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Abstract

C-XSC is a C++ library for reliable scientific computing, which pro-
vides data types for dense vectors and matrices with real, complex, real
interval and complex interval entries. These data types are easy to use
and provide many helpful functionalities such as the ability to work with
submatrices and subvectors. However, when dealing with sparse vectors,
and especially with sparse matrices, these data types are inefficient. C-
XSC version 2.4.0 added special types for sparse vectors and matrices
that take advantage of the sparsity, both for performance and for memory
consumption. This paper explains the data structures for and the im-
plementation of these new types. Many examples and some performance
tests with sparse matrices from real world applications are included.
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1 Introduction

Sparse matrices and algorithms working with such matrices are a very important part
of numerical linear algebra. They have many applications, especially in engineering.
For example, discretizing partial differential equations naturally leads to sparse matri-
ces. A sparse matrix is generally defined as a matrix which has so many zero elements
that it is beneficial to take advantage of this fact by writing special algorithms using
special data structures to exploit this sparsity (with respect to memory consumption
or addressing performance issues).

Writing efficient code for sparse matrices is very complicated. For example, cod-
ing the software packages for the sparse LU-, sparse Cholesky-, and sparse QR-
decomposition in Matlab requires more than 100,000 lines of code [5]. Even the basic
operations, such as matrix addition and matrix-matrix products, are much more com-
plicated than the corresponding operations for dense matrices. However, exploiting
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the sparsity of a given problem can lead to tremendous performance gains and also
allows one to tackle problems of far greater dimensions due to drastically reduced
memory requirements.

The C-XSC (eXtended Scientific Computing) library [8, 9] is a C++ class library
for reliable scientific computing, which provides many basic data types for real, com-
plex, and especially interval computations. These data types also include dense matrix
and vector types. Due to the utilization of object oriented principles and the operator
overloading capabilities of C++, using these types is very straight forward. C-XSC
also provides many more useful features like the possibility to change the index ranges
of matrices and vectors, and to work with subvectors and slices of matrices. Also many
helpful functions are predefined. It also provides the ability to compute dot products
or whole dot product expressions in (simulated) higher or even maximum precision.
The included toolbox package and other additional software packages available online
implement many useful algorithms from the field of reliable computing which allow to
compute verified results for many common numerical problems. C-XSC is free open
source software released under the LGPL and can be downloaded from [1].

Since version 2.4.0, C-XSC also contains data types for sparse matrices and vectors.
This paper explains the implementation and use of these new data types and also gives
some examples and performance tests. The algorithms in this paper are given in a
C++ like pseudo code. For the sake of simplicity, matrices are assumed to be square
in these algorithms (they can easily be adapted to the non-square case as has been
done for our C-XSC implementation).

This paper is organized in the following way. First, in Section 2, an overview
of the dense matrix and vector types and their capabilities is given. Section 3 then
explains the data structure used for the sparse types and also contains a few examples
and algorithms demonstrating the use of these sparse structures. Section 4 deals with
the actual implementation of these data structures in C-XSC. It explains the general
structure and the use of the new types. Section 5 gives some examples and test results
for the new data types. Finally, Section 6 ends this paper with some concluding
remarks and a short outlook to future work concerning sparse computations with C-
XSC.

2 Dense Matrices and Vectors in C-XSC

In this section the basic C-XSC data types and especially the corresponding types for
dense matrices and vectors are explained. Since the sparse types explained in Section
4 were implemented with the goal of providing essentially the same functionality and
the same interface as the dense types, all of the features and functions explained in
this section also apply to the sparse matrices and vectors in C-XSC, except if explicitly
stated otherwise.

C-XSC uses four basic data types:

• real: Real floating point numbers (real is a wrapper class for double)

• complex: Complex floating point numbers (the real and imaginary part are of
type real)

• interval: Real floating point intervals (infimum and supremum of the interval
are of type real)

• cinterval: Complex floating point intervals (infimum and supremum of the
interval are of type complex)



140 Zimmer et al, Sparse Matrices and Vectors in C-XSC

C-XSC provides a unique data type for dense matrices and vectors based on these
four basic data types (the elements of the matrix or vector are of type real, complex,
interval or cinterval). These matrix and vector types are:

• For basic type real: rvector, rmatrix

• For basic type complex: cvector, cmatrix

• For basic type interval: ivector, imatrix

• For basic type cinterval: civector, cimatrix

All these scalar, vector and matrix types feature overloaded arithmetic and re-
lational operators which make it easy to use them in a program. Table 1 shows all
predefined arithmetic operators, while Table 2 shows all predefined relational opera-
tors. Additional operators for the input, output and assignment of objects and copy
constructors are also available. Elements of a vector or matrix can be accessed using
the [] or [][] operator.
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Table 2: Predefined relational operators

When computing dot products or operations containing dot products (like a matrix-
vector product) with C-XSC, the user can choose which precision should be used for
these dot products. For dot products computed through operators, this can be done
by setting the global variable opdotprec. Here, a value of 0 indicates maximum pre-
cision (this is the default), a value of 1 means pure floating point computations and
a value ≥ 2 means using simulated higher precision (a value of k means k-fold double
precision). Higher precision results in slower computing times but also more accurate
results. The user should choose the precision depending on the application. More
details can be found in [14]. Listing 1 shows a simple example program demonstrating
the use of these basic functionalities.

