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Abstract

The theory of compressed sensing has shown that sparse signals can
be reconstructed exactly from remarkably few measurements by solving
a nonconvex underdetermined ℓp-regularized quasi-norm problem via an
iterative weighted least-squares problem. In this work, we consider the
problem of recovering an input signal by solving a nonconvex overdeter-
mined ℓp-regularized quasi-norm problem. In order to do this, we carry
over a fixed-point algorithm, presented in [17], [10] and [1] from a non-
convex underdetermined to a nonconvex overdetermined ℓp quasi-norm
problem. Then, we reformulate this procedure by a sequential quadratic
program, and use two alternative algorithms for solving its associated lin-
ear systems so called augmented system: a direct method and a projected
conjugate gradient. The sequential quadratic program takes into account
the signals and its associated error. While the direct method scheme
works with a sequence of approximations of the signals and its errors si-
multaneously, the projected conjugate gradient algorithm finds first an
approximation error, and later, using this error, an approximate signal is
obtained using just a least-squares problem. The numerical advantage of
using a direct method for solving the augmented system is that it allows
a sparser and cheaper factorization than the Cholesky factorization for
solving the weighted normal equation for dense matrices. Besides, the
projected conjugate gradient needs only one matrix factorization in all
the optimization procedures which is appealing to solve large-scale prob-
lems. We implemented these strategies and compare their capabilities to
recover signals. Specifically, our interest is to identify at what rate of
corruption each formulation fails to recover the signal exactly for different
values 0 ≤ p < 1, and compare with the convex problem when p = 1.
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1 Introduction

State of the art research in compressed sensing is aimed at providing efficient al-
gorithms capable to recover an input vector x∗ from some corrupted measurements
b = Ax∗ + e, where A ∈ R

m×n, b ∈ R
m are known data and e ∈ R

m is unknown.
In compressed sensing problems the recovering vector x∗ is sparse, which means that
the number of components different from zero is much smaller than n. In case that
m < n the problem is formulated by an underdetermined sparsity norm problem of
the form

min
x

‖x‖0 subject to Ax = b, (1)

where ‖x∗‖0 := #{i : x∗
i 6= 0}, that is, the number of nonzero elements in x∗.

There are several state of the art algorithms for solving this problem efficiently
see [1], [14], [13] and [15]. The purpose of this work is to carry over a fixed-point
algorithm presented in [17], [10], and [1], from a nonconvex underdetermined to a
nonconvex overdetermined lp quasi-norm problem.

Toward this end, we consider the problem of recovering an input signal x∗ ∈ R
n

from corrupted measurements b = Ax∗ + e, where b ∈ R
m, A ∈ R

m×n is a full
rank matrix, m > n, and e ∈ R

n is an unknown error. We consider the nonconvex
unconstrained problem

min
x

‖Ax − b‖p
p 0 ≤ p < 1, (2)

for recovering successfully the input signal x∗. Then, we compare the numerical re-
sults with the convex problem when p = 1. To obtain an optimal solution, which is
not necessarily a global solution, we apply a fixed-point procedure to the following
unconstrained minimization problem:

min
x

n
∑

i=1

(|b − Ax|i)
p−2((Ax − b)i)

2
, (3)

where the first term of the sum is considered as a constant term. This procedure gen-
erates a sequence {xk} of approximate signals that, under some suitable assumptions,
converges to the true input signal x∗ without taking into account its error explicitly.
A similar procedure is due for noncovex underdetermined ℓρ quasi-norm problems in
[10] and [17] and they reported that by replacing p = 1 by 0 < p < 1, an exact recon-
struction is possible with substantially fewer measurements than previously observed.
Moreover, further decreasing the value of p yields improvement of the reconstructed
signals for a relatively high rate of corruption as compared with p = 1.

Then, we present a new procedure for obtaining an optimal solution to the noncon-
vex problem (1). The approach consists in solving a sequence of convex optimization
problems that reconstruct the error e, and recovering the input signal x∗. To do this,
we reformulate the iterative weighted least-squares method by a sequential quadratic
program. This new procedure takes into account an extra variable associated with the
problem, which can be considered as a weighted residual rw, and it has the property
that is contained in the null space of AT . We propose to solve each quadratic problem
using the augmented system as a central framework, and its linear systems using two
schemes: a direct method, and a projected conjugate gradient algorithm introduced
by Argáez in [2]. The first scheme generates a sequence {rwk

, xk} such that the second
component converges to the signal x∗ under some suitable assumptions. The second
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is an iterative method that generates, first, an approximation error ek, and later uses
this approximation and the corrupt measurements b to obtain an approximation xk to
the signal x∗ via a least-squares problem. This procedure uses only one matrix factor-
ization in the entire optimization procedure, and has the capability to work efficiently
with sparse and dense matrices A.

