
Staggered Correction Computations with

Enhanced Accuracy and Extremely Wide

Exponent Range∗

Frithjof Blomquist
Scientific Computing/Software Engineering, Univer-
sity of Wuppertal, Gaußstraße 20, D-42097 Wuppertal,
Germany

blomquist@math.uni-wuppertal.de

Abstract

In C-XSC a staggered interval arithmetic with precision p is defined
as an array of p + 1 components of type double. The disadvantage of
this multiple precision arithmetic is the rather small exponent range and
particularly the dramatic loss of accuracy, if intermediate results of com-
putations lie near the underflow range. In order to avoid these difficulties
a new class lx interval is implemented with objects of the form 2r · x,
r ∈ Z of type double and x of type l interval, the original staggered
interval data type. Now the intervals x can be scaled in such a way that
the basic arithmetic operations can be performed in a remarkable higher
accuracy. Numerical examples demonstrate the ability of the new arith-
metic.

Keywords: interval computations, high-precision data, staggered interval arith-
metic

AMS subject classifications: 65G30, 65G50, 65Y04

1 Introduction

Beside the multiple precision interval packages in [9, 10, 11, 12] based on integer
arithmetics, the so called staggered precision arithmetic, implemented in C-XSC, is a
special kind of a multiple precision arithmetic based on the underlying floating-point
data format (IEEE double format) [1, 2, 3]. In C-XSC a staggered interval x with
precision p is defined as an array of p + 1 components xi of type double:

x :=

p−1∑

i=1

xi + [xp, xp+1] = [Inf(x), Sup(x)] = [x, x],

∗Submitted: January 17, 2009; Revised: January 17, 2010; Accepted: February 1, 2010.

26

Reliable Computing 15, 2011 27

Inf(x) :=

p−1∑

i=1

xi + xp, Sup(x) :=

p−1∑

i=1

xi + xp+1.

The basic arithmetic operations are provided by the data type dotprecision (so called
long accumulator, C-XSC) and so, e.g. the machine product x 3· y ⊃ x · y, results in
an optimal enclosure of the exact interval x ·y, because x ·y is rounded to the nearest
machine numbers Inf(x 3· y) and Sup(x 3· y). The multiplication of two point intervals
x, y, each of the order 10153, delivers a product of the order x 3· y ∼ 10306 with a
maximum accuracy of about 2 ·153+324 = 630 decimal digits, where 2−1074 ∼ 10−324

is the smallest IEEE number. However, if one or both of the intervals x, y are non-
point intervals then the accuracy of the product can’t exceed the accuracy of the
operand with the greatest relative diameter. Thus, applications of a staggered interval
arithmetic are senseful only, if sufficiently small interval operands are used.

However, even with point intervals x, y, defined by an arbitrary precision p, the
accuracy of x 3· y will drastically be reduced, if the machine product x 3· y lies near
the underflow range. For example, the product of two point intervals x, y, each of
the order 10−153, is of the order 10−306 and can be calculated with an accuracy of
at most 324 − 306 = 18 correct decimal digits and of course this result is absolutely
unacceptable if for example 200 correct decimal digits are required. The described loss
of accuracy can be avoided by scaling x, y appropriately, for instance

x̃ = 2+1018 · x ∼ 10153, ỹ = 2+1018 · y ∼ 10153.

Then an enclosure of the exact interval x̃ · ỹ can be computed in high accuracy, and
without any overflow we get

x · y ⊂ 2−2036 · (x̃ 3· ỹ).

With this result the desired enclosure of x ·y in high accuracy can be described by the
additional exponent −2036 and by the interval (x̃ 3· ỹ) ∼ 10+306 [14]. In order to get
enclosures for the elementary functions with the same maximum accuracy the three
other elementary operations are analogously to be reworked.