Listing 1: Usage of basic matrix/vector functionalities
// Include matrix headers
// Matrix headers also include vector headers
#include <rmatrix.hpp >
#include <ivector.hpp >
#include <iostream >

using namespace cxsc;
using namespace std;

int main() {
int n = 100; // Dimension
//Real matrix of dimension nxn
rmatrix A(n,n);
// Interval vectors of dimension n
ivector x(n), y(n);

//Set all elements of A and x to given values
A = 1.0; x = interval (1.0 ,2.0);
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//Set dot product precision to floating point
opdotprec = 1;

// Compute (real matrix)-(interval vector) product using an operator
y = A*x;

// Output of resulting interval vector
cout << y << endl;

return 0;
}

It is also possible to compute a whole dot product expression (a mathematical ex-
pression only containing +,− as well as dot product computations), as, for example,
b − Ax, where b and x are vectors of dimension n, and A is a n × n matrix, in higher
precision. When computing such an expression by using the operators, the intermedi-
ate result of each operation is individually rounded into double precision, independent
of the selected dot product precision. This, in general, introduces additional rounding
errors. The whole computation instead can be performed using a dotprecision vari-
able which can store intermediate results exactly in a fixed point format [11, 12]. The
precision of the dot products then must be selected by using the set dotprec function
of dotprecision. Listing 2 gives a short example of how to use this variable. For
more details we again refer to [14].

Listing 2: Computing dot product expressions

#include <rmatrix.hpp >
#include <dot.hpp >
#include <iostream >

using namespace cxsc;
using namespace std;

int main() {
int n = 100; // Dimension
//Real matrix of dimension nxn
rmatrix A(n,n);
//Real vectors of dimension n
rvector x(n), b(n);

//Set elements of A, x and b
for(int i = 1 ; i <= n ; i++) {

x[i] = i*1e-16;
b[i] = i;
for(int j = 1 ; j <= n ; j++) {

A[i][j] = (i > j) = i : j;
}

}

// Compute x=b-A*x using dotprecision data type
dotprecision dot = 0.0;
//Dot products computed in simulated 2-fold double precision
dot.set_dotprec (2);

for(int i = 1 ; i <= n ; i++) {
//Store b[i] in variable dot
dot = b[i];
// Compute dot product of i-th row of A and x in 2-fold double precision
//and add intermediate result to variable dot (exactly !)
accumulate(dot , -A[i], x);
//Round final result to double precision
x[i] = rnd(dot);

}

// Output of resulting vector x
cout << x << endl;

return 0;
}
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C-XSC matrices and vectors also have two additional features which can be very
useful in practical applications. This first is the possibility to freely change the index
range of the matrix elements. By default, all matrices and vectors use a one based index
range (usual indexing in mathematics). Depending on the algorithm or application
which the user wants to implement, it can be beneficial to use a zero based or entirely
different index range (negative indices are also possible). Listing 3 shows how to
change the index range.

Listing 3: Changing the index range of matrices and vectors
#include <rmatrix.hpp >
#include <dot.hpp >
#include <iostream >

using namespace cxsc;
using namespace std;

int main() {
int n = 100; // Dimension
//Real matrix of dimension nxn
rmatrix A(n,n);
//Real vector of dimension n
rvector x(n);

//Set lower index bound of x to zero
//Upper bound is adjusted automatically to n-1
SetLb(x,0);

//Index bounds can be read with Lb and Ub functions
cout << "Index bounds of x: " << Lb(x) << "," << Ub(x) << endl;

//Set upper bound of row indices of A to n-1
//Lower bound will automatically be adjusted to 0
SetUb(A, ROW , n-1);

// Operators work correctly with different index ranges
cout << A * x << endl;

//When looping over elements new index bounds must be
//taken into account!
for(int i = Lb(x) ; i <= Ub(x) ; i++)

x[i]++;

return 0;
}

Another very helpful feature is the ability to cut slices out of vectors and matrices.
These slices are not just copies of the original data, but actual references to the original
memory location. That means that changes to these slices also affect the data of the
original matrix. Slices can be accessed with the ()-operator, as demonstrated in Listing
4.

Listing 4: Using slices of matrices and vectors
#include <rmatrix.hpp >
#include <iostream >

using namespace cxsc;
using namespace std;

int main() {
int n = 100; // Dimension
//Real matrix of dimension n by n
rmatrix A(n,n);
//Real vector of dimension n
rvector x(n);

x = 0.0; A = 0.0;

// Output of left upper corner of A
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cout << A(1,10,1,10) << endl:

//Set first ten elements of x to 1
x(1 ,10) = 1.0;

//Set right upper corner of A to 2.0
A(1 ,10 ,91 ,100) = 2.0;

// further computations ...

return 0;
}

C-XSC also defines many different functions for matrices and vectors and provides
some algorithms using the types in the C-XSC toolbox. For more details, we refer to
[7, 8, 9].

3 Sparse Data Structures

To take advantage of the sparsity of a matrix or vector, an appropriate data structure
has to be choosen. This section describes the most commonly used data structures,
gives some examples for common algorithms using these data structures and explains
which are used in the actual C-XSC implementation described in Section 4.

The basic idea of every sparse data structure is to not store any information about
the zero entries, but only the information (value and indices) of the non zero entries of
the matrix. For vectors, this can be done in a very straight-forward manner with two
arrays, where one array stores the position of the non zero entry, and another array
stores the value of the respective entry, as seen in Example 3.1.

