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Abstract

The problem of robust state feedback design for a linear dynamical
system with uncertain (interval) parameters is considered. The designed
state feedback controller has to place all the coefficients of the closed
loop system characteristic polynomial within assigned closed loop interval
characteristic polynomial. A condition is derived using certain known
facts about matrix minors and its characteristic equation. The derived
condition assigns the closed loop coefficients of the system characteristic
polynomial within the assigned closed loop interval polynomial, if certain
inequalities admit a positive solution. The method is simple and has
advantage that it does not require system canonical transformation. The
efficacy of the method is illustrated using numerical examples.
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1 Introduction

The problem of designing robust controllers for process plants having unknown but
bounded parameter uncertainties, which often called the interval process plants either
in the form of transfer function or state space model, has received considerable atten-
tion [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Since control systems operate
under large uncertainties it is important to study stability robustness in the presence
of uncertainty. The uncertainty present in the control system causes degradation of
system performance and destabilization. Various analysis and design techniques are
essentially meant for application to a “nominal” model. The resulting design is said
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to be robust; if the system performs within acceptable limits in the face of significant
parameter variations and model uncertainties. The need to incorporate robustness in
design is necessitated by the fact that for most practical system, the model is known
only approximately. For example, in modeling a chemical process, there unavoidably
exist uncertainties due to poor process knowledge, nonlinearities, unknown internal or
external noises, environment influence, time varying parameters, changing operating
conditions, etc. Therefore, to build a very accurate model that describes the physical
process exactly may be very costly and it may turn out to be impractical from the
viewpoint of analysis and design. However, a simplified model may not adequately
represent the actual process system and may result in an unacceptable design. Simi-
larly in the aircraft industry, the aircraft model is constructed using the data obtained
from the wind-tunnel experiments on the aircraft body. As a consequence, the pa-
rameters of the model would not have a specific value; rather they are known to lie
within an interval. Since the actual flight data are not available the controller should
be able to account for the unmodeled parameters that can be obtained only when
the aircraft is airborne. The other examples include robotic manipulators, nuclear
reactors, electrical machines and large power networks etc., which have parametric
uncertainties for the entire range of operation. An important approach to this subject
is via expressing the characteristic polynomial by an interval polynomial, i.e. a polyno-
mial whose coefficient each varies independently in a prescribed interval. The stability
analysis of polynomials subjected to parameter uncertainty have received considerable
attention after the celebrated theorem of Kharitonov [18], which assures robust sta-
bility under the condition that four specially constructed extreme polynomials, called
Kharitonov polynomials are Hurwitz. The most of the authors used model descrip-
tion by interval transfer function [1, 3, 5, 7, 18, 19]. The model P regulator synthesis
for state space model having interval parameters has been considered in several work
[6, 8, 9, 11, 12, 20, 21, 22, 23] . In this paper, a method is presented to design a
model P regulator (a robust state feedback controller) which has to place all the co-
efficients of the system’s closed loop characteristic polynomial within assigned closed
loop interval characteristic polynomial. A condition is derived using some known facts
about matrix minors and its characteristic equation. The derived condition assigns
the closed loop coefficients of the system characteristic polynomial within the assigned
closed loop interval polynomial if certain inequalities admit a positive definite solution.
This method is simple as compared to method presented in [11, 12]. The proposed
method does not require system canonical transformation as required in [8, 9]. The
paper is organized as: Section 2 gives introduction to interval arithmetic analysis and
matrix theory preliminaries. Section 3 describes the problem of robust states feedback
design for interval systems. In Section 4 main results are presented which are utilized
to design a robust state feedback for interval system. In Section 5, numerical exam-
ples are illustrated to show the efficacy of the proposed method for model P regulator
design for interval plant in state space. Finally conclusion is given in Section 6.

2 Interval analysis and matrix theory prelimi-

naries

Throughout remaining part of the paper we will use standardized notations in interval
analysis [24]. The bold font will denote interval values, whereas usual font will denote
real (i.e. non-interval) values. Underlining and overlining an interval will denote the
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lower and upper bounds of an interval respectively. An interval number [x, x] can be
defined by the set of x ⊂ R (the reals) such that x ≤ x ≤ x. For x = x, the interval
number becomes [x, x] which can be described as a degenerate interval. The arithmetic
operations on intervals are defined as follows: [25, 26, 27, 28, 29, 30, 31]

1. [x, x] + [y, y] = [x + y, x + y]

2. [x, x] × [y, y] = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)]

3. [x, x] − [y, y] = [x − y, x − y]

4. [x, x] ÷ [y, y] = [x, x] ×
[

1

y
, 1

y

]

provided that, 0 /∈ [y, y].