These two schemes should reduce the computational cost to reconstruct a signal
when the measurement matrix A has some dense columns or very large scale. Our
interest in this work is to show, from a numerical point of view, that these strategies
allow the efficient recovery of signals. We let the implementation of the challenge of
recovering signals by using the state of the art technology in numerical linear algebra
as a future work. We present a numerical experimentation to show the effectiveness
of the new procedures to recover signals for high rate of corruption.

2 Problem Formulation

An optimal solution x∗ of Problem (1), which is not necessarily a global solution,
satisfies the following nonlinear equation:

A
T
diag(|r∗|p−2)Ax

∗ = A
T
diag(|r∗|p−2)b, r

∗ = Ax
∗ − b. (4)

This equation is solved by applying an iterative weighted least-squares problem given
by

A
T
diag(|rk|

p−2)Axk+1 = A
T
diag(|rk|

p−2)b, rk = Axk − b. (5)

Under some assumptions, the sequence {xk} converges, and converges to an optimal
solution

xk → x
∗ = argmin‖Ax − b‖p

p. (6)

Since p − 2 < 0, the weighted matrix diag(|rk|
p−2) is undefined whenever at least

one component of rk is zero. Therefore, to overcome this situation, the weighted
diagonal matrix is regularized by a positive parameter µk > 0. That is,

A
T
diag((|rk| + µk)p−2)Axk+1 = A

T
diag((|rk| + µk)p−2)b. (7)

In the theory of compressed sensing, we propose the following algorithm to recon-
structed signals exactly by solving (1) for values 0 ≤ p ≤ 1:
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Algorithm 1

Step 0. Initialization

a. Input data: A, b, x∗, and p ∈ [0, 1].
b. Set: µ, ǫ1, ǫµ, and ǫ2.
c. Set: kmax and k = 0.

Step 1. Solve: AT Ax = AT b.
Step 2. while k ≤ kmax do

Step 3. Define the residual vector r = Ax − b,

and the matrix D = diag(|r| + µ).
Step 4. Set: xprev = x. Solve for x

AT Dp−2Ax = AT Dp−2b.

Step 5. If
‖x−xprev‖

1+‖x‖ > ǫ1, k = k + 1 go to Step 2.

Step 6. If µ > ǫµ

updates: µ and ǫ1. Set k = 0; go to Step 2
else

display ‘x is an optimal solution’
end

Step 7. If ‖x − x∗‖∞ ≤ ǫ2
display ‘the signal is recovered’

else

display ‘fail to recover the signal’
end

This algorithm works as follows:
At Step 0, initialization, is given the decoding matrix A, the corrupt measurements

b, the true signal x∗, and the value of the quasi-norm problem p, for which we want
to recover the signal. In Step 1, the first approximation x to the true signal x∗ is
calculated by solving a normal equation, which gives the 2-norm approximation to the
true signal. Then, in Step 4 a new approximation to the signal is generated by solving
a weighted normal equation. The weight is a positive diagonal matrix that depends on
the quasi-norm p, the residual vector r, and a regularization parameter µ as defined
in Step 3. Now, for a fixed parameter µ, in Step 5 we determine if a solution x of
the weighted normal equation is a good approximation to (6). Then, if the parameter
µ is less than a prescribed value ǫµ, we claim that the algorithm found an optimal
solution in Step 6. Finally, the algorithm recovers the true signal if the ∞-norm of
the difference between the optimal solution and the true signal is less than a value ǫ2
in Step 7. In our implementation, we use a sparse Cholesky factorization to obtain a
lower triangular matrix L to the positive definite matrix AT Dp−2A, and this matrix
is substituted by LT L.

In the next section, we present a quadratic problem for solving the weighted normal
equation, and therefore a sequential quadratic program is used to obtain an optimal
solution of (1).

3 A Quadratic Problem

We present a quadratic problem as an equivalent approach to solve the weighted normal
equation that appears in Step 4 in Algorithm 1. For practical purposes, the subindices
are omitted resulting in

A
T
D

p−2
Ax = A

T
D

p−2
b, (8)
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where D = diag(|r| + µ) with r = Ax− − b , and x− is the previous value of x.
The quadratic problem associated to (7) is given by:

minimize 1

2
rT

wD2−prw − bT rw

subject to AT rw = 0,
(9)

where rw ∈ R
m is considered the weighted residual of the equation (7).