Example 3.1 The vector

x = ( 0 2 0 0 5 0 1 0 0 0 )T

can be stored in two arrays exploiting its sparsity in the following way:

p = [ 1 4 6 ]
x = [ 2 5 1 ]

The array p in the above example stores the index of each non zero element (in this
paper indices are always zero based, if not otherwise stated), while x stores its value.
The i-th entries of both arrays refer to the same element, so that for each integer
i = 0, . . . , nnz − 1 (nnz denotes the number of non zero entries of the respective data
structure throughout this paper) the element at position pi of the vector has value xi,
and every element of the vector whose index is not an entry of p is zero.

Obviously, this data structure can be used independent of the type of the elements
of the vector (real, complex, interval, ...). This data structure has a memory require-
ment of 2nnz opposed to n for storing the full vector. Algorithms using this data
type can also be formulated in a straight forward way. The dot product of two sparse
vectors a and b stored in the above manner can, for example, be formulated as seen
in Algorithm 1 (the data structure must be sorted ascending by the indices of the
elements).

Data structures for sparse matrices are somewhat more complex and more sophis-
ticated. There is also a straightforward approach called the triplet form, which is an
extension of the data structure for sparse vectors explained above to the two dimen-
sional case, but this method is normally not optimal. The triplet form uses three
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Input: Two sparse vectors a and b

Output: The result res of the dot product a · b

res = 0; i = 0; j = 0
while i < a.nnz and j < b.nnz do

if a.p[i] == b.p[j] then
res += a.x[i] * b.x[j]

else if a.p[i] < b.p[j] then
i++

else if a.p[i] > b.p[j] then
j++

Algorithm 1: Dot product of sparse vectors

arrays, where one stores the row index, one stores the column index and one stores
the value of every non zero entry in the matrix, as seen in the following example:

Example 3.2 The matrix0BBBB� 0 0 0 1.1 0
0 2.3 0 0 1.0
0 0 0 0 0

3.3 0 2.1 0 0
0 0 6.5 0 0

1CCCCA
can be stored in triplet form in three arrays in the following way:

row = [ 0 1 1 3 3 4 ]
col = [ 3 1 4 0 2 2 ]
x = [ 1.1 2.3 1.0 3.3 2.1 6.5 ]

As for vectors, the i-th element of each array refers to the same entry of the matrix.
So for each i = 0, . . . , nnz − 1, there exists a non zero entry in the matrix with index
pair rowi, coli and value xi. All other entries of the matrix are zero. The triplet form
has a memory requirement of 3nnz instead of n2 for the full matrix. In the above
example, the data structure is sorted by rows, but in general the elements can be
stored in any order. Although the triplet form is easy to create and understand, it is
in general hard to write sparse algorithms using the triplet form in an efficient way.

A more sophisticated approach for storing a general sparse matrix is to use com-
pressed row or compressed column storage (in the following only compressed column
storage is used, compressed row storage works in the same way). Compressed column
storage also uses three arrays. The array ind storing the row indices and the array x

storing the values of the non zero entries work in much the same way as before. The
third array p does not store the indices of the columns directly, but rather points to
the start and end of each column in the ind and x arrays. The i-th column of the
matrix has non zero entries at the row indices stored between indpi

and indpi+1
with

the values stored between xpi
and xpi+1

, as demonstrated in the following example:
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Example 3.3 The matrix 0BBBB� 0 0 0 1.1 0
0 2.3 0 0 1.0
0 3.1 0 0 0
0 4.0 2.1 0 0
0 0 6.5 0 0

1CCCCA
can be stored in compressed column form in three arrays in the following way:

p = [ 0 0 3 5 6 7 ]
ind = [ 1 2 3 3 4 0 1 ]
x = [ 2.3 3.1 4.0 2.1 6.5 1.1 1.0 ]

The array p always has n+1 elements, with the last element containing the number
of non zero entries. Thus compressed column storage has a memory requirement of
(n + 1) + 2nnz. Sparse algorithms often can be formulated in an efficient way with
it. For the general case it is a good choice for a storage scheme for sparse matrices.
Algorithm 2 shows how to compute the product of two matrices stored in compressed
column form.

Input: Two sparse matrices A and B of dimension n × n stored in
compressed column form

Output: A sparse matrix C = AB stored in compressed column form
real work(n) = 0.0
int w(n) = -1
nnz = 0
for i=0 to n-1 do

for k=B.p[i] to B.p[i+1]-1 do

for l=A.p[B.ind[k]] to A.p[B.ind[k]+1]-1 do

if w[A.ind[l]] < i then
w[A.ind[l]] = i
C.ind.addElement(A.ind[l])
work[A.ind[l]] = A.x[l] * B.x[k]
nnz++

else
work[A.ind[l]] += A.x[l] * B.x[k]

for j=C.p[i] to nnz do
C.x.addElement(work[C.ind[j]])

C.p[i+1] = nnz

Algorithm 2: Product of sparse matrices in compressed column form

To get familiar with the compressed column storage format used to store sparse
matrices in C-XSC, the reader should verify Algorithm 2.

Special algorithms also have to be formulated for operations between sparse and
full matrices. The result of such an operation can in general be assumed to be full
(this is also done in Matlab, for example [6]). Algorithm 3 shows how to compute the
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product of a full matrix and a sparse matrix stored in compressed column form. More
sparse algorithms can be found in [5].

