
A New Strategy For Selecting Subdivision Point

In The Bernstein Approach To Polynomial

Optimization∗

Shashwati Ray
Systems and Control Engineering Group
Room 114A, ACRE Building,
Indian Institute of Technology, Bombay, India 400 076

shashwatiray@yahoo.com

P.S.V. Nataraj
Systems and Control Engineering Group
Room 114A, ACRE Building,
Indian Institute of Technology, Bombay, India 400 076

nataraj@sc.iitb.ac.in

Abstract

In the Bernstein approach to polynomial range finding, we propose a
new rule for selection of the point where the domain subdivision is to be
done. For a given direction of subdivision, instead of subdividing a box
at its midpoint (as is done in the existing literature), we propose to sub-
divide the box at a point where the partial derivative of the polynomial
(in the direction of subdivision) equals zero. The location of this point
is estimated using the variation diminishing property of the derivative
polynomial in the Bernstein form. We then compare the performance of
the proposed rule for subdivision point with that of the existing midpoint
subdivision rule, on nine polynomial problems of different dimensions -
varying from two to eight dimensions. We evaluate both the rules us-
ing three different existing subdivision direction selection rules, and find
the proposed rule to be overall more efficient in computational time and
number of subdivisions.

Keywords: Range computation, Bernstein polynomials, Polynomial optimization,
Bezier curve

AMS subject classifications: 90C26

∗Submitted: February 16, 2009; Revised: January 1, 2010; Accepted: March 18, 2010.

117



118 Ray et al, Subdivision Points in the Bernstein Approach

1 Introduction

Many problems in real world applications can be reduced to the problem of find-
ing bounds for the range of a multivariate polynomial on an l−dimensional box-like
domain. Knowledge of the range of a multivariate polynomial has several useful appli-
cations in systems and control theory as well as in many other quantitative sciences.
It is therefore important to find easy and efficient methods for good approximations
to this range.

One such method is based on the expansion of a multivariate polynomial into
Bernstein polynomials. Range computations using the Bernstein form relies on the
simple idea that if a polynomial is written in the Bernstein basis over a box, the range
of the polynomial is bounded by the values of the minimum and maximum Bernstein
coefficients [1, 4, 5]. The Bernstein approach gives tight inclusions for the polynomial
range and sometimes is even capable of giving the exact range on the given domain.
The Bernstein polynomial approach [5] has the advantage that it reduces the necessary
(function) evaluations which might be costly if the degree of the polynomial is high.

Once the bounds for the range of a multivariable polynomial are computed in the
Bernstein approach, these may be improved by subdivision of the domain or by ele-
vating the degree of the Bernstein polynomials. The former is generally more efficient
than the latter [5]. The widely used rules for subdivision direction selection include
the ‘cyclic’, the ‘derivative’ and the ‘maximum width’ rules [8]. Once the direction of
subdivision is selected, the next task is to find an appropriate point (in this direction),
where the subdivision is to be done. In the existing literature, the midpoint is usually
chosen as the point of subdivision. In the context of the Bernstein range finding ap-
proach, points for subdivision other than the midpoint have not been explored. For
instance, the idea of selecting the subdivision point where the polynomial derivative
is zero, may be more fruitful and could be investigated.

Recently in [11] the authors have dealt with alternate choices for the point of subdi-
vision. According to them, the subdivision point is selected depending on the location
of the minimum Bernstein coefficient. Using a direction selection rule, subdivision is
performed along this direction at the point where the minimum Bernstein coefficient
occurs. When the subdivision point lies on the edge, then no subdivision would be
performed in the selected direction. Hence, this procedure would work only with a
modification of the existing subdivision direction selection rules. Since we are con-
cerned with the selection of subdivision point using any existing subdivision direction
selection rule, we are not considering this method for our study.

Motivated by these findings we aim to develop a more efficient strategy for sub-
division, so that overall reductions in the number of subdivisions, and thereby overall
reductions in computational time and memory are obtained. With this objective, we
propose a new rule for subdivision point selection to be applied to a ‘basic’ Bernstein
polynomial based algorithm for polynomial range finding (see section 2.3). Our idea
is based on the heuristic that monotonicity often leads to satisfaction of the vertex
condition. So, in the chosen subdivision direction, instead of subdividing a box at its
midpoint, we propose to subdivide it at a point close to where the partial derivative
of the polynomial becomes equal to zero. The location of this point is estimated using
the Bernstein form of the derivative polynomial. By doing so, we expect the polyno-
mial to become thereby monotonic (in this direction), at least over one of the resulting
subboxes. This may lead to satisfaction of the vertex condition on the subbox and
thereby accelerate the range finding algorithm.

We then compare the performance of the proposed rule for subdivision point with



Reliable Computing 14, 2010 119

that of the existing midpoint subdivision rule, on nine polynomial problems of different
dimensions, using three different existing subdivision direction selection rules.

The rest of the paper is organized as follows. In section 2, we give the notations
and definitions of the Bernstein polynomials, the subdivision procedure along with
the various existing subdivision direction selection rules and a basic algorithm for
polynomial range finding based on the Bernstein approach. In section 3, we describe
the proposed rule and also present an algorithm for the same. In section 4, we test
and compare the performance of the proposed rule with that of the midpoint rule, on
nine test problems of different dimensions with each of the three widely used existing
rules for subdivision direction selection. In section 5, we conclude the study.