5.
width x = x − x ≥ 0;

its radius is

6.

rad x =
1

2
width x =

1

2
(x − x),

and its midpoint is

7.

mid x =
1

2
(x + x).

Alternatively, the interval number x can be represented as x = [x, x] = {x ∈ x, iff
x ≤ x ≤ x}= [x0 − ∆x, x0 + ∆x], where x0 = (x + x)/2 (the nominal value) and
∆x = (x − x)/2 (the uncertainty).
An interval matrix by definition [2] is a real matrix in which all the elements are known
only to the extent that each element belongs to a specified interval. For all n×n interval
real matrices, F = {f ij} ∈ IR

n×n with interval elements f ij , and G = {gij} ∈ IR
n×n

with interval elements gij , for all i and j, the addition, subtraction and multiplication
operations can be written as follows:

1. F ± G = {f ij ± gij} ∈ IR
n×n,

2. F ∗ G = {f ij}{gij} =
{
∑n

k=1
f ik × gkj

}

∈ IR
n×n.

Preliminaries of Matrix Theory:
Consider square matrix A ∈ R

n×n,

A =







a11 · · · a1n

...
. . .

...
an1 · · · ann






(1)

an r × r principal submatrix of A is a submatrix that lies on the same set of r rows
and columns, and r×r principal minor is determinant of an r×r principal submatrix.
In other words,r × r principal minors are obtained by deleting the same set of n − r
rows and columns, and there are

(

n

r

)

= n!/r!(n − r)! such minors.
The characteristic polynomial of the matrix A in equation (1) can be written as [32],

∆(λ) = λn − s1λ
n−1 + s2λ

n−2 + ... + (−1)jsjλ
n−j + ... + (−1)nsn

where sj is sum of principal minors of order j i.e

1. s1 = a11 + a22 + ... + ann, where a11, a22, ..., ann are first order principal minors
of matrix A
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2. s2 = p21 + p22 + ... + p2n , where p21, p22,· · · ,p2n are second order principal
minors of matrix A
...

3. sj = pj1 + pj2 + ... + pjn , where pj1, pj2,· · · ,pjn are jth order principal minors
of matrix A

4. sn = |A| where |A| is nth order principal minor of matrix A

3 Robust state feedback design

Consider a linear MIMO uncertain (Interval) system described by the state space
equation as

ẋ = Ax + Bu

y = Cx (2)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, A ∈ IR

n×n, B ∈ IR
n×m, C ∈ IR

p×n. The entries
of A, B, C are unknown but bounded in given compact set ; i.e. A = [A, A],
B = [B, B], C = [C , C ] are interval system matrix, input matrix, and output matrix
with elements lying in known upper and lower bound respectively. It is also assumed
that the pair A, B is controllable in the sense of definition [12]. Let the robust model
P regulator or the linear state feedback control law be,

u = Kx (3)

Let the closed loop characteristics polynomial of system (2) under state feedback in
(3) be,

∆(λ) = λn − s1λn−1 + s2λn−2 + ... + (−1)n
sn (4)

where si is coefficient of the equation (4) such that si = [si, si] ( i = 1, 2, ...., n)
Consider a desired (or target) interval characteristic polynomial as per desired spec-
ifications. The well known Kharitonov theorem [18] may be used to construct an
asymptotically stable interval polynomial. This form of specification is more natural
to designer because generally he does not know how to choose closed loop characteristic
roots but he has good idea about desired region (or target region).

[d(s)] = sn + d1s
n−1 + d2s

n−2 + · · · + dn (5)

where di is coefficient of the equation (5) such that di = [di, di] ( i = 1, 2, ...., n).

Definition 1 An interval system (A,B) is said to be stabilizable if there exist a linear
state feedback control law u = Kx with K ∈ R

n such that characteristic polynomial of
closed loop system

∆(λ) = det(sI − A − BK) (6)

is a Hurwitz invariant polynomial i.e all the roots of uncertain polynomial (6) are in
the are strict left half of the complex plane.

Definition 2 An interval system (A,B) is said to be controllability invariant if the
pair (A,B) is controllable in usual sense for any fixed value of uncertain parameters,
that is

rank[A − sI, B] = n (7)

for every aij ∈ [aij , aij ], bij ∈ [bij , bij ]
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The model P regulator or state feedback design problem can be stated as:
Design a robust state feedback control as in (3) to find a real m×n matrix K satisfying
the inclusions

det(sI − A − bK) ⊆ [d(s)] (8)

for every A ∈ A, B ∈ B, where [d(s)] is an assigned asymptotically stable interval
polynomial.