Input: A full matrix A and a sparse matrix B stored in compressed
column form

Output: A full matrix C = AB

for i=0 to n-1 do

for j=0 to n-1 do

for k=B.p[j] to B.p[j+1]-1 do
C(i,j) += A(i, B.ind[k]) * B.x[k]

Algorithm 3: Product of a full and a sparse matrix

In the C-XSC implementation of sparse matrices, explained in detail in Section 4,
the compressed column storage is used. Another reason for this, beside the advantages
already mentioned, is that this storage scheme is used in many other software packages
for sparse computations such as Matlab [13] and CSparse [5]. This makes it easier to
write interfaces between C-XSC and these software packages if necessary, for example
to use an LU-decomposition function as provided by CSparse..

The data structures used in C-XSC have some small restrictions and differences
compared to, for example, the data structures used in CSparse, which have to be
taken into account when directly accessing the arrays describing the sparse C-XSC
data structures:

• The arrays of the sparse vector data structure have to be sorted ascending by
the index of the element.

• Each column of the compressed column storage for matrices has to be sorted
ascending by row indices (the array ind has to be sorted between index pi

and pi+1 for every i ∈ N0 < n + 1 and the elements of x must be arranged
accordingly).

• Zero elements in sparse vectors and matrices (for example, due to numerical
cancellation in computations) are allowed.

When writing an interface to another software package or directly manipulating
the basic arrays of a sparse C-XSC type (see Section 4), these differences must be
taken into account to avoid undefined behaviour when using these types.

4 Implementation of Sparse Data Types for C-

XSC

This section describes the actual implementation of the sparse data types in C-XSC.
As mentioned before, one of the major goals of the implementation is to provide the
same functionality with the same interface (especially the same operators) as the dense
matrix and vector types described in Section 2. Thus it should be possible to write a
template function, which can use dense and sparse types without further changes to
the function itself (although it is often not a good idea to use code written for dense
matrices for sparse matrices without adapting it).
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Other major goals were to achieve good performance and low memory requirements
(although clarity of code and easy usability have in some cases been given priority over
maximum performance) and to use an underlying data structure that is commonly used
in other packages. The sparse data types were designed to work efficiently for general
sparse matrices and do not take a special structure (for example symmetric matrices or
banded matrices) into account. As described in Section 3, compressed column storage
has been used as the underlying data structure.

The sparse data types have been implemented in eight different classes correspond-
ing to the dense matrices and vectors, with one matrix and vector class for each basic
data type as described in Section 2:

• real: srvector and srmatrix

• complex: scvector and scmatrix

• interval: sivector and simatrix

• cinterval: scivector and scimatrix

As in the case of dense data structures, the corresponding header file (for example
srmatrix.hpp) has to be included. All sparse headers include the corresponding dense
headers, the matrix headers automatically include the vector headers, and the headers
for the types with elements of higher complexity include those with lower complexity
(for example simatrix.hpp includes srmatrix.hpp and scimatrix.hpp includes all
other matrix headers).

The vector classes for each basic data type have essentially the same basic structure.
Each vector class has the following data members:

• The array p as described in Section 3 (Example 3.1), implemented as a vector
from the Standard Template Library (type std::vector<int>).

• The array x as described in Section 3 (Example 3.1), also implemented as a
vector from the Standard Template Library (type std::vector<T>, where T is
the corresponding basic data type).

• Integers for the lower and upper bound of the index.

• The dimension n of the vector as an integer.

The number of non zero elements is implicitly stored as the size-element of each of
the two STL-vectors. In the same way, all sparse matrix types use the same structure
and have the following data members:

• The array p as described in Section 3 (Example 3.3), implemented as a vector
from the Standard Template Library (type std::vector<int>).

• The array ind as described in Section 3 (Example 3.3), also implemented as a
vector from the Standard Template Library (type std::vector<int>).

• The array x as described in Section 3 (Example 3.3), also implemented as a
vector from the Standard Template Library (type std::vector<T>, where T is
the corresponding basic data type).

• Four integers storing the lower and upper bound of the index for the rows and
columns.

• Integers m and n for the dimension of the matrix.



Reliable Computing, 2010 149

As explained in Section 3, the number of non zeros is implicitly stored in the last
element of the vector p.

Using an STL-vector instead of a standard array has several advantages. One is
that a vector can dynamically allocate more memory if needed, which can be neces-
sary if the number of non zero elements of the matrix increases during an operation.
For arrays, this would have to be done manually. Another advantage is that all the
functions from the STL are available if necessary, for example, if portions of the vector
need to be sorted. A possible disadvantage is that using a vector could, at least in
theory, result in a performance hit for the program, since using an operator of the
STL-vector, for example the []-operator to access one element, results in a function
call. However, when activating compiler optimizations (which is highly recommended)
and especially inlining, using the STL-vector should result in only a slight or, in the
best case, no performance hit at all.

As with the dense matrix/vector classes, it is also possible to access slices of sparse
matrices and vectors using the ()-operator (see Listing 4). Since data manipulations
on these slices should also affect the original data, it is necessary to use some helper
classes. For the real dense matrices and vectors these are the classes rvector slice

(slice of a vector), rmatrix slice (slice of a matrix) and rmatrix subv (one row or
column of a matrix). The matrix classes for the other base types have corresponding
names. For the sparse data types, there are corresponding classes srvector slice,
srmatrix slice, srmatrix subv etc. These data types are normally not directly rele-
vant for the user and are mainly used internally by C-XSC.