2 Background

2.1 Bernstein form

Following the notations given in [8], let l ∈ N be the number of variables and x =
(x1, x2, ..., xl) ∈ Rl. A multi-index I is defined as I = (i1, i2, ..., il) ∈ Nl and multi-
power xI is defined as xI = xi1

1 xi2
2 ...x

il
l . A multi-index of maximum degrees N is

defined as N = (n1, n2, ..., nl) and associate the index Nr,−k = (n1, ..., nr−1, nr −
k, nr+1, ..., nl), where 0 ≤ nr − k ≤ nr. Inequalities I ≤ N for multi-indices are meant
component-wise, where 0 ≤ ik ≤ nk, k = 1, 2, ..., l. With I = (i1, ..., ir−1, ir, ir+1, ..., il)
we associate the index Ir,k given by Ir,k = (i1, ..., ir−1, ir + k, ir+1, ..., il), where 0 ≤
ir + k ≤ nr. Also, we write

(
N
I

)
for
(
n1
i1

)
, ...,

(
nl
il

)
and I/N for (i1/n1, i2/n2, ..., il/nl).

Let x = [x, x], x ≥ x be a real interval, where x=inf x is the infimum, and x=sup
x is the supremum of the interval x. The width of the interval x is defined as wid
x =x− x. For an l-dimensional interval vector or box x = (x1,x2,...,xl), the width of
x is wid x = (wid x1,wid x2, ...,wid xl).

An l-variate polynomial p of degree N is written in the power form as

p(x) =
∑
I≤N

aIx
I , aI ∈ R, x = (x1, x2, ..., xl) ∈ Rl (1)

We can expand the multivariate polynomial in (1) into Bernstein polynomials over
an l-dimensional box x = (x1,x2,...,xl). Without loss of generality, we consider the
unit box u = [0, 1]l, since any nonempty box x of Rl can be affinely mapped onto u.

The transformation of a polynomial from its power form (1) into its Bernstein form
results in

p(x) =
∑
I≤N

bI(u)BN,I(x), x ∈ u (2)

The coefficients bI(u) are called the Bernstein coefficients of p over u, and BN,I(x) is
called the Ith Bernstein polynomial of degree N defined as

BN,I(x) = Bn1
i1

(x1)B
n2
i2

(x2)...B
nl
il
(xl)

where,

B
nj

ij
(xj) =

(
nj

ij

)
x
ij
j (1− xj)

nj−ij , ij = 0, ..., nj , j = 1, ..., l

Each set of coefficients (aI or bI) in (1) and (2) can be computed from the other
as [2] :

aI =
∑
J≤I

(−1)I−J
(
N
I

)(
I
J

)
bJ



120 Ray et al, Subdivision Points in the Bernstein Approach

bI(u) =
∑
J≤I

(
I
J

)
(NJ )

aJ , I ≤ N (3)

The Bernstein coefficients are collected in an array B(u) = (bI(u))I∈S , where
S = {I : I ≤ N}. This array is called as a Bernstein patch.

Let p(u) denote the range of the polynomial p on u. Then, by the range enclosing
property of the Bernstein coefficients [8],

p(u) ⊆ [minB(u) , maxB(u)] (4)

The enclosure interval on the right is called the Bernstein range enclosure and denoted
as p̂(u). Similarly, the Bernstein range enclosure on any other box x is denoted as
p̂(x).

Let S0 be a special subset of the index set S comprising of indices of the vertices
of the array B(u), i.e., let

S0 := {0, n1} × ...× {0, nl}

Then, the lower (resp., upper) bound of the Bernstein range enclosure (4) is sharp if
and only if min bI(u)I∈S (resp., max bI(u)I∈S) is attained at a Bernstein coefficient
bI(u) with I ∈ S0. This condition is known as the vertex condition [5]. The vertex
condition holds also for any subbox d ⊆ u [9]. Further, the vertex condition is said to
be met within a given tolerance ε, if

min
S0

B(u)−minB(u) ≤ ε and maxB(u)−max
S0

B(u) ≤ ε (5)

For the univariate case with the domain [x, x], the control points bi associated
with the Bernstein coefficient bi are defined as

bi = (x+
i

n1
(x− x), bi), i = 0, ..., n1

The control points are illustrated in Figure 1 for n1 = 5 and x = [0, 1]. The control
points are seen to be evenly spaced on the horizontal axis.

Useful geometric properties can be associated with a polynomial in the Bernstein
form, by casting it as a Bezier curve [13]. The control polygon (or polyline) is formed
by the set of line segments connecting adjacent control points [3]. The convex hull
property [13] states that the Bezier curve lies in the convex hull of its control polygon
(as illustrated in Figure 1).

Analogous properties hold for the multivariate cases. For the multivariate case,
the control points are (I/N, bI(u)) : I ∈ S. The convex hull property is [6]

conv {(x, p(x)) : x ∈ u} ⊆ conv {(I/N, bI(u)) : I ∈ S} (6)

where conv P denotes the convex hull of P , i.e. the smallest convex set containing
the set P . Thus, the convex hull property states that the range p(u) is contained in
the convex hull of the control points.

Let d be a subbox of u. In the Bernstein form, the first partial derivative of the
polynomial p in (1) with respect to xr (1 ≤ r ≤ l) is given by [8]

p
′
r(x) =

∂p

∂xr
(x)

= nr

∑
I≤Nr,−1

[
bIr,1(d)− bI(d)

]
BNr,−1,I(x), x ∈ d (7)



Reliable Computing 14, 2010 121

Figure 1: The curve of a univariate polynomial p(x) of fifth degree, with the
control points marked by ‘∗’, the control polygon shown by dark lines, and the
convex hull shown as the shaded area.



