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___     _        _   __  __   __        __ _ _���������������������,,                                         ireface��������This volume contains peer refereed extendcd abstracts of the SIAM Worhshop�"Validated Computing 2002'', Toronto, Canada, M_y 23_25, 2002.��^                  What is validated (reliable) computing? Reli_ble computing is essential.�T__ere is no feasible altern_tive. Modern societies rely more and more on com-�puter systems. Usu_lly, our systems appear to worh successfully, but there are�_                  sometimes serious, and often minor, errors. Ever increasing reliance on com-�puter systems brings ever increasing need for reli_bility.�Validated computing is one essenti_l technolo6y to achieve i__creased s_ aft-�_                  ware reliability.  Valid_ted computing uses contTolled rounding of computer�arithmetic to guarantee that hypotheses of suit_blc mathematical theorems are�(or are not) satis_ed. Mathematical rigor in the computer arithmetic, in algo-�rithm design, and in program execution allows us to guarantee that the stated�'_                  problem has (or does not h_ve) a solution in a_ enclosing interval we compute.�If the enclosure is narrow, we are certain that we hnow the ans_er reli_bly _nd�accur_tely. If the enclosing interv_l is wide, we 1_ave a clear _varning th_t our�_                  uncertainty is large, and a closer study is demanded.�Intervals capture uncert_inly in modeling and probl_m formulation, in modcl�p_' rameter estimati_n, in aIgorithm trlIncation, in operation round o_, _nd in�model interpret ation.�The techniques of validated computing have proven their merits in many�scienti_c and engineering applic_tions. TI_ey help _nswer _uestions from, ''_ow�much irrigation water does a desert golf course return eRectively unused to its�-"                  bordering stream?'' to "Will _ near earth _steroid hit the carth, possibly ending�life as we h___w it?''.�The techniques ot' validated co_n_utine rest on solid and intercsting theo-�s                  retical studies in m_t1_em_tics and computer science. Contributions fron_ _clds�including real, complex and functional an_lysis, semigroups, pro_ability, statis-�tics, fuzzy logic, automatic di�erentiation, computer hard_vare, operating sys-�tems, compiler construction, parallel processing, a_d soft_vare engineering are�all essential.��Applicatîons, The _aJor emphasis of the progr_m is on applications. This�volume contains contributions from many people who h_ve used tools from�validated computing to _ttaclc, and often solve, signi_cant practical probIems.�Successt'ul applications ha_e included me_ical di_gnosis and treatment, _nanci_l���5�



___  __t                  _______�������������������simulation, mechaI_ical design, oil reservoir simu_ation, aeronautics, high energy�particle accelerators, envi_'onmental engineering, chemic_l process simulation�and control, computer g'raphics for motion picture special e�ects, astrophysics,�and many more.                                                        __�Not all applications are as yet successful. This volume also contains ch_l-�lenging applications to which validated techniques have not yet been successfully�applied. _opefully, by encouraging experts in suc1J applic_tions to lay out their                  _  _�problemsJ we will foster long-term coll_borations leading to signi_cant _dvances�in those _elds.��Validated co_puting and optirni_ation. The worlcshop follo_vs the SIAM                  _.�O_timization __eeting. The reason we decided to relate these tvo meetings is�th_t global optimization is _ maJor concern of both the optimi2ation and the�validated computing communities. By holding the meetings consecutively, we�encour_ge validated computing researc__ers to become more involved in the wider�optimization community, and we encourage people more interested in standard�techniques of optimization to participate in interval discussions.�_ay Moore. Our special emphasis during this meeting is on Ramon E. ''Ray'�Moore.  At the worhshop, we will h_ve one special sessior_ and a conference�banquet to honor _ay Moore.  His 1966 booh de_ned the _eld, he pioneered�many _pplic_tionsJ and he continues to contribute insights and papers. Most                  "_�of the ideas in our interval _lgorithms of today directly trace theiT ancestry to�R_y's 1966 and 1979 (from SIAM) boohs.�Thanks. We want to use this opportunity to thanh all the contributors and�participants of Xhe worh,shop.  