In the dense case, these helper classes point to the respective memory location of
the original data, which works quite nicely, since the whole matrix or vector is stored
in one continuous block of memory. For the sparse types, this is generally not the case.
For slices of a sparse vector, the helper class can still be implemented in a relatively
easy fashion. It stores a reference to the original p and x arrays and the start and
end index of the slice according to these arrays. For sparse matrices however, the
implementation is more difficult.

Since most operations do not modify the original data (for example a simple addi-
tion does not change anything, only assignment operators are of importance), C-XSC
stores a copy of the original data of the slice in the helper class, which is used for
all computations that do not manipulate the original data, and also a pointer to the
original sparse matrix from which the slice is cut. If an operation changes the origi-
nal data, the underlying data structure of the original sparse matrix is accessed and
modified in specialized versions of the respective operators. Such operations are fairly
expensive, because they generally affect the whole data structure (introducing new
elements requires to shift all elements stored afterwards in the data structure). Due to
the use of a copy of the original data for non-manipulating operations however, most
operations with slices can still be executed with good performance.

As stated above, all sparse matrix and vector classes have the same structure,
except for the respective basic data type used. This implies that using one template
class for all sparse matrices and one template class for all sparse vectors would be
a good approach for the implementation. This however was not done in the actual
C-XSC implementation for the following reasons:

• Some special features of C-XSC (dot products in K-fold precision) would require
many additional template parameters instead of only one parameter for the basic
type of the elements of the vector or matrix, resulting in more complicated code.

• Compile times would increase (definitions are included in the header files, see
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below).

• Most operators are not class members and would thus also have to be template
functions, which would result in unclear error messages in user programs (the
compiler would try to use these templates for every undefined operator).

• The dense types are also not template types.

For the above reasons and to keep the structure of the implementation close to the
structure of the dense types, all sparse matrices and vectors were implemented as sim-
ple classes. Instead, to keep redundant code to a minimum, the actual computations
performed in the operators were implemented as template functions, which are called
from the operators. For example, the code for the addition of two sparse matrices was
implemented in a template function spsp mm add. Here, spsp indicates that the first
and second operand are sparse, mm indicates that both operands are matrices, and add

indicates that an addition is performed. The other template computation functions
are named in a similar way corresponding to this pattern. Listing 5 shows the code
for this function.

Listing 5: Template function for the addition of two sparse matrices
template <class TA, class TB, class Tres , class TElement >
inline Tres spsp_mm_add(const TA& A, const TB& B) {

int m = ColLen(A);
int n = RowLen(A);
int nnz = 0;

Tres C(m, n, A.get_nnz () + B.get_nnz ());

for(int j = 0 ; j < n ; j++) {

int k = A.p[j];
int l = B.p[j];

while(k < A.p[j+1] && l < B.p[j+1]) {

if(A.ind[k] == B.ind[l]) {
C.ind.push_back(A.ind[k]);
C.x.push_back(A.x[k] + B.x[l]);
k++; l++;

} else if(A.ind[k] < B.ind[l]) {
C.ind.push_back(A.ind[k]);
C.x.push_back(TElement(A.x[k]));
k++;

} else {
C.ind.push_back(B.ind[l]);
C.x.push_back(TElement(B.x[l]));
l++;

}

nnz++;
}

for( ; k < A.p[j+1] ; k++) {
C.ind.push_back(A.ind[k]);
C.x.push_back(TElement(A.x[k]));
nnz++;

}

for( ; l < B.p[j+1] ; l++) {
C.ind.push_back(B.ind[l]);
C.x.push_back(TElement(B.x[l]));
nnz++;

}

C.p[j+1] = nnz;

}

return C;
}
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The types of both operands, of the result matrix and of the elements of the result
matrix are given as template parameters. This function can now be called from each
operand which adds two sparse matrices, independent of the basic data type of each
matrix. For example, the operator+ for the addition of a sparse real matrix and a
sparse interval matrix can now be defined as depicted in Listing 6.

Listing 6: Operator for the addition of a real sparse matrix and a sparse interval
matrix
inline simatrix operator +( const srmatrix& A, const simatrix& B) {

return spsp_mm_add <srmatrix ,simatrix ,simatrix ,interval >(A,B);
}

The operator simply calls the template function. Due to the use of inlining, this
additional function call should normally come at no cost when using compiler opti-
mizations. This method is used for nearly all operators defined for the sparse matrix
types, which correspond to the dense operators shown in Table 1 and Table 2.

As already mentioned, the definitions of the sparse classes reside in the header files.
This method is used for many of the C-XSC data types (also for the dense vectors and
matrices), since it is necessary to allow the compiler further optimizations, especially
inlining. Since every use of an operator in C++ results in a function call, precompiling
the code for all data types into the library itself would make it impossible for the
compiler to use inlining, which would avoid these calls by directly copying the code of
the respective function to the location of the call. This leads to significant performance
gains for programs using C-XSC. The disadvantage is that it also increases the compile
time of C-XSC programs and increases the code size of the final program somewhat.
We feel, however, that the performance increases are well worth this relatively minor
disadvantage. For more information on this topic and on how to compile the C-XSC
library and C-XSC programs in a way that leads to well performing programs, we refer
to [15].

As stated before, the sparse data types offer the same features as the dense types
explained in Section 2. We shortly repeat those features before explaining some im-
portant differences between the sparse and the dense matrix/vector types:

• Operators for all basic operations according to the overviews from Table 1 and
Table 2.