2 Extended Staggered Interval Arithmetic

In order to avoid intermediate products like x 3· y ∼ 10−306 near the underflow range
the operands x, y are scaled by 2rx , 2ry respectively in such a way that the scaled
values x̃ := 2rx 3· x and ỹ := 2ry 3· y are both of order 10+153. The exponents rx, ry

are chosen as integer values of type double. So the product x̃ · ỹ is of order 10+306

and can be included by x̃ 3· ỹ with a maximum accuracy of 630 digits, if both of the
operands are point intervals and in addition no overflow is generated. For the desired
product x · y it holds

x · y = (x̃ · ỹ) · 2−rx−ry ⊆ (x̃ 3· ỹ) · 2−rx−ry = (x̃ 3· ỹ) · 2r,

and now x · y can be included in maximum accuracy by the machine product x̃ 3· ỹ

together with the factor 2r, where r is an integer value of type double.
With this preliminary considerations the extended staggered interval arithmetic is

defined with an additional factor 2r, r ∈ Z :

(r,x) := 2r · x = 2r ·
(

p−1∑

i=1

xi + [xp, xp+1]

)
.

28 F. Blomquist, Staggered Correction Computations with Enhanced Accuracy

With the exponent r of type double an extremely wide range of the exponents r is
realized: −9007199254740991 ≤ r ≤ +9007199254740991 = 253 − 1.
The greatest absolute value of an interval x is about

|x| = 2+9007199254740991 · 10+308 ∼ 102711437152599603 .

Thus, in practice, almost all overflow or underflow problems are eliminated.

3 Maximum Accuracy of the Basic Operations

Due to the ambiguity of the notation (r,x) ⊆ (r − s, 2s
3· x) the exponent s ∈ Z

of the scaling factor 2s can be chosen in such a way that, e.g. for a multiplication
(rx, x) · (ry, y) ⊆ (rx − sx, 2sx 3· x) · (ry − sy , 2sy 3· y), for both of the operands the
relations 2sx · |x| ∼ 2sy · |y| ∼ 10+153 are valid. In this case we have

(rx, x) · (ry, y) ⊆ (rx − sx + ry − sy , (2sx
3· x)3· (2sy

3· y))

and because of |(2sx 3· x) 3· (2sy 3· y)| ∼ 10+306 an overflow is avoided, and if the
accuracy of the operands is given by about 153 + 324 = 477 decimal digits then the
product will have nearly the same accuracy.

Concerning the division operation

(rx, x)/(ry, y) ⊆ (rx − sx − ry + sy, (2sx
3· x) 3/ (2sy

3· y))

the exponents sx, sy are chosen in such a way that for the numerator and denominator
the following relations 2sx · |x| ∼ 10306, 2sy · |y| ∼ 10153 are valid. Then the interval
quotient (2sx 3· x) 3/ (2sy 3· y) is of the order 10153 and again a maximum accuracy of
about 153 + 324 = 477 can be achieved, if both of the operands have an accuracy of
the same order.

Concerning the addition operation

(rx, x) + (ry, y) ⊆ (rx − sx, (2sx
3· x)) 3+ (ry − sy, (2sy

3· y))

it is first assumed (rx, x) to be the operand with the greatest absolute value and sx is
chosen in such a way that |2sx 3· x| ∼ 10+306 is valid. In order to enable the addition
the exponent sy must be chosen to realize rx − sx = ry − sy and then it holds

(rx, x) + (ry, y) ⊆ (rx − sx, (2sx
3· x) 3+ (2sy

3· y)),

and now the staggered machine addition (2sx 3· x)3+ (2sy 3· y) can be performed with
maximum accuracy.

With the above new staggered interval operators {3+ , 3· , 3/ } the basic arithmetic
operation results can be computed with a maximum accuracy of about 470 decimal
digits and the user must not reflect about any appropriate scaling operations. Fur-
thermore, due to the new wide exponent range, in practice all overflow and underflow
problems are vanished.

Compared to the classical staggered interval arithmetic the enlargement of the run
time by the new staggered interval arithmetic of about 25 percent seems to be abso-
lutely acceptable.