This volume contains papers authored by re-�se_rche__s from all over the world, from Aus,tria, Belgium, _r__ilJ _ulgaria,�C_nada, China, Czech _epublic, Denm_rh, England, France, Germany, H11n-                  _�gary, India, Paraguay, Russia, Sp_in, and USA. Without their active paTticipa-�tion, we could not have succeeded.�We want to also th_nh SIAM for their enormous help, and _TASA Pan-�American Center for E_rth and Environment_l Studies (NASA 6rant NCC5-�209) fo__ publishing these _bstracts.��Daniel Berle_nt, Iowa State University, berleant@i_state.edu                         _�George Corliss, M_rquette University, George.Cor1iss@Marquette.edu�'        Ken Jachson, University of Toronto, hrJ@cs._oronto.edu�R. _aher Ke_rfott, U. of Louisi_na at _afayette, rbh@louisiana.edu                     _�Vladih Kreinovich, University of Texas at El Paso, vladih@cs.utep.edu�Weldon Lodwich, U. of Colorado at Denver, weldon.lodwich@cudenver.edu�_ill WalsterJ Sun Micrusystems, Bill.Walster@eng.sun.com�
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_t   2_2_ __y2_ c_l t _ _ _ t __JTt  y __ cy1, _ t _ t__ymJTt2_y__2_ _ cot _1_ _ (real) t  t1J__ e/ (ot 1) (bl_n_ry)                    ________n___�������������������prediction techniques employed. We propose to use a mixed-integer nonlinear�problem formulation that is general enough to handle seve_'al types of mix-�ture estimation techniques. Obviously if the number of combin_tions (binary,�ternary, etc) for pure components is small, one can enumerate them all and solve                   -_�_ series of continuous nonlinear programs.�Tn t__e proposed fo__mulation, binary variables are used to denote the presence�or absence of _ pure-component solvent in the mixture, and a set of continuous                   _�v_riables are uscd to describe the mole fr_ctions of the cornponents in the mix-�ture. Hence the formulation is mixed-integer in nature. First let us introduce                      .�thevariables:��y; (binary v_riable) =1 if pure component j is present in the mixture, and�=O otherwise;                                         _                .��_; (continuous variable between O and 1) = mole fraction of pure component                   _�ż in the mixture��Other parameters include:          .��n number of pure component solvents (basis set)��n_,, ___aximum number of purc component solvents in the blend��R;J_ property j of pure component ż.��Constraints are imposed for (a) limiting' the number o_ pure compor_ent solvents�in the blcnd; (b) ensurin6 that the mole fr_ctíon of _n absent component is O;�and (c) all the mole fractions add to 1.O. These constraints are by no means�e_haustive, ar_d several di�erent ones can be added to achieve _ speci_c solvent�n_ixture design obJective.                                                    _�Pm;, :min_(_,y)��subJect to:                 .��PL <_ P(2,y) <_ PUt  _y__ <_ nm_,nt  _22- _ 1,  O <_ _,- <_ y;�����i_ and iU are lower_ and upper limits on _ vector of target properties _. Tnese�properties may be nonlinear _nd nonconvex wit1_ respect to the searc_l variables��The l_st constT'aint in the _bove formulation ensures that if component ż is�not present iT_ the mixture (i.e. i = O), then the correspondin6 composition z; is�also O. This however, can lead to cases w__ere the composition of one component                   _�is irlnnitesimally small. To avoid this we repl_cc it by: u; N e < _ż < ui(1 - e),              ,�where e is _ small number (e.6. O.Ol).�



_____                                 2 __ c2_,. t t t __J  (2re__) t.  2 e xo����������������2   Interval Analysis T_chnique for Solving Mix-�ture Problem��Since m___y property estim_tion techniques are g'ener_lly non-convex, we hM7e�-                   developed _n interval analysis bascd optimi__tion str_tegy that can design (glob-�ally) optimal mixtures. InXerval analysis has emerg'ed as a reliable matl_ematical�tool that can _utomatically generate lower _nd upper bounds for a function _2].�_                   It has been used for solving ordin_ry di�erential equ_tions, line_r systems, and�verifying c1_aos. Inteival _rith_netic, which is _t the hcart of int_rval anal.ysis,�was developed by Moore _6J.