• Choosable precision for dot products (tune for speed or accuracy).

• Computation of dot product expressions in high accuracy using the dotprecision
types.

• Working with slices and subvectors (both reading and writing data).

• Variable index range for row and column access.

• Many useful predefined functions.

While one goal for the implementation of the sparse types was to keep the interfaces
and set of features close to the dense types, there are still some differences due to the
nature of sparse data structures. One main difference is the availability of a set of
constructors: There are three different ways to construct a sparse matrix in C-XSC.
In the following we show how to construct a sparse n × n matrix

A = (aij) =

�
i, i = j

0, else
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The first, and in general the worst in terms of runtime performance, possibility is to
construct the matrix in the same way as in the dense case, as shown in Listing 7.

Listing 7: Creating a sparse matrix (option 1)
// Dimension
int n = 10;

//Empty nxn matrix
srmatrix A(n,n);

for(int i=1 ; i<=n ; i++)
A[i][i] = i;

This option is very clear and easy, the problem, however, is that it requires access
to all non zero elements directly using the [][]-operator. This tends to be very slow
in general, since adding a new element into a compressed column structure is quite
expensive, as explained later in this section. The next option is to first construct a
dense matrix and create the sparse matrix out of the dense matrix as shown in Listing
8.

Listing 8: Creating a sparse matrix (option 2)
// Dimension
int n = 10;

//Dense nxn matrix
rmatrix Tmp(n,n);
//Set dense matrix to 0
Tmp = 0.0;

//Fill dense matrix diagonal
for(int i=1 ; i<=n ; i++)

Tmp[i][i] = i;

// Create sparse matrix
srmatrix A(Tmp);

// Delete dense matrix
Resize(Tmp);

This version has the disadvantage that first a dense matrix has to be created
which, depending on the dimension, might require a lot of memory. Many sparse
matrix applications require huge matrices with dimensions of 100, 000 or more, which
are far to big to fit into the main memory of a usual PC. The third option shown
in Listing 9 is in general the best one, both in terms of performance and memory
footprint.

Listing 9: Creating a sparse matrix (option 3)
// Dimension
int n = 10;
// Number of non zeros of new matrix
int nnz = 10;

// Vectors storing matrix elements in triplet form
intvector rows(nnz);
intvector cols(nnz);
rvector vals(nnz);

//Fill triplet form
for(int i=1 ; i<=n ; i++) {

rows[i] = i;
cols[i] = i;
vals[i] = i;

}

// Create sparse matrix
srmatrix A(n,n,nnz ,rows ,cols ,vals);
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Here the matrix is constructed by passing the elements of the matrix in triplet form.
Instead of the version above using the C-XSC type intvector, it is also possible to
use standard arrays with elements of type int and real (or another appropriate base
type). It is also possible to pass three arrays containing the matrix in compressed
column form by adding the constant compressed column to the end of the parameter
list.

Another difference between the sparse and the dense types has to be taken into
account when accessing single elements of a matrix or vector. In the dense case, one
would use the []-Operator, both for read and write access (for example A[2][1]=3.0

for matrices and x[1]=1.0 for vectors). In the sparse case, there needs to be a clear
distinction between read and write access, since write access requires to return a
reference to the element.

When accessing a zero element of the matrix, the element is not really stored
in memory and thus a reference to this element is only possible by first adding the
element to the matrix. If the same operator is used for both reading and writing, and
zero elements of a matrix are read for example in a loop, then each read operation
adds, unnecessarily, a new element, increasing the memory requirement of the matrix
and also the computational cost of later operations with this matrix. Furthermore, all
elements that are stored after the new element in the data structure have to be shifted.
So if the element is added somewhere in the middle or at the beginning of the matrix,
all following elements need to be moved and nearly the whole data structure must be
updated. Example 4.1 demonstrates this effect with the matrix from Example 3.3.

Example 4.1 The matrix 0BBBB� 0 0 0 1.1 0
0 2.3 0 0 1.0
0 3.1 0 0 0
0 4.0 2.1 0 0
0 0 6.5 0 0

1CCCCA
is stored in compressed column form in the following way:

p = [ 0 0 3 5 6 7 ]
ind = [ 1 2 3 3 4 0 1 ]
x = [ 2.3 3.1 4.0 2.1 6.5 1.1 1.0 ]

After setting the top left element of the matrix to 1.0, the compressed column form of

this matrix changes to:

p = [ 0 1 4 6 7 8 ]
ind = [ 0 1 2 3 3 4 0 1 ]
x = [ 1.0 2.3 3.1 4.0 2.1 6.5 1.1 1.0 ]

For this change, all elements of the arrays ind and x need to be shifted by one position

in memory, and every element of the p array needs to be updated. So in this example,

the whole data structure is affected by adding just one element to the matrix.