4 Main results

For the given problem we consider two cases: m = 1, m ≥ 2.
Case m = 1 (SISO Case): Suppose that B = b is a column vector, K = k is a row
vector. The following definition is based on the results of [12]

Definition 3 The pair (A, b) is controllable for any A ∈ A, b ∈ b if a square interval
matrix

Y = [b, A ∗ b, ..., An−1 ∗ b] (9)

satisfies the condition
0 /∈ Det[Y ] (10)

where * represents interval multiplication and Det[.] denotes an interval extension of
the function det[.] [25]. The state feedback problem for the SISO case can be stated
as: Design a robust state feedback control as in (3) to find a real 1 × n matrix k
satisfying the inclusions

det(sI − A − bk) ⊆ [d(s)] (11)

for every A ∈ A, b ∈ b, where [d(s)] is an assigned asymptotically stable interval
polynomial. The condition given in the following theorem provides a solution to model
P regulator (robust state feedback control) problem.

Theorem 1 The control law u = kx stabilizes system (A, b) and robustly assigns the
closed loop poles in prescribed region as described by (11) if and only if the following
inequalities admit a positive solution

d
1
≤ s1(A) + biki ≤ d1 (12)

dj ≤ sj(A) + sj(A, i)bki ≤ dj (13)

where i = 1, 2, 3, ...n, j = 2, 3, ...n and sj(A, i)b is sum of jth order principal minors
of matrix A which includes elements of vector ‘b′ as its ith column.

Proof 1 Consider system matrix A ∈ IR
n×n and input vector b ∈ IR

n×1 and state
feedback vector k ∈ R

1×n

A =







a11 · · · a1n

...
. . .

...
an1 · · · ann






, b =











b1

b2

...
bn











(14)

where aij = [aij , aij ] and bi = [bi, bi] with i, j = 1, 2, ...n

k =
[

k1 k2 · · · kn

]

(15)
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A + bk =







a11 + b1k1 · · · a1n + b1kn

...
. . .

...
an1 + bnk1 · · · ann + bnkn






(16)

The interval arithmetic [27] is used for the following computations.
s1 = Sum of first order principal minor of A + bk therefore,

s1 = (a11 + b1k1) + (a22 + b2k2) + · · · + (ann + bnkn) (17)

This can be rewritten as
s1 = s1(A) + biki (18)

s2 = Sum of second order principal minor of A + bk

s2 =

∣

∣

∣

∣

a11 + b1k1 a12 + b1k2

a21 + b2k1 a22 + b2k2

∣

∣

∣

∣

+

∣

∣

∣

∣

a11 + b1k1 a13 + b1k3

a31 + b3k1 a33 + b3k3

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

a11 + b1k1 a1n + b1kn

a31 + b3k1 ann + bnkn

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

a22 + b2k2 a23 + b2k3

a32 + b3k2 a33 + b3k3

∣

∣

∣

∣

+

∣

∣

∣

∣

a22 + b2k2 a2n + b2kn

an2 + b3k2 ann + bnkn

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

an−1,n−1 + bn−1kn−1 an−1,n + bn−1kn

an,n−1 + bnkn−1 ann + bnkn

∣

∣

∣

∣

This can be rewritten as,

s2 = s2(A) + s2(A, i)bki (19)

where i = 1, 2, 3...n and s2(A) is sum of second order principal minors of matrix
A and s2(A, j)b is sum of second order principal minors of matrix A which
includes elements of vector b with ith column is replaced by vector b. Therefore
for nth order principal minor, equation (19) can be written as

sn = sn(A) + sn(A, i)bki (20)

where i = 1, 2, 3...n. In general for jth order principal minor equation (20) can
be rewritten as

sj = sj(A) + sj(A, i)bki (21)

where i = 1, 2, 3...n, j = 2, 3, ...n and sj(A) is sum of jth order order principal
minors of matrix A and sj(A, i)b is sum of jth order principal minors of matrix
A which includes elements of vector b with ith column is replaced by vector b.
Hence condition (12) and (13) can be obtained by comparing equation (4) and
(5) and Mapping theorem [2], which proves the theorem (1)

Case m ≥ 2 (MIMO Case):

Definition 4 The pair (A, B) is controllable for any A ∈ A and B ∈ B if and only
if the interval controllability matrix [12]