122 Ray et al, Subdivision Points in the Bernstein Approach

Thus, the Bernstein coefficients b
′
I of the first partial derivative of p with respect

to xr can be obtained simply by forming the differences of its successive Bernstein
coefficients. Define

b
′
I(d) := nr

(
bIr,1(d)− bI(d)

)
(8)

Then,

p
′
r(x) =

∑
I≤Nr,−1

b
′
I(d)BNr,−1,I(x), x ∈ d (9)

The second partial derivative of p with respect to xr is given by

∂
2

p

∂x2
r

(x) = nr(nr − 1)
∑

I≤Nr,−2

[
bIr,2(d)− 2bIr,1(d) + bI(d)

+bI(d)]BNr,−2,I(x), x ∈ d

= (nr − 1)
∑

I≤Nr,−2

[
b
′
Ir,1(d)

−b
′
I(d)

]
BNr,−2,I(x), x ∈ d (10)

Thus, the Bernstein coefficients b
′′
I of the second partial derivative of p with respect

to xr can be obtained simply by forming the differences of the successive Bernstein
coefficients of the derivative of the polynomial p. Define

b
′′
I (d) := (nr − 1)

(
b
′
Ir,1(d)− b

′
I(d)

)
(11)

Then,

p
′′

r (x) =
∑

I≤Nr,−1

b
′′
I (d)BNr,−1,I(x), x ∈ d (12)

2.2 Subdivision procedure

2.2.1 Subdivision

If we want to tighten the Bernstein range enclosure in (4) when the vertex property
does not hold, we may elevate the degree of the Bernstein polynomial [5]. However,
a better way to get tighter bounds on the range enclosure is to subdivide the domain
box x into smaller subboxes, and apply the Bernstein expansion to the polynomial p in
(1) on the resulting subboxes. Then, the Bernstein range enclosure p̂(x) is contained
in the union of the convex hulls of the control points on the subboxes, see Fig. 2 2).

A subdivision in the rth component direction (1 ≤ r ≤ l) is a subdivision per-
pendicular to this direction. For simplicity, take the initial domain box to be u, and
let

d = [d1, d1]× ...× [dr, dr]× ...× [dl, dl] (13)

be any subbox of u. If d is subdivided along the rth component direction at some
point λr ∈ [0, 1], then the resulting two subboxes dA and dB are

dA = [d1, d1]× ...× [dr, d̂r]× ...× [dl, dl] (14)

dB = [d1, d1]× ...× [d̂r, dr]× ...× [dl, dl] (15)



Reliable Computing 14, 2010 123

Figure 2: Bounds (shown by broken lines) of a univariate polynomial of fifth
degree (Bernstein coefficients are marked by ∗) are improved by subdivision; the
resulting convex hulls on the two subboxes (Bernstein coefficients are marked
by +) are shaded in dark.



124 Ray et al, Subdivision Points in the Bernstein Approach

Figure 3: Subdivision in the first coordinate direction with 0.75 as the subdivi-
sion point.

where,
d̂r := dr + λr(dr − dr) (16)

Initially, set B0(d) = B(d) for k = 1, 2, ..., nr. Then after subdivision, the Bernstein
coefficients can be computed using

bki1,...,ir,...,il(d) =


bk−1
i1,...,ir,...,il

(d) : ir < k

(1− λr)b
k−1
i1,...,ir−1,...,il

(d)

+λrb
k−1
i1,...,ir,...,il

(d) : ir ≥ k

(17)

The above formula is applied for ij = 0, ..., nj , j = 1, ..., r− 1, r+1, ..., l, to obtain
the new Bernstein coefficients B(dA) and B(dB). Now,

B(dA) = Bnr (d) (18)

The Bernstein coefficients B(dB) on the neighboring subbox dB are obtained as in-
termediate values of this computation, since for k = 0, 1, ..., nr, the following relation
holds [8]

bi1,...,nr−k,...,il(dB) = bki1,...,nr,...,il(dA) (19)

By this subdivision procedure, the explicit transformation of the subboxes generated
by the subdivisions back to u is avoided. Fig. 3 illustrates the subdivision process in
the first coordinate direction for l = 2 and λ1 = 0.75.

By repeated subdivisions, the Bernstein range enclosure of the given polynomial
over a box can be sharpened until they are accurate to the given tolerance.

2.2.2 Rules for direction selection

As mentioned above, the Bernstein range enclosure can be improved by subdividing the
domain in a particular direction. The task then is to find an appropriate component
direction k (1 ≤ k ≤ l) for subdivision so that the range is more efficiently obtained.
In the context of the Bernstein approach, several rules are available for selection of
the subdivision direction [8, 10]. For this purpose, we first define a merit function.



Reliable Computing 14, 2010 125

A merit function for subdivision direction selection is [12]:

k := min
{
j : j ∈ {1, 2, ..., l} and d(j) =

l
max
r=1

d(r)
}

(20)

where, d(r) is determined by the given rule. Thus, if the maximum is achieved in
several component directions, the smallest direction is taken for subdivision. Using
this merit function, we describe below some of the commonly used direction selection
rules.

Rule A (Cyclic) [10] Initially r = 0. The subdivision direction is set as

k := cycle r (if r < l, then replace r by r + 1;

if r = l, then replace r by r = 1) (21)

Rule B (Derivative based) Garloff and Graf [7] suggest the following :

d(r) := max
x∈d

∣∣∣∣ ∂p∂xr
(x)

∣∣∣∣
where r is the subdivision direction. The first partial derivative of p with respect to
xr is given by (7). The subdivision direction is chosen by estimating

Ĩr := max
I≤Nr,−1

nr

∣∣bIr,1(d)− bI(d)
∣∣

d(r) := Ĩr (22)

Rule C (Maximum width) This is a derivative free rule commonly used in
interval analysis [10]. It is based on the interval width, where

d(r) := wid dr (23)

Then, subdivision is done along the component direction of maximal width.