Reliable Computing 15, 2011 29

3.1 Complex Division

Now the complex division is considered, which is a suitable example to test the ability
of the new staggered interval arithmetic with the four basic arithmetic operators. With
the complex numbers z = a + i · b, w = c + i · d, i =

√
−1 the imaginary part of the

complex-valued quotient z/w is given by

ℑ(z/w) =
b · c − a · d

c2 + d2
∈ R.

With the real values a = b = 10300, c = 10155, d = 10155 −1, which by a given precision
of 480 decimal digits can all be enclosed by point intervals, a simple C-XSC program
delivers an inclusion of ℑ(z/w) with 476 correct decimal digits:

ℑ(z/w) ∈ [5.00 . . . 002499 . . . 99︸ ︷︷ ︸
476 decimal digits

86 . . . , 5.00 . . . 002400 . . . 0095 . . .] · 10−11.

It should be noticed that by use of the classical staggered interval arithmetic, i.e.
without the factor 2r, the products b · c and a · d will generate an overflow. Of
course this overflow can be avoided dividing a, b, c, d by 10+155. However, the new
difference d/10155 = 1 − 10−155 can then be enclosed with only 155 decimal digits,
because 10−155 cannot be included by a point interval, and finally ℑ(z/w) can only be
enclosed with 168 correct decimal digits. Thus, the new staggered interval arithmetic
delivers automatically a nearly triple fold accuracy without an intermediate overflow
and without any additional scaling problems.

4 Elementary Functions

Beside the discussed basic arithmetic operations {3+ , 3− , 3· , 3/ }, all necessary pro-
gramming tools together with a set of 42 real standard functions f(x) are implemented
by a new class lx_interval in C-XSC, a C++ class library for extended scientific
computing. For sufficiently tight intervals x, with |x| ≫ 1 or |x| ≪ 1, optimal in-
clusions of rather sophisticated expressions are computable with high accuracy, even
in cases where Computer Algebra Systems like Mathematica or Maple generate pre-
mature overflows or underflows. Furthermore, also wide intervals are permitted and
deliver guaranteed inclusions with at least 16 correct decimal digits. The new class
lx_interval can additionally be included by a C-XSC program already using ordi-
nary staggered intervals (C-XSC data type l_interval). Thus, critical code segments
can use the new modified staggered intervals (new data type lx_interval). In ta-
ble ?? the 44 real standard functions f(x) are listed. Additionally in the new class
lx_real the same tools and elementary functions are implemented for point arguments
(r, x) := 2r · x, with x of the C-XSC data type l_real.

Along the same line of reasoning, extended complex staggered intervals z are defined
by

z = (rr, x) + i · (ri, y), rr, ri ∈ Z, i :=
√
−1.

The basic arithmetic operations together with a set of 41 elementary complex tran-
scendental functions are implemented in the new class lx_cinterval.

The same tools and elementary functions are also available for complex point argu-
ments z = (rr, x) + i · (ri, y) ∈ C, rr, ri ∈ Z, i :=

√
−1 implemented in the new

class lx_complex.

30 F. Blomquist, Staggered Correction Computations with Enhanced Accuracy

Elementary Functions of Type lx interval or lx real

Function Term C-XSC Name Informations

|x| abs(x) interval of the absolute values

x2 sqr(x) interval of the squares
√

x sqrt(x) Inf(x) ≥ 0
n
√

x sqrt(x,n) 2 ≤ n ≤ +2147483647√
1 + x − 1 sqrtp1m1(x) Inf(x) ≥ −1√
1 − x2 sqrt1mx2(x) Sup(|x|) ≤ 1√
1 + x2 sqrt1px2(x) any intervall x√
x2 − 1 sqrtx2m1(x) Inf(|x|) ≥ 1√
x2 + y2 sqrtx2y2(x, y) x, y almost arbitrary

