of computing the statistical characteristic under fuzzy uncertainty can be
reduced to the problem of computing this characteristic under interval uncertainty;
see, e.g., [5]

In view of this reduction, in the following text, we will consider the case of interval
uncertainty.

9 Estimating Statistics under Interval Uncer-

tainty: A Problem

In the case of interval uncertainty, instead of the true values x1, . . . , xn, we only know
the intervals x1 = [x1, x1], . . . , xn = [xn, xn] that contain the (unknown) true values
of the measured quantities. For different values xi ∈ xi, we get, in general, different
values of the corresponding statistical characteristic C(x1, . . . , xn). Since all values
xi ∈ xi are possible, we conclude that all the values C(x1, . . . , xn) corresponding to
xi ∈ xi are possible estimates for the corresponding statistical characteristic. There-
fore, for the interval data x1, . . . , xn, a reasonable estimate for the corresponding
statistical characteristic is the range

C(x1, . . . , xn)
def
= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

We must therefore modify the existing statistical algorithms so that they compute, or
bound these ranges.

10 Estimating Mean under Interval Uncertainty

The arithmetic average E is a monotonically increasing function of each of its n vari-
ables x1, . . . , xn, so its smallest possible value E is attained when each value xi is the
smallest possible (xi = xi) and its largest possible value is attained when xi = xi for
all i. In other words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In

other words, E =
1

n
· (x1 + . . . + xn) and E =

1

n
· (x1 + . . . + xn).
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11 Estimating Variance under Interval Uncer-

tainty

It is known that the problem of computing the exact range V = [V , V ] for the variance
V over interval data xi ∈ [x̃i − ∆i, x̃i + ∆i] is, in general, NP-hard; see, e.g., [10, 11].
Specifically, there is a O(n · log(n)) time algorithm for computing V , but computing
V is, in general, NP-hard.

In many practical situations, there are efficient algorithms for computing V : e.g.,
an O(n · log(n)) time algorithm exists when no two narrowed intervals [x−

i , x+
i ] (where

x−
i

def
= x̃i −

∆i

n
and x+

i

def
= x̃i +

∆i

n
) are proper subsets of one another, i.e., when

[x−
i , x+

i ] 6⊆ (x−
j , x+

j ) for all i and j [4].

12 Comment about the Possibility of Linear-

Time Algorithms

As we will see, in the O(n · log(n)) algorithm, the main computation time is used
on sorting. It is possible to avoid sorting when estimating variance under interval
uncertainty (see, e.g., [6, 15]), and use instead the known fact that we can compute
the median of a set of n elements in linear time (see, e.g., [3]). (This use of median is
similar to the one from [2, 7].)

It is worth mentioning, however, that while asymptotically, the linear time algo-
rithm for computing the median is faster than sorting, this median computing algo-
rithm is still rather complex – so, for reasonable size n, sorting is faster than computing
the median – and thus, sorting-based algorithms are actually faster than median-based
ones.

13 Need for Parallelization

Traditional algorithms for computing the population variance V based on the exact
values x1, . . . , xn require linear time O(n). Algorithms for estimating variance under
interval uncertainty require a larger amount of computation time – e.g., time
O(n · log(n)). How can we speed up these computations?

If we have several processors, then it is desirable to perform these algorithms in
parallel on several processors, and thus, speed up computations. In this paper, we
show how the algorithms for estimating variance under interval and fuzzy uncertainty
can be parallelized.

In order to describe how to parallelize these algorithms, let us describe the ex-
isting sequential (non-parallel) algorithms for estimating the variance under interval
uncertainty.

14 Algorithm for Computing V in the No-Proper-

Subset Case

The algorithm from [4] is as follows:
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• First, we sort the values x̃i into an increasing sequence. Without losing gener-
ality, we can assume that

x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we compute the value V (k) = M (k) − (E(k))2 of
the population variance V for the vector x(k) = (x1, . . . , xk, xk+1, . . . , xn). (For
k = 0, x(0) = (x1, . . . , xn).)

• Finally, we compute V as the largest of n + 1 values V (0), . . . , V (n).

To compute the values V (k), first, we explicitly compute

M (0) =
1

n
·

n∑

i=1

(xi)
2, E(0) =

1

n
·

n∑

i=1

xi, and V (0) = M (0) − (E(0))2.

Once we know the values M (k) and E(k), we can compute

M (k+1) = M (k) +
1

n
· (xk+1)

2 −
1

n
· (xk+1)

2

and

E(k+1) = E(k) +
1

n
· xk+1 −

1

n
· xk+1.

15 Possibility of Parallelization

For large n, we may want to further speed up computations if we have several proces-
sors working in parallel.