The Lagrange function associated to (8) is

L(rw, x) = 1

2
rT

wD2−prw − bT rw + rT
wAx, (10)

where x ∈ R
n is the Lagrange multiplier associated to the equality constraint. Since A

has full rank and D is a positive definite matrix, then (9) has a unique global solution
which can be determined by solving the following augmented system:

(

D2−p A

AT 0

) (

rw

x

)

=

(

b

0

)

. (11)

It is straightforward to show that the Lagrange multiplier x associated to (8) is
the solution of the weighted normal equation (7). The advantages of this formulation
with respect to (7) is that we can handle simultaneously the corrupt error given by
e = D2−prw and the signal x since Ax + e = b, and the augmented system is reason-
ably well-conditioned since the exponent of the diagonal matrix D is positive. Another
advantage of using (10) is that for dense matrices A, the LDLT sparse Cholesky factor-
ization of the symmetric and indefinite augmented system could lead to a sparser and
cheaper factorization than the sparse Cholesky factorization for the positive definite
matrix associated to the weighted normal equation (7).

Therefore, we have a sequential quadratic program for solving nonconvex overde-
termined ℓρ-regularized quasi-norm problems using the augmented system as a central
framework.

We use a direct method to obtain the solution (rw, x) of (10). Then x is used in
Algorithm 1, at Step 4, as a signal approximation, instead of the value obtained using
the sparse Cholesky factorization for solving the weighted normal equation. In the next
section, we present a projected conjugate gradient algorithm to obtain optimal inexact
directions associated to the augmented system (10) that have the potential to reduce
the computational time to recover input signals for large measurement matrices A.

4 A Projected Conjugate Gradient

We propose to solve (10) using the projected conjugate gradient algorithm presented
by Argáez in [2]. The idea consists in reducing the problem into the null space of AT .
Solving the first block of equations of (10) for x, and substituting the result in the
same block of equations, we obtain the following projected equation:

PD
2−p

rw = Pb,

where P = I − A(AT A)−1AT is an orthogonal projector on the null space of AT .
This equation is consistent since both sides of it are preceded by the projector

operator P , and has infinitely many solutions since P is a singular matrix. Moreover,
the minimum 2-norm solution is unique and it is in the null space of AT see ([2]).
Therefore, the unique solution rw is the solution of (10) and the solution x is obtained
by solving a least-squares problem.
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We propose to use the conjugate gradient algorithm for solving PD2−prw = Pb

with an initial approximation rw = 0 to obtain the unique solution in the null space
of AT . The algorithm generates a sequence {(rwj

, xj)}, with rwj
contained in the null

space of AT , that converges to the solution (rwj
, xj) of (10) see ([2]). Now, our interest

is to verify if the conjugate gradient algorithm, applied to the projected equation,
allows the recovery of signals with a high rate of corruption. To study this procedure,
we use Algorithm 1 as a central framework. The idea consists of substituting direction
x, at Step 4, by an optimal direction x, given by conjugate gradient algorithm applied
to the projected equation. The procedure works as follows:

Given a regularized positive value µ and a weighted matrix D2−p, the algorithm
first calculates an approximation error ej = D2−prwj

, where rwj
is obtained by

applying the conjugate gradient algorithm to solve PD2−prw = Pb. Then, solv-

ing a least-squares problem min
x

1

2
‖Ax − (b − e)‖2

2 the algorithm obtains an approxi-

mate signal xj . The conjugate gradient is repeated until the 2-norm of the residual
rj = b− (Axj + ej) is less than a stopping value, which means that an optimal inexact
direction is obtained. The rest of the steps are the same as in algorithm 1. In order
to carry out this implementation, it is necessary to determine a stopping value for the
conjugate gradient algorithm and a maximum number of iterations for obtaining an
optimal direction. To recover signals, we present the following algorithm that uses
inexact directions instead of exact directions via a conjugate gradient algorithm:
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Algorithm 2. Projected Conjugate Gradient Algorithm.
Step 0. Initiliazation

a. Input data: A, b, x∗, and p ∈ [0, 1].
b. Set: µ, ǫ1, ǫµ, ǫ2, and ǫ3.
c. Set: kmax and k = 0.
d. Set: itercgmax and r0 = 0.

Step 1. First approximation to the true signal

a. Solve: x = argmin 1

2
‖Ax − b‖2

2.
b. Initial residual: r = b − Ax.
c. Set: d0 = r and βn0 = rT r.