xn power(x,n) x almost arbitrary, n ∈ Z

xy pow(x, y) x, y almost arbitrary

(1 + x)y xp1 pow y(x, y) x, y almost arbitrary

ex exp(x) Sup(|x|) ≤ 6.24331476 · 1015

2x exp2(x) Sup(|x|) ≤ 6.24331476 · 1015

10x exp10(x) Sup(|x|) ≤ 6.24331476 · 1015

ex − 1 expm1(x) Sup(|x|) ≤ 6.24331476 · 1015

ln(x) ln(x) Inf(x) > 0

log2(x) log2(x) Inf(x) > 0

log10(x) log10(x) Inf(x) > 0

ln(1 + x) lnp1(x) Inf(x) > −1

ln(
√

x2 + y2) ln sqrtx2y2(x, y) Inf(|x|) + Inf(|y|) > 0

Reliable Computing 15, 2011 31

Elementary Functions of Type lx interval or lx real

Function Term C-XSC Name Informations

sin(x) sin(x) Sup(|x|) < 10308

sin(nπ + x) sin n(x, n) Sup(|x|) < 10308, n ∈ Z

cos(x) cos(x) Sup(|x|) < 10308

cos((n + 1/2)π + x) cos n(x,n) Sup(|x|) < 10308, n ∈ Z

tan(x) tan(x) Sup(|x|) < 10308

cot(x) cot(x) Sup(|x|) < 10308

arcsin(x) asin(x) Sup(|x|) ≤ 1

arccos(x) acos(x) Sup(|x|) ≤ 1

arctan(x) atan(x) any interval x

arccot(x) acot(x) any interval x

sinh(x) sinh(x) Sup(|x|) ≤ 6.24331476 · 1015

cosh(x) cosh(x) Sup(|x|) ≤ 6.24331476 · 1015

tanh(x) tanh(x) any interval x

coth(x) coth(x) any interval x 6= 0

arsinh(x) asinh(x) any interval x

arcosh(x) acosh(x) Inf(x) ≥ 1

arcosh(1 + x) acoshp1(x) Inf(x) ≥ 0

artanh(x) atanh(x) −1 < Inf(x) ≤ Sup(x) < +1

artanh(1 − x) atanh1m(x) 0 < Inf(x) ≤ Sup(x) < 2

artanh(−1 + x) atanhm1p(x) 0 < Inf(x) ≤ Sup(x) < 2

arcoth(x) acoth(x) any interval x 6= 0

arcoth(+1 + x) acothp1(x) Inf(x) > 0

arcoth(−1 − x) acothm1m(x) Inf(x) > 0

Table 1: Elementary Functions of Type lx interval or lx real

In Table 1, the formulation ’any interval x’ has more or less the meaning

−2+9007199254740991 < Inf(x) ≤ Sup(x) < 2+9007199254740991 ∼ 102711437152599295 .

As a first application the values e = 2.718 . . . and π = 3.141 . . . can be included with
the C-XSC function calls exp(x) and 4 ∗ atan(x) respectively, where x is an extended
staggered point interval including the value 1. The accuracy of the two enclosures
is realized with 467 and 475 correct decimal digits respectively. The same function
calls with x of type l interval deliver an accuracy of the enclosures of only 307
and 323 correct decimal digits respectively. Thus, with the new type lx interval a
considerable enlargement of the accuracy is given more or less by factor 1.5.

Please notice that often used values like e, π, ln(π)
√

π,
√

2, . . . are enclosed in C-XSC
as constants of type lx interval with a maximum accuracy of about 624 correct
decimal digits. Thus, in practice the above function calls are fully unnecessary.

32 F. Blomquist, Staggered Correction Computations with Enhanced Accuracy

The next example demonstrates that by use of the extended staggered interval arith-
metic extremely great function values can be included. With a precision of 480 decimal
digits and with the argument x = 6.24331476·1015 the function value y = ex is included
by

y = e6243314760000000 ∈ 1.065543708933 . . .8812868979︸ ︷︷ ︸
451 decimal digits

91...
48... · 102711437149053125

with an accuracy of 451 decimal digits. With the Algebra Systems Mathematica or
Maple the calculation of an approximation of y = ex fails due to an internal overflow.
It should be noticed that already with x = 709, 78 the inclusion of y = ex generates an
overflow error message using the simple IEEE data type interval. However, the above
inclusion can be tested with Mathematica by calculating the following approximations
step-by-step

α := 6243314760000000/Log [10] − 2711437149053125 = 0.0275712 . . .

and 10α = 1.065543708933845154920 . . . 19001703021760881286897970592 . . .