In the general case, all the stages of the above algorithm can be parallelized by
known techniques. In particular, Stage 3 is a particular case of a general prefix-sum

problem, in which we must compute the values

an, an ∗ an−1, an ∗ an−1 ∗ an−2, . . . ,

for some associative operation ∗ (in our case, ∗ = max).

16 Case of potentially unlimited number of pro-

cessors

If we have a potentially unlimited number of processors, then we can do the following
(see, e.g., [8], for the information on how to parallelize the corresponding stages):

• on Stage 1, we can sort the values x̃i in time O(log(n));

• on Stage 2, we can compute the values V (i) (i.e., solve the prefix-sum problem)
in time O(log(n));

• on Stage 3, we can compute the maximum of V (i) in time O(log(n)).

As a result, we can check monotonicity in time

O(log(n)) + O(log(n)) + O(log(n)) = O(log(n)).
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17 Example

To give the readers a better understanding on how these stages can be parallelized, let
us describe, in detail, parallelization of Stage 3. In other words, let us describe how
to compute the maximum of n + 1 given values V (0), . . . , V (n) in parallel.

As we have mentioned, the parallelized algorithm consists of O(log(n)) steps. At
the first step, we divide n + 1 values into pairs (V (0), V (1)), (V (2), V (3)), . . . Since
we have assumed that we have a potentially unlimited number of processors, we can
allocate an individual processor to each pair – to the total of ⌈(n + 1)/2⌉ processors.
At the first step, each processor compares the corresponding two numbers and thus
computes the maximum of this pair:

• the first processor computes the value m(0, 1)
def
= max(V (0), V (1));

• at the same time, the second processor computes the value

m(2, 3)
def
= max(V (2), V (3));

• etc.

At the end of the first step, we thus have ⌈(n + 1)/2⌉ ≈ n/2 values m(0, 1), m(2, 3),
m(4, 5), m(6, 7), etc.

At the second step, we divide these ⌈(n + 1)/2⌉ ≈ n/2 values into pairs, and
compute the maximum of each pair:

• the first processor computes the value m(0, 3)
def
= max(m(0, 1), m(2, 3)); by def-

inition of m(0, 1) and m(2, 3), this value is equal to max(V (0), V (1), V (2), V (3));

• at the same time, the second processor computes the value

m(4, 7)
def
= max(m(4, 5), m(6, 7));

by definition of m(4, 5) and m(6, 7), this value is equal to

max(V (4), V (5), V (6), V (7));

• etc.

At the end of the second step, we thus have ≈ n/4 values m(0, 3), m(4, 7), etc.,
describing the maxima of four elements.

At the third step, we repeat this procedure again, and get the values m(0, 7),
m(8, 15), etc., describing the maxima of 8 = 23 elements.

At the k-th step, we get the values

m(0, 2k − 1), m(2k, 2k + (2k − 1)), . . . ,

describing the maxima of 2k elements.

As soon as we get 2k = n, i.e., as soon as k ≈ log2(n), we get the desired maximum
of all n elements. Thus, we can indeed compute the desired maximum in O(log(n))
steps.
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18 Case of a Fixed Number of Processors

If we have p < n processors, then we can:

• on Stage 1, sort n values in time O

(
n · log(n)

p
+ log(n)

)
; see, e.g., [8];

• on Stage 2, compute the values V (i) in time O

(
n

p
+ log(p)

)
; see, e.g., [1];

• on Stage 3, compute the maximum of V (i) in time O

(
n

p
+ log(p)

)
.

Overall, we thus need time

O

(
n · log(n)

p
+ log(n)

)
+ O

(
n

p
+ log(p)

)
+ O

(
n

p
+ log(p)

)
=

O

(
n · log(n)

p
+ log(n) + log(p)

)
.

19 Example

To illustration how this parallelization works, let us again use Stage 3. Specifically, let
us show how we can use p processors to compute the maximum of given n + 1 values

V (0), . . . , V (n) in parallel in time O

(
n

p
+ log(p)

)
.

Indeed, let us divide n + 1 values into p subgroups with
n + 1

p
elements in each

subgroup. To each of these subgroups, we assign one of the p processors. Each

processor computes the maximum of all its
n + 1

p
values in time

n + 1

p
= O

(
n

p

)
, and

these processor work in parallel. After that, we have p values – the maximum of the
first subgroup, the maximum of the second subgroup, etc.

To find the maximum of all n + 1 elements, it is now sufficient to find the largest
of these p subgroup maxima. We already know that if we have p processors, then we
can compute the maximum of p values in parallel in time O(log(p)).

Thus, we have a two-step process for computing the maximum. The first step

requires time O

(
n

p

)
, the second step requires time O(log(p)). Thus, the total com-

putation time of this two-step process is indeed equal to O

(
n

p
+ log(p)

)
.
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[8] J. Jájá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA,
1992.

[9] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applications. Prentice
Hall, Upper Saddle River, New Jersey, 1995.
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