�In essence, interval analysis based optimi2ation continually deletes portions�'                   of the se_rch space with the goal of maintaining a _n_l box of desired width�that contains the global solution. A numbcr of interval-based optin_i2ation pro-�cedures have been developed (e.g. [2, 3, 5, 7, 10J). Most of t1Jese procedu1_es are�__                  t_ilored to unconstr_ined optimization proble_ns. In addition, these te_niques_�c_n only handle continuous variables. In other words they do not halldle dis-�crete variables. Notwithstanding the attractive features of interval-based glob_l�optimization, they are in gcneral computationally intensive. To address some o_�^-                  these issues, we l_ave developed new _cceleration str_tegies, and extended the�c_pabilities of the algorithm to solve mixed integer problems.�Almost all interval analysis based glob_l optimization algo_'ithms employ a�__                  successive domain reduction approach by eliminating portions of se,_rch regions,�_vhich do not contain the global solution. Consider the continuous opti__ization�model�__                                     globally minJ(_)��subJ_ct to:��g(2)_<O;  f_(2)=O                 (2)�T��Almost all domain reduction algurithms invari_bly use the following tests to�--                  systematically re,move portions of the _om_in th_t c_nnot contain the global�minimum: (a) Upper Bound Test, (b) Infe_sibility Test, (c) Mo__otonicity Test,�(d) Non-conve_ity Test, _r_d (e) Distr.ust _e6ion Test _10_. An interval-based�- __                  global optimi_ation _lgorithm can be constructed based on the _bove tcsts.�However, in our experience it is comput_tionally slow especi_' lly for problems�with a large numb, er of constraints. We propose _' dditional do_nain reduction�tests.  These are (a) Upper Bour_d via SQP local optimization and (b) Local�Feasibility Test. _n (b) the idea is to rclax the optimiz_tion model a_Jd only con-�sider the convex constraints and determinc if tl_is rel_xed search s_ace contains�a feasible solution. This requires the prior speci_cation of which const__aints are�_,--                  convex and which are not. This is not always strai6htforward. However, linear�equality and linear inequ_lity constr_ints are simple convex constraints. _ased    '����9�



_        _                            _       l                           ____t�������������������on this reduced set of constraints t__e feasibility of _ sub-region Xk is checked                  ;�by solving _ feasibility problem.�Mixture design problems h_ve relatively small dimension. For a design with a�basis set of Tn pur'e components the i__terval dimension is 2_. Current interval                   - -�b_sed global optimi_ation algo_'ithms can only solve conti__uous optimi2ation�proble_ns.  An exter_sion of the algorithm is made for solving mixed integer�nonlinear p__og_r_ms (MINLP) such as the mixture design problem.                         ___���3   Case  Study:  Design of Environmentally Ac-�ce_table Blanhet Wash B1ends                             '    "-.��The P__inting Industry of Americ_ (PIA) and the USEPA started _ major' ini-�ti_tive in the e_rly J_90's to search for alternative water-based blanhet wash                  __�solvents [9J. This case study explores the system_tic development of _queous                   .�blends for use as blanhet wash solvents.�The EPA report on blanlcet wash rish assessment _1J lists 40 di_erent formu-�l__ions (o_' solvcr_t blencls) us_d _s bl_r_l_et was1_es by clif___ren_ pri__ti1_6 f_ciIities�th__oug'hout the United St_tes. However, due to propriety reasons their compo-�sitions are not reported. Out of these, 21 formulations contain petroleum dis-�tillates (hydrocarbons and/or _rom_tic hydrocarbons) , which pose considerable                  -�environmental health and safety rishs.  Two common aromatic hydrocarbons�used in blanlcet washes are 1-2-_ trimethyl benzene (CgH__) and isomers of xy-�lene (CgHlo). Trimethyl ben2ene lJas a _ash point of 54.4oC and logKo_ of                  _�3.78. Isomers of xylene have __sh point a_ low as 17oC and logKo_ of 3.15.�Thus bot_ are nammable _nd have high bioaccumul_tion _nd toxicity.�The pure component solvents employed in this case study are non-halogenated�and non-aromatic w_ter-soluble co Tnpounds.  Also only those solvents, which�h_ve relatively sm_ll environmental and he_lth impact are selected.  The de-�sired attribuXes for optimal blanhet waslJ formulation target the solvent power,�its _o_v ch_racteTistics, surf_ce contacting and environmental impact.                       n�An __INLP model of the blanhet wash mixture design problem was formu-�l_ted and solved two w_ys.  