Step 2. Outer loop:
a. while k ≤ kmax do

b. Set: itercg = 1, rw = 0,
d = d0, and βn = βn0.

Step 3. Update: D = diag(|r|+ µ),
and set xprev = x.

Step 4. Inner loop:
a. while itercg ≤ itercgmax do

b. Set: αd = dT D2−pd.

c. Weighted residual: rw = rw + βn

αd
d.

d. Error approximation: e = D2−prw.

e. Signal approximation:
x = argmin 1

2
‖Ax − (b − e)‖2

2.

f. Residual: r = b − (Ax + e).
g. Stopping criteria: If ‖r‖ > ǫ3
h. Set: βd = βn, βn = rT r, and

d = r + βn

βd
d.

i. Set: itercg = itercg + 1, go to Step 4.

Step 5. If
‖x−xprev‖

1+‖x‖ > ǫ1, k = k + 1, go to Step 2.

Step 6. If µ > ǫµ

updates: µ and ǫ1. Set k = 0; go to Step 2.
else

display ‘x is an optimal solution’
end

Step 7. If ‖x − x∗‖∞ ≤ ǫ2
display ‘the signal is recovered’

else

display ‘fail to recover the signal’
end

This algorithm follows the same structure as algorithm 1. We named Step 2 outer
loop in order to differentiate between the number of iterations needed to obtain a good
approximation to the signal for a fixed regularization parameter µ, and Step 4 inner
loop to highlight the optimal direction obtained from the projected conjugate gradient
algorithm. It is important to note that from Substeps 4.a to 4.i the algorithm carried
out the projected conjugate gradient to find an optimal direction x. The procedure first
obtains an approximation to the weighted residual rw by using a conjugate gradient
strategy, and then finds an approximation to the error e using rw. Then, by solving a
least-squares problem, an approximation to the signal x is found. It is important to
realize that the directions, d, the weighted residuals, rw, and the residuals, r, obtained
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in Substeps 4.h, 4.c, and 4.f, respectively, are on the null space of AT . Moreover, the
residuals r are orthogonal projections of b − e on the null space of AT . An important
numerical property is that just one matrix factorization is carried out for solving the
linear systems that appear in Steps 1.a and 4.e of the algorithm. In our numerical
implementation, we use a sparse Cholesky factorization to solve the linear least-squares

problems that appears in these steps. Also, we use the augmented system

[

I A

AT 0

]

to obtain the signal approximations x and the residuals r in Steps 1.a and 1.b, and 4.e
and 4.f, respectively. In this case the algorithm is carried out without matrix-vector
multiplication.

5 Numerical Experimentation

We study the numerical behavior of Algorithms 1 and 2, with the different strategies
for solving the linear systems associated to the problem, to recover signals. Our
interest is to verify if both algorithms with the different schemes to solve the linear
systems associated to the problem allow the recovery of signals at a highly corrupt
rate. For now, we are not interested in reducing or in studying the computational cost
of recovering signals, but in the ability of the algorithms with the different strategies to
recover input signals for values 0 ≤ p ≤ 1. We will present a numerical experimentation
that shows the ability of our algorithms to reconstruct input signals with substantially
fewer measurements for values 0 ≤ p ≤ 1.

The numerical experimentation was done on an Intel Xeon 3.06 GHz processor
with 2 GB of main memory. The algorithms were written in MATLAB Version 7.1.0.
Our experimentation has the objective to investigate the capabilities of recovering
signals by the strategies discussed in this paper: Algorithm 1 uses a direct method
to solve the weighted least-squares problems and the augmented systems. Algorithm
2, the projected conjugate gradient, uses the normal equations and the augmented
systems for obtaining inexact directions. Our special interest is the location of the
breakpoint beyond at which ℓp fails to recover the signal exactly for values p ∈ Ω =
{1, 0.9, ..., 0.1, 0}. To study these issues, we performed a series of experiments as
follows:

1. Select an input signal of size n = 128. Select randomly a matrix Am×n with
m = 2n. Sample A with independent Gaussian with mean zero and standard
deviation 1, and select randomly a signal x∗ ∈ R

n.

2. Select a set of 40 percentages of m that goes from 1% to 40%, i.e.,

Θ =
{ m

100
t, t = 1, 2, . . . , 40

}

.

Then, for each element ρ ∈ Θ, define a support set Γ = {e ∈ R
m, ‖e‖o = ρ}.