2.3 Algorithm for range computations

In this section, we describe a ‘basic’ algorithm based on Bernstein approach for com-
puting the range of a multivariate polynomial. This algorithm is based on the sub-
division procedure explained in section 2.2.1, and is on the lines of the depth-first
subdivision algorithm given in [5].

In the algorithm, at the outset, we compute the Bernstein coefficients B(u) of the
polynomial after transforming the polynomial onto the unit box domain u. We next
initialize a list L with an item (u,B(u)), with the domain box u and the Bernstein
patch B(u). We also initialize a solution list Lsol to the empty list. From the list L,
we then pick each item (d,B(d)) and check for vertex condition satisfaction. If the
vertex condition is satisfied within the specified tolerance ε (cf. (5)), then we remove
the item from L and deposit it in the list Lsol as a solution box1, else we retain it in
the list L. Following this, we compute the current range estimate p̂ as the minimum

1Thus, a solution box is a box for which the vertex condition is satisfied within the specified
tolerance ε, as per. (5).



126 Ray et al, Subdivision Points in the Bernstein Approach

to maximum of all the Bernstein patches in Lsol. All the items retained in L then
undergo a so called cut-off test; the cut-off test (explained in section 2.4) essentially
deletes items in L which would not contribute to updating the current range estimate
p̂. Then, we pick each item from L, delete its entry from L, choose a subdivision
direction k, and subdivide the box d at the midpoint in the direction k into subboxes
dA and dB . Subsequently, we compute the Bernstein patches B(dA) and B(dB) for
the resulting subboxes, making use of (17) to (19). We form the corresponding new
items (dA,B(dA)) and (dB ,B(dB)) and add them to the list L. We continue the entire
process till L becomes empty. At this point, we output the current range estimate p̂
as the desired range enclosure, and terminate the algorithm.

We next present the ‘basic’ algorithm to compute the range of a multivariate
polynomial p on a general box domain x.

Algorithm Range : p̂(x) = Range (N , aI , x, ε)

Inputs : Degree N of the polynomial, the coefficient matrix aI of the polynomial,
the l-dimensional domain box, and the tolerance ε to which the range enclosure is to
be computed.

Outputs : A range enclosure p̂(x) computed to the specified tolerance ε.

BEGIN algorithm

1. Compute the Bernstein coefficients B(u) using Garloff’s method [5].

2. {Initialize lists}
L ← {(u,B(u))}, Lsol ← {}.

3. {Start a new iteration}
If L is empty go to step 9.

4. {Check, for each box, if the vertex condition is met within ε}
For each item (d,B(d)) in L, do the following : if (d,B(d)) satisfies the vertex
condition within ε as given by (5), then enter the item in list Lsol, and delete
the item entry from L.

5. {Compute the current range estimate}
Compute p̂ as the minimum to maximum over the second entries of all the items
present in Lsol (i.e., over all the Bernstein patches present in Lsol).

6. {Prune list L using the cut-off test, see section 2.4}
L = Cut off test (L, p̂).

7. {Subdivide and find new Bernstein patches}

(i) For i = 1 to length(L) do

(a) Pick the ith item (d,B(d)), from list L and delete its entry from L.
(b) Using a rule for selection of subdivision direction, choose a component

direction k for subdivision of d.

(c) Subdivide d at its midpoint in component direction k to generate two
subboxes dA and dB such that d = dA ∪ dB .

(d) Compute B(dA) and B(dB) using (17) to (19) and enter the new
items (dA, B(dA)) and (dB , B(dB)) at the end of list L.

(ii) Go to step 3.



Reliable Computing 14, 2010 127

8. {Compute the polynomial range enclosure p̂(x)}
p̂(x) = p̂.

9. {Return}
Return p̂(x).

END Algorithm

2.4 The cut-off test

The cut-off test is performed in step 6 of Algorithm Range. In the previous step 5 of
Algorithm Range, p̂ = [inf p̂, sup p̂] is computed as the current range estimate. Clearly,
since

p̂ ⊆ p(x)⇒ inf p(x) ≤ inf p̂ ≤ sup p̂ ≤ sup p(x)

we can discard from L all those items (d, B(d)), for which

inf p(x) ≤ inf p̂ ≤ minB(d) and maxB(d) ≤ sup p̂ ≤ sup p(x)

as these do not lead to improvements in the current range estimate p̂.
An algorithm for performing the cut-off test in step 6 of Algorithm Range can be

given as follows :

Algorithm Cut off test : L = Cut off test (L, p̂)
Inputs : Current range estimate p̂, the list L.
Outputs : A pruned list L.
BEGIN Algorithm

1. {Execute for all boxes in the list L}
For each item (d, B(d)) in L, do the following : if

inf p̂ ≤ minB(d) and sup p̂ ≥ maxB(d)

then discard the item (d,B(d)) from L.
2. {Return}

Output the pruned list L.

END Algorithm

3 The proposed rule

For simplicity, we first consider the univariate case to describe the idea behind the
proposed rule. The derivative of a univariate polynomial p(x) of degree n, gives a

polynomial p
′
(x) of degree n − 1. The points at which p

′
(x) becomes zero are the

stationary points of p(x). If we subdivide the domain at all the stationary points, the
polynomial becomes monotonic over the resulting subdomains. Although monotonicity
does not necessarily imply satisfaction of the vertex condition described in section 2.1,
as pointed out in [14], in several instances the implication is found to hold true (recall
that the satisfaction of the vertex condition on a subdomain implies that the range of
p(x) has been found on that subdomain, see section 2.1). Therefore, we attempt to
select a stationary point as the point of subdivision. This is the main idea behind the
proposed rule.