Y = [B, A ∗ B, ...An−1 ∗ B] (22)

satisfies the equation
rankY = n (23)
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Figure 1: Example 1: Step response of extreme plants for the open loop system
with parameters from the intervals

Definition 5 The pair (A, B) is controllable for any A ∈ A and B ∈ B if [12]

0 /∈ Det[Y ] (24)

where Det[.] denotes an interval extension of the function det[.] [25]. Suppose that for
any A ∈ A and B ∈ B the pair (A, B) is controllable. Moreover assume that for any
A ∈ A and B ∈ B the pair (A, B) is cyclic pair [33]. Then we can (almost always)
find a real m vector q which guarantees the controllability of the pair (A, B ∗ q), i.e.
the n×n interval controllability matrix Y 1 = [B ∗q, A∗B ∗q, ..., An−1 ∗B ∗q] satisfies
the condition (24). Considering b = B ∗ q and using the Theorem (1) we can calculate
a real row vector k . Then the m × n real matrix K results from the formula

K = qk (25)

In conclusion the following algorithm can be used to design a robust state feedback
for interval systems.
Step 1. Analyze the controllability of the pair (A, B) for all A ∈ A and B ∈ B. If
this pair is not controllable then the problem has no solution.
Step 2. If m = 1 then go to step 3 otherwise chose some real numbers as the elements
of m vector q. Calculate b = B ∗ q. If the pair (A, B ∗ q) is controllable then go to
step 3 else chose another vector q.
Step 3. Determine the state feedback controller k by using theorem (1).
Step 4. If m = 1 then K = k . If m ≥ 2 then K = qk .

5 Numerical Examples

Example 1: Consider the SISO interval plant described in state space as [10],

A =

[

[−0.5, 0.5] [0.5, 1]
[0.0, 0.0] [0.5, 1]

]

, b =

[

[0.0, 0.0]
[−1,−0.9]

]

(26)
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It is necessary to find row vector k = [k1, k2] so that for every polynomial coefficient
of closed loop system are located inside the interval coefficient of interval polynomial

d(s) = s2 + [1, 5]s + [1, 11.5] (27)

By applying conditions (12), (13) in theorem (1), we obtain the following inequalities.
Hence we get a Linear programming (LP) problem to solve following inequalities for
k = [k1, k2] subject to minimization of performance index f(k1, k2) =

∑

ki

−5 ≤ −0.5 + 0.5 − k2 ≤ −1

−5 ≤ 0.5 + 1 − 0.9k2 ≤ −1

1 ≤ −0.5 − 0.5k2 + 0.45k1 ≤ 11.5 (28)

1 ≤ 0.5 + 0.5k2 + k1 ≤ 11.5

By solving above linear programming problem by using MATLAB [34], we obtained
the controller parameters as k1 = 8.6, k2 = 4. The step response for open loop and
closed loop system are plotted in Fig. 1 and Fig. 2 respectively. From the step response
it is evident that obtained controller is robust against the parameter variation. The
Nyquist plot for extreme and middle plants is shown in Fig. 3, which shows the stability
of the closed loop system.
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Figure 2: Example 1: Step response of extreme plants for the closed loop system
with parameters from the intervals

Example 2: Consider a stabilization control problem [12] for a helicopter longi-
tudinal motion speed; the helicopter longitudinal motion can be described by linear
dynamical state-space model (2) with n = 3, m = 2 and the matrices,

A =





[−0.031,−0.0128] [−3.4,−0.1] [−9.8,−9.8]
[−0.00077, 0.0007] [−0.32,−0.31] 0

0 1 0



 (29)

b =





[−18,−15] 0
0 [−3.3,−3]
0 0



 (30)

In the vector x = [x1, x2, x3]
T x1 is a deviation of the longitudinal motion

projection, x2 is an angular speed deviation, x3 is a pitch angular deviation.
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Figure 3: Example 1: Nyquist plot for extreme and middle plants system with
parameters from the intervals

The bound on eigenvalues of the interval matrix can be obtained using the
method suggested in [14], [15], [16] and [13]. The bounds on the open loop
eigenvalues obtained using the method described in [13] are given below in
Table (1). It is necessary to find a real 2 × 3 matrix K such that for every real

Eigenvalue number Lower bound Intermediate bound Upper bound

1 −0.2351 + 0.0898i −0.2283 + 0.0901i −0.2215 + 0.0898i

2 −0.2351 − 0.0898i −0.2283 − 0.0901i −0.2215 − 0.0898i

3 0.1192 0.1196 0.1201

Table 1: Open loop eigenvalues of the system

A ∈ A and B ∈ B the characteristic polynomial coefficients of the closed-loop
matrix A +BK are located within the interval coefficients of the given interval
stable polynomial