5 Taylor Arithmetic

We now consider functions f which are the composition of arithmetic operations and
elementary functions in one variable. For functions of such a structure the Taylor co-
efficients or the derivatives of a given order p can recursively be calculated by applying
appropriate derivative rules [4, 5, 6].

As an example we consider

f(x) =

{
e−1/x2

, x 6= 0,

0, x = 0.

For all x ∈ R the function f is infinitely differentiable and it holds [13] that

lim
x→0

f (k)(x) = 0 = f (k)(0), k = 0, 1, 2, (1)

Due to f (k)(0) = 0 the Taylor series of f(x) with the point of expansion x0 = 0 is the
zero function and so the Taylor series does not equal f(x) for all x 6= 0. Consequently,
f is not analytic at the origin.

In C-XSC the class lx itaylor is implemented for calculating enclosures of deriva-
tives f (k)(x) up to order p, i.e. k = 0, 1, 2, . . . , p. With this tool f (k)(x1), x1 =
1.266 · 10−8, is enclosed by the following four intervals, k = 0, 1, 2, 3:

Reliable Computing 15, 2011 33

f (0)(x1) ∈ 4.713035205041 . . . 1394415677241︸ ︷︷ ︸
451 decimal digits

62...
54... · 10−2709673099980608 ,

f (1)(x1) ∈ 4.645468958788 . . . 1086791545442︸ ︷︷ ︸
451 decimal digits

99...
79... · 10−2709673099980584 ,

f (2)(x1) ∈ 4.578871344729 . . . 6036340742486︸ ︷︷ ︸
450 decimal digits

90...
89... · 10−2709673099980560 ,

f (3)(x1) ∈ 4.513228476517 . . . 6189655217124︸ ︷︷ ︸
451 decimal digits

86...
78... · 10−2709673099980536 .

The rather small values of f (k)(x1) attest but not prove the above limit relation.
Now if f is evaluated with a complex variable z = u + i · v ∈ C then, in case of

v 6= 0, the two equations in (1) are no longer valid. In order to confirm this fact the
derivatives fk(z) are included for z1 = 10−10 + 1.266 · 10−8 · i and k = 0, 1, 2. Again,
with a precision of 480 decimal digits, the enclosures can be calculated in high accuracy
by use of the class lx citaylor implemented in C-XSC. The following C-XSC program

#include <iostream>

#include "lx_cinterval.hpp"

#include "lx_citaylor.hpp"

using namespace cxsc;

using namespace std;

using namespace taylor;

int main()

{

stagprec = 30; // Provides a precision of about

// 30*16=480 decimal digits.

int p = 2; // Taylor expansion of order p

lx_cinterval z1; // Inclusion for point of expansion

lx_interval a,b;

a = lx_interval(-318,"[1.0e308,1.0e308]");

// a: Inclusion of the real part 10^(-10);

b = lx_interval(-316,"[1.266e308,1.266e308]");

// b: Inclusion of the imaginary part 1.266*10^(-8);

z1 = lx_cinterval(a,b);

// z1 includes 10^(-10) + 1.266*10^(-8) * i;

lx_citaylor z(p,z1); // Constructor call for argument z

lx_citaylor f;

f = exp(-1/sqr(z)); // function call

34 F. Blomquist, Staggered Correction Computations with Enhanced Accuracy

cout << SetDotPrecision(16*stagprec,16*stagprec)

<< Scientific;

// Output of derivatives:

for (int k=0; k<=p; k++)

cout << "derivative " << get_j_derivative(f,k) << endl;