128 Ray et al, Subdivision Points in the Bernstein Approach

The derivative p
′
(x) can be easily calculated from the Bernstein expansion of the

polynomial p as (cf. (9))

p
′
(x) =

n−1∑
i=0

b
′
iu)B

n−1
i (x), x ∈ u (24)

where, the Bernstein coefficients b
′
i of p

′
(x) are obtained simply by forming the differ-

ences of its Bernstein coefficients as

b
′
i(u) = n (bi+1(u)− bi(u)) (25)

The control points of the derivative polynomial p
′
(x) are(

i/(n− 1)

b
′
i(u)

)
: i = 0, ..., n− 1

as illustrated in Figure 4. So, if all the Bernstein coefficients of the derivative poly-
nomial have the same sign, then the control polygon does not intersect the abscissa.
This implies that there are no roots of p

′
(x) on u, so the polynomial p(x) is monotonic

on u.
By expressing the derivative polynomial p

′
(x) in the Bernstein form, we can take

advantage of its various properties (the geometric insights based on the control poly-
gon) to locate its roots. By the variation diminishing property in section 2.1, we know
that the Bezier curve is no more complicated than its control polygon. Moreover, we
may observe that the zeros of p

′
(x), would be somewhat close to the points where the

line segments of the control polygon of p
′
(x) cross the abscissa (see for instance, Figure

4). These latter points can be easily found out, and used as the points of subdivision.

The obtained subdivision points are often near the stationary points of p
′
(x). If we

subdivide the domain box at such points, the polynomial may become monotonic over
few of the resulting subboxes. But, if we subdivide the domain box at midpoint, there
is no such guarantee that the polynomial would be monotonic over any of the resulting
subboxes. As a special case, any polynomial having only one stationary point would
be monotonic over at least one subbox, when the domain box is subdivided at the
midpoint.

In case we have several line segments of the control polygon of p′(x) intersecting the
abscissa, we choose the one with maximum absolute slope (steepest ascent or descent).
We then take its intersection point with the abscissa as the point of subdivision λ.
This point would be in the area around a stationary point, where the variation of the
derived curve is most rapid. It could be close to the extrema, so a better current
range estimate could be obtained. The required slopes may be computed by forming
the differences of the successive Bernstein coefficients of p

′
(x), i.e., in terms of the

Bernstein coefficients b
′′
i of the second derivative of p(x) given by (11) as

b
′′
i (u) = (n− 1)

(
b
′
i+1(u)− b

′
i(u)

)
(26)

We illustrate the idea with the help of an univariate example having two stationary
points.

Example 1 The univariate polynomial p(x) = 2 + 8x − 17x2 + 10x3, x ∈ [0, 1] has
two stationary points at xa = 0.3333 and xb = 0.80. Figure 4 shows the plots of this
polynomial and its derivative polynomial p

′
(x) along with their respective control points.



Reliable Computing 14, 2010 129

The control polygon of p
′
(x) crosses the abscissa at 0.2353 and 0.8461. Hence, these

are two candidate subdivision points, λa = 0.2353 and λb = 0.8461. At λa, the control
polygon of the derivative polynomial has a slope = (b

′
1 − b

′
0)/0.5 = b

′′
0 / (0.5(n− 1)) =

−8.5. Whereas, at λb its slope is (b
′
2−b

′
1)/0.5 = b

′′
1 / (0.5(n− 1)) = 6.5. Since the slope

is steeper at the point λa, we choose the subdivision point λ as 0.2353. With 0.2353
as the subdivision point, we get vertex condition satisfaction on the box [0, 0.2353],
hence this box need not be processed further. We obtain the current range estimate as
[2, 3.07145]. With midpoint as the subdivision point, we do not get vertex condition
satisfaction, so both [0, 0.5] and [0.5, 1] need to be further subdivided.

On similar lines, we can now extend the idea to the multivariate case. Let d ∈ u
be the subbox to be subdivided. The first partial derivative of the polynomial p(x) in

(1) with respect to xr of degree N would be a polynomial p
′
r(x) of degree Nr,−1. The

derivative polynomial p
′
r(x) of the polynomial p in (1) with respect to xr (1 ≤ r ≤ l)

is given by (7) and (9). The Bernstein coefficients b
′
I is given by (8) and repeated here

for convenience
b
′
I(d) = nr

(
bIr,1(d)− bI(d)

)
(27)

The above Bernstein coefficients of the derivative curve form an Nr,−1 dimensional
array. The corresponding control points are(

I/(Nr,−1)

b
′
I(d)

)
: I = 0, ..., Nr,−1

A point at which p
′
r(x) = 0 would be ‘approximately near’ the points where the

control polygon of p
′
r(x) intersects the abscissa. Among these points, a suitable one

based on the below proposed rule is chosen as the point of subdivision λr for subdivision
of the box d in the rth direction.