Because of this, the sparse types make a clear distinction between write access,
using the []-operator, and read access using the ()-operator. Listing 10 gives an
example for the usage of these operators.
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Listing 10: Accessing the elements of a sparse matrix
srmatrix A(10 ,10);

//... diagonal of A is filled ...

cout << A[1][1] << endl; // Element exists ,
// simple output

cout << A[2][1] << endl; // Element doesn’t exist ,
//gets created

cout << A(3,1) << endl; // Element doesn’t exit ,
//doesn’t get created

A[4][2] = 2.0; // Element gets created and set
A(5,2) = 3.0; //Error , ()-operator is read only

A final major difference between the sparse and dense types is the in- and output
using the respective operators. By default, the in- and output for sparse matrices
works similar to the dense matrices, that is, when using the output operator, the zero
elements are also written to the output stream, and when using the input operator,
the zero elements are expected to be read from the input stream. This might be
inconvenient for very large matrices. It is thus possible to switch to a sparse in-/output
mode which will look like the following example:

Example 4.2 Using sparse output, the matrix0BBBB� 1.1 0.0 3.0 0.0 0.0
0.0 2.4 0.0 0.0 0.0
0.0 0.0 2.2 0.0 0.0
0.0 0.0 0.0 1.6 0.0
0.0 0.0 0.0 6.4 3.2

1CCCCA
will be written to the output stream as

5 5

7

0 1 2 4 5 7

0 1 0 2 3 3 4

1.1 2.4 3.0 2.2 1.6 6.4 3.2

In the sparse output the first two numbers depict the dimension of the matrix, the
next number is nnz, and then the three arrays of the compressed column form are
given. Switching the mode of the in- and output is possible with an IO-manipulator
as shown in Listing 11.

Listing 11: Switching the in- and output mode for sparse matrices and vectors
srmatrix A(10 ,10);

//...

cout << A << endl; //Full (default)

cout << SparseInOut;
cout << A << endl; // Sparse

cout << FullInOut;
cout << A << endl; //Full

Currently there are no special algorithms, such as a LU-decomposition, for the
sparse matrices implemented in C-XSC (this is planned for the future, see Section 6).
Just using the possibilities offered by the classes, such as the overloaded operators, is
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often not sufficient to write truly efficient sparse algorithms. For this cause, C-XSC
provides functions to directly access the three STL-vectors of the sparse matrices and
the two STL-vectors of the sparse vectors with the following functions:

• For matrices: Functions column pointers(), row indices() and values()

• For vectors: Function row indices() and values()

These functions return references to the vectors containing the data of the sparse
matrix or vector. When manipulating these arrays it is of course very important to
keep the data structure consistent to the used format. For vectors this means that the
row indices have to be sorted ascending, and for matrices that the compressed column
storage format with sorted row indices for each column is used. If these requirements
are not met, working with the sparse object will lead to undefined behaviour and
maybe even to segmentation faults when executing the respective program.

At the end of this section we finally want to give a small list of advice for working
with the sparse data types, which should lead to better performing programs:

• Accessing single elements of a sparse matrix or vector should be avoided, espe-
cially repeated access in a loop. Use the predefined operators instead.

• If accessing single elements, differentiate between read and write access.

• Do not use slices or subvectors of sparse matrices excessively.

• If subvectors of a sparse matrix have to be accessed (for example when computing
dot product expressions using a dotprecision variable), prefer column access to
row access. If row access is necessary, it might be a good idea to first transpose
the matrix using the transp function, and then to access the columns of the
transposed matrix.

• When implementing special algorithms for sparse data structures, directly ac-
cessing and manipulating the underlying STL-vectors often will lead to much
faster code.

5 Test Results

In this section, we present a few performance tests of the new sparse data types with
sparse matrices from real world applications from the Matrix Market [4] website. We
give timing results for the basic operation of a sparse matrix-matrix product with dif-
ferent dot product precisions and for each of the four basic data types. As a reference,
some of the results are compared to CSparse [5] and Intlab [13].

The matrices from the Matrix Market come as text files in a special format. Listing
12 shows a simple example program that demonstrates how the matrices from these
text files can be read out and stored as sparse C-XSC matrices.

Listing 12: Example for reading matrix market text files with C-XSC
/*
* Call program this way:
* progname < matmarketfile.mtx
*/

#include <iostream >
#include <string >
#include <srmatrix.hpp >

using namespace std;
using namespace cxsc;
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int main() {
int m,n,nnz;
string tmp;

//Read head of file (not important here)
getline(cin , tmp);

//Read dimension and number of entries
cin >> m >> n >> nnz;

// Triplet form
intvector rows(nnz);
intvector cols(nnz);
rvector vals(nnz);

//Read text file , fill triplet form
for(int i = 1 ; i <= nnz ; i++) {

int x,y;
cin >> x >> y >> vals[i];
rows[i] = x-1;
cols[i] = y-1;

}

// create matrix
srmatrix A(m,n,nnz ,rows ,cols ,vals);

//Drop possible zero entries
A.dropzeros ();

return 0;
}

For the purpose of our tests, we look at the following three different matrices, listed
with their matrix market names:

• cavity09: Real unsymmetric 1182 × 1182 matrix with 32702 non zero entries

• af23560: Real unsymmetric 23560 × 23560 matrix with 460598 non zero entries

• conf5.4-00l8x8-0500: Complex unsymmetric 49152×49152 matrix with 1916928
non zero entries

The sparsity pattern of each of these three matrices is given in Figure 1.

cavity09 af23560 conf5.4-00l8x8-0500

Figure 1: Sparsity pattern of the test matrices

All tests were performed on a dual Intel Xeon 2.26 GHz machine (Nehalem archi-
tecture, each processor has four cores) with 24 GB Ram running OpenSUSE Linux
11.1. The sparse operations tested here are not parallelized, meaning that only one of
the eight available cores on this machine was used. As a compiler the GCC 4.4.2 was
used with the highest optimization level.
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Storage format Computed with point interval

Sparse

K = 0 0.138 0.284

K = 1 0.009 0.047

K = 2 0.032 0.088

Dense

K = 0 9.08 125.4

K = 1 3.03 51.7

K = 2 51.8 83.5

BLAS using 8 cores 0.081 0.308

Table 3: Time measurements using one core for matrix-matrix product
of cavity09 matrix in seconds

First we measure the performance of the sparse matrix-matrix product C = AA

for the test matrix cavity09 for the dot product precision setting K = 0 (maximum
accuracy), K = 1 (normal floating point computation) and K = 2 (two-fold double
precision). Furthermore, each test is also performed for the interval case, for which
the matrix

A = T + T · [−10−10
, 10−10]

with T being the respective test matrix, is used. As a reference, these tests are also
performed with dense matrices (with and without BLAS support, see [15, 10]). The
results of these tests are given in the Table 3.