}

delivers the inclusions:

f (0)(z1) ∈ +3.60063256687 . . . 109774110254︸ ︷︷ ︸
451 decimal digits

74...
55... · 10+2709165962646103 + i ·

−1.68511626706 . . . 002820954547︸ ︷︷ ︸
451 decimal digits

45...
53... · 10+2709165962646104 ,

f (1)(z1) ∈ +1.65192845042 . . . 017601046042︸ ︷︷ ︸
451 decimal digits

60...
52... · 10+2709165962646128 + i ·

+3.94119556748 . . . 009130997319︸ ︷︷ ︸
452 decimal digits

74...
57... · 10+2709165962646127 ,

f (2)(z1) ∈ −4.26900054509 . . . 350293370921︸ ︷︷ ︸
450 decimal digits

29...
31... · 10+2709165962646151 + i ·

+1.61843337313 . . . 899158851447︸ ︷︷ ︸
452 decimal digits

89...
05... · 10+2709165962646152 .

As was expected, near the origin, where f(z) is not analytic, the modulus of a derivative
fk(z), z 6= 0, can dramatically increase.

6 Concluding remarks

Another useful application of the new extended interval staggered arithmetic is the
inclusion of all zeros of a given differentiable real function f using the interval Newton
method [7, 8]. In C-XSC this task can be performed with the program lx_nlfz_ex.cpp

available under
/www.math.uni-wuppertal.de/org/WRST/index_de.html

References

[1] F. Blomquist, W. Hofschuster, and W. Krämer, Real and Complex Staggered (In-
terval) Arithmetics with Wide Exponent Range, Preprint BUW-WRSWT 2008/1,
Scientific Computing/Software Engineering, University of Wuppertal, 2008.

[2] W. Krämer, Mehrfachgenaue reelle und intervallmäßige Staggered-Correction
Arithmetik mit zugehörigen Standardfunktionen, Technical Report of the Insti-
tute of Applied Mathematics, University of Karlsruhe, 1988.

Reliable Computing 15, 2011 35

[3] R. Lohner, “Interval arithmetic in staggered correction format”, In: E. Adams
and U. Kulisch (Eds.), Scientific Computing with Automatic Result Verification,
Academic Press, San Diego, California, pp. 301–321, 1993.

[4] H.-C. Fischer, Schnelle automatische Differentiation, Einschließungsmethoden
und Anwendungen, Dissertation, Universität Karlsrhe, 1990.

[5] A. Griewank, “On Automatic Differentiation”, In: M. Iri and K. Tanabe (Eds.),
Mathematical Programming: Recent Developments and Applications, Kluwer Aca-
demic Publishers, pp. 83–108,1989.

[6] A. Griewank and G. Corliss, Eds., Automatic Differentiation of Algorithms: The-
ory, Implementation, and Applications, Proceedings of Workshop on Automatic
Differentiation at Breckenridge, SIAM, Philadelphia, 1991.

[7] H. Ratscheck and J. Rokne, New Computer Methods for Global Optimization.
Ellis Horwood Limited, Chichester, 1988.

[8] E. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, New
York, 1992.

[9] N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval arith-
metic and the MPFI library”, Reliable Computing, vol. 11, no. 4, pp. 275–290,
2005.

[10] M. Grimmer, K. Petras, and N. Revol, Multiple Precision Interval Packages:
Comparing Different Approaches, École Normale Supérieure, Lyon, 2003.

[11] M. Grimmer, K. Petras, and N. Revol, “Multiple Precision Interval Packages.
In Numerical Software with Result Verification”, In: Springer Lecture Notes in
Computer Science, vol. 2991, pp. 64–90, 2004.

[12] W. Krämer, “Introduction to the Maple Power Tool intpakX”, Serdica Journal
of Computing, Bulgarian Academy of Sciences, vol. 1, no. 4, pp. 467–504, 2007.

[13] W. Walter, Analysis 1, Reihe: Springer-Lehrbuch, 5. Auflage, 267 pp.

[14] U. Kulisch, Computer Arithmetic and Validity, Studies in Mathematics 33, de
Gruyter, 2008.