Let Sc be the set of all pairs of control points where the line segments of the control
polygon of the derivative curve intersect the abscissa, i.e.,

Sc :=

{{(
I/(Nr,−1)

b
′
I(d)

)
,

(
Ir,1/(Nr,−1)

b
′
Ir,1(d)

)}
: b

′
I(d)b

′
Ir,1(d) < 0

}
(28)

In Example 1, set Sc is given by

Sc =

{{(
0/2

b
′
0

)
,

(
1/2

b
′
1

)}
,

{(
1/2

b
′
1

)
,

(
2/2

b
′
2

)}}
=

{{(
0/2
8

)
,

(
1/2
−9

)}
,

{(
1/2
−9

)
,

(
2/2
4

)}}
(29)

The Bernstein coefficients b
′′
I of p

′′
(x) is given by (11) and repeated here for con-

venience.
b
′′
I (d) = (nr − 1)

(
b
′
Ir,1(d)− b

′
I(d)

)
For every pair of control points in Sc in (28), we compute b

′′
I (d). We then choose

that pair of control points for which
∣∣∣b′′I (d)∣∣∣ is the largest, and compute the point of

subdivision using the data for this pair as

λr =

I
Nr,−1

b
′
Ir,1(d)−

Ir,1
Nr,−1

b
′
I(d)

b
′
Ir,1

(d)− b
′
I(d)

, λr ∈ [0, 1] (30)



130 Ray et al, Subdivision Points in the Bernstein Approach

Figure 4: The polynomial p(x) and its derivative p′(x) with respective control
points (marked by �). The stationary point of p′(x) is marked by ▽; whereas
the obtained point of subdivision is marked by ⃝.



Reliable Computing 14, 2010 131

For the same example, from the set Sc we choose the pair

{(
0/2
8

)
,

(
1/2
−9

)}
,

since 8.5 > 6.5. Substituting the values in (30) we obtain

λr =
0
2
(−9)− 1

2
8

−9− 8
= 0.2353

as the subdivision point, as already reported in Example 1.

Based on the above ideas, we can have an algorithm for selecting the subdivision
point.

Algorithm Subdivision point selection : λr = Subdivision point selection
(B(d), r, Nr)

Inputs : Bernstein coefficients B(d) of the box d to be subdivided, the selected
subdivision direction r, and the multi-index of maximum degrees N of each variable
of the polynomial p.

Outputs : Subdivision parameter λr in the rth component direction.

BEGIN Algorithm

1. {Compute Bernstein coefficients b′I(d) of p
′
r(x)}

b
′
I(d) = nr

(
bIr,1(d)− bI(d)

)
.

2. {Compute differences of the successive Bernstein coefficients b
′
I(d) wherever the

control polygon of the derivative polynomial changes sign}
Set λr := 0.5

for I = 0 to Nr,−1 do

1. if b
′
I(d)b

′
Ir,1(d) < 0 then

1. Form set Sc using (28)

2. {Check from Sc}

If
∣∣∣b′I(d)∣∣∣ ̸= ∣∣∣b′Ir,1(d)∣∣∣ then compute b

′′
I (d) = (nr − 1)

(
b
′
Ir,1(d)− b

′
I(d)

)
3. {From Sc find the location of maximum value of b

′′
I (d)}

Choose that element from Sc for which
∣∣∣b′′I (d)∣∣∣ is maximum.

4. {Use this element from Sc to compute the subdivision point in direction r }
Compute λr using (30)

5. {Return}
return λr.

END Algorithm.

Remark 1 Subdivision of the box d at d̂r results in two subboxes dA and dB. The
Bernstein coefficients B(dB) on the neighboring subbox dB are obtained as intermedi-
ate values of the computation of B(dA), cf. (17) to (19).



132 Ray et al, Subdivision Points in the Bernstein Approach

4 Results and discussion

We test and compare the performance of the proposed rule for subdivision point selec-
tion with that of the existing midpoint rule on nine polynomial problems. In the tests,
the comparison is done for each basic rule of subdivision direction selection, namely,
cyclic, derivative-based, and maximum width rules, i.e., rule A (refer equation 21),
rule B (refer equation 22), and rule C (refer equation 23). All the codes are developed
in Forte FORTRAN 95 [15], and all computations are performed on a Sun 440 MHz
Ultra Sparc 10 Workstation with 2 GB RAM. All rounding errors are accounted for
by using interval arithmetic support provided in the compiler.

The application problems are taken from [16, 17, 18] and listed in the Appendix.
We use Algorithm Range given in section 2.3 by computing the range enclosures on
given domains, to the specified tolerance ε on nine polynomial problems. All the
numerical results are obtained with ε = 10−15 for problems of dimension lesser than
7, and with ε = 10−10 for polynomials in higher dimensions.

The performance of the proposed rule for selection of the subdivision point is com-
pared with that of the midpoint rule, in terms of the number of subdivisions required
to get the range to the specified accuracy ε, as well as in terms of the computation
time required (in seconds) to achieve the same. For the sake of comparison, for each
of these metrics we also report the values of the ratio computed as

Performance metric with the midpoint rule

Performance metric with proposed rule
=

PMMR

PMPR

and values of the percent reduction (% red) computed as

PMMR− PMPR

PMMR
× 100

Table 1 gives a comparison of the computation time required by both the sub-
division point selection rules, while Table 2 gives a comparison of the number of
subdivisions required.

From the tables, we see that with the proposed rule for subdivision point selection
we are able to solve all the problems, whereas with the midpoint rule we are unable to
solve ‘Butchers’ (But 6) and ‘Magnetism’ (Mag 7) problems. Moreover, we observe that
with the proposed rule, we are able to compute the ranges of all the test functions in
considerably less time and subdivisions. More specifically, with the proposed rule, we
are able to get a reduction in computational time varying from 12.95% to almost 100%
over the midpoint rule, with an average reduction of 62.65%. There is also a significant
reduction in the number of subdivisions; this is varying from 4.56% to 99.95% with
an average reduction of 76.11%. Thus, the proposed rule for the subdivision point
selection is seen to be considerably more efficient compared to the midpoint rule, in
terms of both these performance metrics.