The numerical results of the sparse and dense computations were always identical
in our tests. The results in Table 3 show that the new sparse data types handle a truly
sparse matrix (like the test matrix used) much more efficiently, just as expected. In the
dense case, there is also a larger difference between the respective precision settings.
This is due to the different memory access patterns necessary for the computations
with higher precision, which have a huge effect on the dense matrix-matrix product.
For matrix-vector products and single dot products the difference will be much smaller
and comparable to the sparse results in these tests.

Another interesting point in the results is the comparison between the highly op-
timized product using BLAS, which uses all eight cores of the test system and is still
about a factor 10 slower than using the sparse computations on just one core. This
again emphasizes the advantages of using special data structures for sparse matrices.

Next we compare the results and performance of the sparse C-XSC types to the
C library CSparse and to the Matlab extension Intlab. CSparse is a deliberately
simple (in terms of features) C library, which allows for very fast, straight-forward
code. CSparse does not support interval matrices and higher precision dot products.
Complex matrices are also not supported in the standard version, but there exists an
extended version (CXSparse [2]) which supports complex matrices, which is used for
the complex point product in the following test.

Intlab is a very popular extension to Matlab for interval computations. Since it
is based on Matlab, it can make use of the very mature sparse algorithms provided
by Matlab itself. Intlab supports the same basic data types as C-XSC (although
(complex) intervals are implemented in midpoint-radius and not in infimum-supremum
representation, allowing faster computations but introducing additional overestimation
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of the results) but has no support for higher precision dot products for the basic sparse
matrix operations tested here. This time, no dense tests are used, since the other two
test matrices beside cavity09 are too large to be stored in dense format. The results
of the comparison are presented in Table 4. An ”-” entry in this Table means that
this operation is not supported by the respective library.

CSparse/CXSparse is clearly the fastest library for the real and complex point
products. This is due to its lightweight nature, which makes it easier for the compiler
to optimize the resulting code. On the other hand, CSparse does not support higher
precision dot products. Furthermore, CSparse is the most complicated from the tools
compared here to use, since it is a pure C library and thus does not support object
oriented concepts like operator overloading. Intlab shows about the same performance
level for the real point and interval case. In the complex point case, it performs slightly
better than C-XSC but is nearly on the same level, while in the complex interval case
it performs about 20% to 30% better than the current C-XSC version. However, it
also does not provide a sparse matrix-matrix product in higher accuracy.

6 Final Remarks

The new sparse data types further increase the scope of C-XSC, providing specialised
types for sparse matrices and vectors with real and complex entries, both for the point
and the interval case. Working with these types is easy, due to the concept of operator
overloading and through using many of the features also being used in the case of
dense matrices and vectors in C-XSC, such as slices and index range manipulation.
Furthermore, they also allow one to choose the precision for dot product computations
at run time, which allows the user to adapt his program towards speed or accuracy.

The measured performance is comparable to Matlab/Intlab, although since this is
the first version of these types in C-XSC there is still room for optimizations, which will
be one field of work for the future. Additionally, there are currently no special sparse
algorithms such as a LU-decomposition realised in the C-XSC library. Such specialised
implementations will be added in the near future as an interface to the fast algorithms
of the SuiteSparse [3], to use its functionality for point problems. Until then, the user
can implement his own efficient sparse algorithms through directly accessing the basic
data structure of the new types.
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Test matrix Library Test case point interval

cavity09

C-XSC

Sparse, K = 0 0.138 0.284

Sparse, K = 1 0.009 0.047

Sparse, K = 2 0.032 0.088

CSparse

Sparse, K = 0 - -

Sparse, K = 1 0.005 -

Sparse, K = 2 - -

Intlab

Sparse, K = 0 - -

Sparse, K = 1 0.008 0.044

Sparse, K = 2 - -

af23560

C-XSC

Sparse, K = 0 1.33 2.69

Sparse, K = 1 0.13 0.59

Sparse, K = 2 0.35 0.92

CSparse

Sparse, K = 0 - -

Sparse, K = 1 0.09 -

Sparse, K = 2 - -

Intlab

Sparse, K = 0 - -

Sparse, K = 1 0.13 0.64

Sparse, K = 2 - -

conf5.4-00l8x8-0500

C-XSC

Sparse, K = 0 31.04 72.77

Sparse, K = 1 1.14 14.47

Sparse, K = 2 7.18 22.13

CXSparse

Sparse, K = 0 - -

Sparse, K = 1 0.92 -

Sparse, K = 2 - -

Intlab

Sparse, K = 0 - -

Sparse, K = 1 1.11 10.80

Sparse, K = 2 - -

Table 4: Comparison of sparse matrix-matrix products, time in seconds
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