[d(s)] = s3 + [3, 4]s2 + [2, 8]s + [0.5, 5.5]. (31)

The root location of d(s) is shown in Fig. 4. The controllability analysis of
(A, B) shows that this pair is controllable for all A ∈ A and B ∈ B. To
establish robust controllability of the pair (A, B) the method in [12] is used.
We can also use the method suggested in [35] to establish robust controllability
of the pair (A, B).
We chose arbitrarily q = (0.8, 1.2)T and compute the vector

b = B ∗ q =





[−14.4,−12]
[−3.96,−3.6]

0



 (32)
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Figure 4: Example 2: Root cluster of d(s)

The pair (A, b) is controllable because the condition from (24) is satisfied:
0 /∈ Det(b, A ∗ b, A2

∗ b).
By applying condition (12), (13), we get inequalities as given below. Therefore
we have LP problem to solve following inequalities for k = [k1, k2, k3] subject to
minimization of performance index f(k1, k2, k3) =

∑

ki to satisfy the require-
ment ℜ(∆(λ)) ⊆ ℜ(d(s))

−4 ≤ −0.351− 14.4k1 − 3.96k2 ≤ −3

−4 ≤ −0.3228− 12k1 − 3.6k2 ≤ −3

2 ≤ 0.0011− 9.7441k1 + 0.0348k2 + 3.6k3 ≤ 8

2 ≤ 0.0101 + 4.2481k1 + 0.1146k2 + 3.96k3 ≤ 8 (33)

−5.5 ≤ 35.28k1 − 0.1146k3 + 0.0068 ≤ −0.5

−5.5 ≤ 38.8081k1 − 0.0348k3 + 0.0076 ≤ −0.5

By solving above linear programming problem by using MATLAB [34] we ob-
tained the controller parameters as k1 = −0.0181, k2 = 0.8069, k3 = 0.5011 .
Then the state feedback gain matrix of modal P-regulator can be computed as

K = q ∗ k =

[

−0.0145 0.6455 0.4009
−0.0218 0.9683 0.6014

]

(34)

The state feedback controller, when applied to the system, results in a stable
closed loop system. The closed loop eigenvalues of closed loop system are given
in Table (2).

Eigenvalue number Lower bound Intermediate bound Upper bound

1 −2.5354 −2.4453 −2.3686

2 −0.3968 + 0.3610i −0.3512 + 0.4053i −0.2990 + 0.4440i

3 −0.3968 − 0.3610i −0.3512 − 0.4053i −0.2990 − 0.4440i

Table 2: Closed loop eigenvalues of the system
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Figure 5: Example 2: Root cluster of ∆(λ) = Det(sI − A− bK)
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Figure 6: Root cluster of d(s) and ∆(λ) = Det(sI − A− bK)

With this controller we construct the root space of ℜ(∆(λ)) which is shown
in Fig. 5. Fig. 6 also shows that roots space ℜ(∆(λ)) is clearly contained in
ℜ(d(s)). The step response of the open loop and closed loop systems are shown
in Fig. 7, and Fig. 8 respectively. From the step response of closed loop system
it is evident that system has been stabilized for all possible elements from the
interval.

6 Conclusion

The problem of Robust state feedback design for linear dynamical system with
uncertain (interval) parameters is considered. The designed state feedback con-
troller has to place all the coefficients of the closed loop system characteristic
polynomial within assigned closed loop interval characteristic polynomial. A
condition is derived using some known facts about matrix minors and its char-
acteristic equation. The derived condition assigns the closed loop coefficients
of the system characteristic polynomial within the assigned closed loop inter-



Reliable Computing 14, 2010 57

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 From: In(1)

T
o:

 O
ut

(1
)

0 5 10 15 20 25
−5

−4

−3

−2

−1

0

x 10
4

T
o:

 O
ut

(2
)

0 5 10 15 20 25

From: In(2)

Step Response

Time (sec)

A
m

pl
itu

de

Figure 7: Example 2 : Step Response of open loop system with parameters from
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val polynomial, if certain inequalities admit a positive solution. The method is
simple and has advantage that it does not require system canonical transforma-
tion. The efficacy of the method is illustrated using numerical examples. The
designed state feedback is robust as evident from the simulation results for the
entire range of parameter variation within the given known bounds.
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