5 Conclusions

We addressed the Bernstein polynomial based approach to polynomial range finding
over a given domain. For a given domain box and a given direction of subdivision, we
presented a new rule to select the point at which the box is to be subdivided. This
subdivision point is located where the first partial derivative of the polynomial with
respect to the given subdivision direction becomes zero. The new rule is also capable of



Reliable Computing 14, 2010 133

Table 1: Computation time (in seconds) taken by the two rules for subdivision
point selection with different subdivision direction selection rules

Prob dim time Rule A Rule B Rule C

(secs) Subdiv point as Subdiv point as Subdiv point as

mid prop mid prop mid prop

Quad 2 Number 0.041 0.031 0.041 0.031 0.041 0.031

Ratio 1.32 1.32 1.32

% red 24.24 24.24 24.24

Camel 2 number 0.063 0.042 0.078 0.068 0.062 0.052

Ratio 1.482 1.149 1.191

% red 32.53 12.95 16.00

R. D. 3 3 Number 0.013 0.004 0.023 0.004 0.013 0.005

Ratio 3.197 5.615 2.473

% red 68.72 82.19 59.56

Cap 4 4 Number 0.156 0.109 0.609 0.312 0.203 0.125

Ratio 1.429 1.950 1.650

% red 30.00 48.72 38.46

Wrig 5 5 Number 0.047 0.031 0.062 0.016 0.062 0.031

Ratio 1.500 4.000 2.00

% red 33.33 75.00 50.00

But 6 6 Number >900 0.031 1.531 0.422 >900 0.039

Ratio >3.2e4 3.630 >2.6e4

% red ≈100 93.77 ≈100

Mag 6 6 Number 7.657 0.657 13.609 1.125 7.922 0.422

Ratio 11.67 12.10 18.78

% red 91.43 91.73 94.67

Mag 7 7 Number >900 0.547 >900 0.687 >900 0.531

Ratio >1.8e3 >1.5e3 >1.9e3

% red >99.94 >99.93 >99.95

Heart 8 8 Number 913.85 45.08 6.055 1.817 5.306 3.451

Ratio 20.27 3.332 1.537

% red 95.07 69.99 34.95

deciding (depending on the second partial derivative), whether the new selected point
or the midpoint is the appropriate splitting point. Through nine multidimensional ex-
amples, we show that the proposed rule yields considerable reductions over the widely
used midpoint rule, both in computational time and in the number of subdivisions,
for computing polynomial ranges.



134 Ray et al, Subdivision Points in the Bernstein Approach

Table 2: Number of subdivisions required by the two rules for subdivision point
selection with different subdivision direction selection rules

Prob dim Sub- Rule A Rule B Rule C

division Subdiv point as Subdiv point as Subdiv point as

mid prop midpoint prop midpoint prop

Quad 2 Number 231 7 240 8 231 38

Ratio 33 30 23.10

% red 96.97 96.67 95.57

Camel 2 Number 379 345 373 356 379 366

Ratio 1.10 1.05 1.06

% red 8.97 4.56 6.07

R. D. 3 3 Number 80 6 120 2 80 7

Ratio 13.33 60 11.43

% red 92.50 98.33 91.25

Cap 4 4 Number 823 457 1363 682 823 424

Ratio 1.80 2.00 1.94

% red 44.47 49.96 48.48

Wrig 5 5 Number 161 36 223 2 161 32

Ratio 4.47 111.5 5.03

% red 77.64 99.10 80.12

But 6 6 Number >2e04 11 909 192 >2e04 15

Ratio >1.9e3 4.73 >1.4e3

% red >99.95 78.88 >99.93

Mag 6 6 Number 5247 447 5247 447 5247 287

Ratio 11.74 11.74 18.28

% red 91.48 91.48 94.53

Mag 7 7 Number >5111 127 >5111 127 >5111 127

Ratio >40.24 40.24 40.24

% red >97.51 >97.51 >97.51

Heart 8 8 Number 2227 342 210 43 208 101

Ratio 6.512 4.88 2.059

% red 84.64 79.52 51.44

Acknowledgements

The authors thank Prof. Jürgen Garloff of University of Applied Sciences in Constance,
Germany for his comments and suggestions on the work reported in this paper.

Appendix

Description of test problems
In the following, we list the polynomials p, the domain boxes x, the abbreviated and

full names, and the dimensionality of the problems used in our tests. The problems are



Reliable Computing 14, 2010 135

arranged in the order of increasing dimensionality. Except for the first two problems
all the test problems are from Verschelde’s PHC pack [16].