Then sample an e with independent and identically distributed Gaussian entries,
and with standard deviation about the coordinates of Ax∗.

3. Compute the corrupt measurements b = Ax∗ + e, and find an optimal solution
x of problem (1), for each p ∈ Ω, using the four strategies mentioned in this
paper.

4. Compared the solution x with the true signal x∗.

5. Repeat the experiment 100 times for each p ∈ Ω and ρ ∈ Θ.
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We implemented the algorithms 1 and 2 as follows: The Algorithms take the
least-squares solution x as the initial approximation to the signal. The regularization
parameter µ is initially set to 1, and then is reduced by a factor of 102 at each iteration.
For each regularization parameter µ, x is improved if the relative change between two
consecutive iterates is below ǫ1 =

√
µ

100
. The algorithms claim to find an optimal

solution to problem (1) when the regularization parameter is smaller than ǫµ = 10−10.
In Algorithm 2 appears a new stopping value ǫ3 that controls inexact approximations
to x and is updated dynamically by

√
µ

100
. We claim that an optimal solution recovers

the true signal if ‖x − x∗‖∞ ≤ ǫ2 with ǫ2 = 10−6.
We denote Algorithm 1 that uses the sparse Cholesky factorization to solve the

weighted normal equation by IWNE, and if uses the LDLT sparse Cholesky fac-
torization to solve the augmented system by IAUG. The Algorithm 2 that uses the
sparse Cholesky factorization to solve the normal equation by PCGC, and if uses the
LDLT sparse Cholesky factorization to solve the augmented system by PCGA. The
numerical results are presented in Figures 1.a, 1.b, 1.c and 1.d. From Figures 1.a and
1.b, we observe that the numerical results for IWNE and IAUG are almost similar.
In particular for p = 1 exact reconstruction occurred at all 100 times for a corruption
rate ρ ≤ 13%, 93 times for a corruption rate ρ ≤ 14%, and 85 times for a corruption
rate ρ ≤ 15%. For p ∈ {0.8, 0.7, ..., 0.1}, an exact reconstruction occurred all 100 times
for a corruption rate ρ ≤ 20%, and for p = 0.9 exact reconstruction occurred 99 times.
It is interesting to observe that after 20% corruption, it is more likely to obtain an
exact reconstruction when the value of p is further reduced.

From Figures 1.c and 1.d, PCGC and PCGA respectively, we have, for p = 1, that
the reconstruction behavior is similar to the methods IWNE and IAUG. For PCGC

and PCGA with p ∈ {0.8, 0.7, ..., 0.3} exact reconstruction occurred the 100 times for
a corrupted rate ρ ≤ 20%, and for p = {0.9, 0.2, 0.1} exact reconstruction occurred
100 times just for ρ ≤ 15%. It is interesting to observe that for values of p around
0.5 that is more likely to obtain exact reconstructed signals for corruption higher than
20%. For the extreme values of p, that is for p = 1, 0.9, 0.1, 0, the projected conjugate
gradient algorithm becomes more unstable in recovering the true signals independent
of the factorization matrix we use.

In summary, we observe that decreasing p from 1 to 0 ≤ p ≤ 0.9 results in a
substantial improvement in recovering true signals. By decreasing p even further, the
algorithm yields an improvement of recovering signals using direct methods. This is
not the situation for the projected conjugate gradient, which yields only improvement
for values of p around 0.5.
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Figure 1: The four figures illustrate the behavior of the frequency of the exact

reconstruction signals versus the corrupted entries for the three methods to

n = 128 and m = 2n.

6 Conclusions

We presented fixed-point algorithms for solving a nonconvex overdetermined ℓρ quasi-
norm problems using an iteratively weighted normal equation. Then, we posed this
procedure by a sequential quadratic program where the central framework is the so-



24 M. Argáez, Solving Overdetermined Systems in ℓp Quasi-Norms

lution of an augmented system. We propose two schemes for solving the augmented
system: a direct method and a projected conjugate gradient method to obtain opti-
mal inexact directions. We apply these methodologies to recover input signals. Our
numerical experimentation shows that the four strategies are capable to recover the
signals for a relatively high rate of corruption as compared with p = 1. We observe
that the use of direct methods improves the chance of recovering signals with a higher
rate of corruption, while the values p are closer to zero. In particular, we observed for
p = 0.1 improves the chance of recovering signals independent of what direct method
is implemented. Instead, the projected conjugate gradient method, which works with
inexact directions, improves the chance of recovering signals for values of p around 0.5.
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