1. Quad 2 : Quadratic function l = 2 [17]

p(x) = x2
1 + x2

2 − 2

x1 = [−99.99, 100],x2 = [−99.99, 100]

2. Camel 2 : Six hump back camel function l = 2 [18]

p(x) = 4x2
1 − 2.1x4

1 +
1

3
x6
1 + x1x2 − 4x2

2 + 4x4
2

x1 = [−3, 3],x2 = [−3, 3]

3. R. D. 3 : A 3-dimensional reaction diffusion problem, l = 3

p(x1, x2, x3) = x1 − 2x2 + x3 + .835634534x2(1− x2)

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5]

4. Cap 4 : Caprasse’s system : l = 4

p(x1, x2, x3, x4) = −x1x
3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4

+4x1x3 + 4x2
3 − 10x2x4 − 10x2

4 + 2

x1 = [−.5, .5], x2 = [−.5, .5], x3 = [−.5, .5], x4 = [−.5, .5]

5. Wrig 5 : System of A.H. Wright, l = 5

p(x1, x2, x3, x4, x5) = x2
5 + x1 + x2 + x3 + x4 − x5 − 10

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5], x4 = [−5, 5],
x5 = [−5, 5]

6. But 6 : Butcher’s problem, l = 6

p(x1, x2, x3, x4, x5, x6) = x6x
2
2 + x5x

2
3 − x1x

2
4 + x3

4 + x2
4 − 1/3x1 + 4/3x4

x1 = [−1, 0], x2 = [−.1, .9], x3 = [−.1, .5],x4 = [−1,−.1],
x5 = [−.1,−.05], x6 = [−.1,−.03]

7. Mag 6 : A problem of magnetism in physics, l = 6

p(x1, x2, x3, x4, x5, x6) = 2x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + x2

6 − x6

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5],
x4 = [−5, 5], x5 = [−5, 5], x6 = [−5, 5]

8. Mag 7 : Katsura 6, a problem of magnetism in physics, l = 7

p(x1, x2, x3, x4, x5, x6, x7) = x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6 + 2x2
7 − x1

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5], x4 = [−5, 5],
x5 = [−5, 5], x6 = [−5, 5], x7 = [−5, 5]



136 Ray et al, Subdivision Points in the Bernstein Approach

9. Heart 8 : Heart-dipole problem, l = 8

p(x1, x2, x3, x4, x5, x6, x7, x8) = x1x
3
6 − 3x1x6x

2
7 + x3x

3
7 − 3x3x7x

2
6

+x2x
3
5 − 3x2x5x

2
8 + x4x

3
8 − 3x4x8x

2
5

+0.9563453

x1 = [−.1, .4], x2 = [.4, 1], x3 = [−.7,−.4], x4 = [−.7, .4],
x5 = [.1, .2],x6 = [−.1, .2], x7 = [−.3, 1.1], x8 = [−1.1,−.3]

References

[1] J. Berchtold and A. Bowyer. Robust arithmetic for multivariate Bernstein-form
polynomials. Computer Aided Design, 32:681–689, 2000.

[2] J. Berchtold, I. Voiculescu, and A. Bowyer. Multivariate Bernstein form polyno-
mials. Technical Report 31/98, School of Mechanical Engineering, University of
Bath, 1998.

[3] G. Farin. Curves and surfaces in computer aided geometric design. Academic
Press, San Diego, 1993.

[4] R. T. Farouki and V. T. Rajan. On the numerical condition of polynomials in
Bernstein form. Computer Aided Geometric Design, 4:191–216, 1987.

[5] J. Garloff. The Bernstein algorithm. Interval Computation, 2:154–168, 1993.

[6] J. Garloff. The Bernstein expansion and its applications. Journal of the American
Romanian Academy, (25-27):80–85, 2003. This is a tutorial paper.

[7] J. Garloff and B. Graf. Solving strict polynomial inequalities by Bernstein ex-
pansion. In N. Munro, editor, The Use of Symbolic Methods in Control System
Analysis and Design, volume 56 of IEE Contr. Eng., pages 339–352, London,
1999.

[8] J. Garloff and A. P. Smith. Solution of systems of polynomial equations by using
Bernstein expansion. In G. Alefeld, J. Rohn, S. Rump, and T. Yamamoto, editors,
Symbolic Algebraic Methods and Verification Methods, pages 87–97. Springer, New
York, 2001.

[9] S. Malan, M. Milanese, M. Taragna, and J. Garloff. B3 algorithm for robust
performance analysis in presence of mixed parametric and dynamic perturbations.
In Proc. of the 31st Conference on Decision and Control, pages 128–133, Tucson,
Arizona, 1992.

[10] R. E. Moore. Methods and applications of interval analysis. SIAM, Philadelphia,
1979.

[11] P. S. V. Nataraj and M. Arounassalame. A new subdivision algorithm for the
Bernstein polynomial approach to global optimization. International Journal of
Automation and Computing, 04(4):342–352, 2007.

[12] D. Ratz and T. Csendes. On the selection of subdivision directions in interval
branch-and-bound methods for global optimization. Journal of Global Optimiza-
tion, 7:183–207, 1995.



Reliable Computing 14, 2010 137

[13] M. R. Spencer. Polynomial real root finding in Bernstein form. PhD thesis,
Department of Civil Engineering, Brigham Young University, Provo, UT, USA,
1994.

[14] V. Stahl. Interval methods for bounding the range of polynomials and solving sys-
tems of nonlinear equations. PhD thesis, Research Institute for Symbolic Com-
putation, Johannes Kepler University, Linz, Austria, 1995.

[15] Sun Microsystems, Palo Alto, CA, USA. Forte FORTRAN 95 User Manual, 2001.

[16] J. Verschelde. The PHC pack, the database of polynomial systems. Technical
report, University of Illinois, Mathematics Department, Chicago, U.S.A., 2001.

[17] M. N. Vrahatis, D. G. Sotiropoulos, and E. C. Triantafyllou. Global optimiza-
tion for imprecise problems. In I. M. Bomze, T. Csendes, R. Horst, and P. M.
Pardalos, editors, Developments in Global Optimization, pages 37–54. Kluwer,
The Netherlands, 1997.

[18] L. S. Zhang, C. K. Ng, D. Li, and W. W. Tian. A new filled function method for
global optimization. Journal of Global Optimization, 28:17–43, 2004.