In C_se 1, the model w_s solved by _xing the�bin_ry v_ri_bles resulting in an NLP model. Speci_c_lly each binary mixture                  _._�was constructed by nxing the binary v_riables for w_ter _nd one of the other�pure component solvents to 1; the remaining bin_ry v_riables were set at O. In�Case 2 t1_e l_INLP model was solved rigorously, i.e. without _xing the bin_ry�variables. This is a relatively more dimcult problem with 17 variables _nd 8�bin_ry vari_bles. Also in this case we only considered 2-component blends (i.e.�bi__ary blend, not to be confused with binary vari_ble). Thus the solution ap-                  ,�proach not onl_ pichs the best combin_tion of 2-component solvents (discrete                  _-�problem) but also _nds the optim_l composition (continuous problem).�The two models wer'e solved to obtain 7 di�eTent bin_ry mixtures. Among�
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_____________ _������������������������Ramon E. Moore _nd 45 Years of Interval��An_!ysis         ,���G. A_efeld�Karlsruhe����In his fundamental booh (Prentice-__ll, Inc., Englewood Cli_s, N.J., 1966)�Ramon E. Moore collected for the _rst tirne his and others' results on interval                  -�analysis hnown up to this date. Furthermore mar_y basic ide_s on where and�how interval analysis c_n be applied were indicated. In this talh it is shown�by _ couple of ex_mples, _ow many of tod_y's well l_nown facts in interv_l�analysis can be traced back to Moore's worlc, Furthermore some new results are�presented .�



__ _______      ___(_ e  _o_e_tl q d_,  e_specctl Je y,___c_e( Jc)o_mputqe) lnte_rva  (ecto )s c2( ]  )    _�������������������Total-S_ep and Successive Overrel_x_tion��_                 Methods for LCP-Problems with Interv_l D_ta���G. A1efeld and U. Sch_fer�-                            .  University of Karlsruhe����_                  Let there be given an (n, n) matrix M _nd _ vector _ _ J__. The linear�complementarity problem (LCP-problem) consists in _n_ing _ vector __ > O�such that���M,h+  >o   and   ,_rM,_+  __o    LcP��or to show th_t no such vector exists. This problem h _s m_ny _pplic_tions; see�[1J _n_ _2], for ex_mple.�_n this talh, we are starting with an (n, n) interval m_trix _MJ and _n inter__al�vector _qJ with n components. Using the tot_l-step method _nd the sucr,essive�_                overr laxati n m  ho  r    ir l         '    l v   r   k  which�unde, ce,tain conditions on M _nd 20  contain the solutions of LC_ for�'        all __ _ _MJ and all q _ [_I. Furthermore the conver6ence of (_2h7) to some�-                limit _2_I is shown. Applications to this problem c_n be found i__ _3J. Some�numerical ex_mples are given.���-                References��_1J R. Cottle, _.-S. P_ng,. and _. E. Stone, T_e L2near Cornple17zentarżty _r__-�leTn, Ac_demic Press, 1992.��_2] K. G. M_rty, L2near Co112pleTnentar2ty, L2near ar_d Nonlinear Pro_ra__2n_,�Hel_erm_nn Verl_g, _erlin, 1988.��_3J U. Sch_fer, Das lineare KoTnplen2entar2tätsproble772 Tn2t Inter_alle2ntrgen,�Ph.D. Thesis, F_hultät fr Mathen_atil_, Universit_t __rlsruhe, 1999.��������������13�



_l      _cc_ A2lt1, __ Dahov2 t and s_ Marhov2 J                            _tt__�����������������������On _n 0rder Rel_tion Between Distributions                    __��with Applications to Interval Estim_tion������Labo_?atoire LT_G, universixe iierre et Marie curie�4 _lace Jussieu, 75005 Paris, France�Section _ cB ioma_nematics,,�Ir_st. of __athematics and Computer Sci.                           _�_ulgarian Academy of Scie__ces�Aca_. G. Bonchev'' st., bloch 8,�BG-1113 So_a, Bulgaria                                __ '����1   Introduction                                                _��A problem which appcars quite often in the validation of the results of numeric_l�algorithn_s using intervals is the br_nching b_sed on the comparison of t_vo�intervcJls whcn these intc__v_ls h_ve _ noon-e,mpty int,ersection. Thi,s paper deal�with some possibility of orderir_g interv_ls with some pr'obability and _ technique�for the comput_tion of this probability,�Let J be _ density function (i.e., _ _ebesgue integrable function on I_ such                  _�that J(_) >_ O _nd J___ J(z)d_ = 1) and let F(_) = J=_ J(t)dt be the distribu-�tion (function) of J.�Given two independant re_l r_ndom variables (, _ with known densities (or�distributions) we want to compute the probability P(( > _). This may be useful�whenever the random variables represent numbers containing stoch_stic errors�_s is the c_se with stoch_stic numbers [1_4_.�Denote by J(, 9_ the density functions 0f the random variables (, _ resp. If                  -�both densities J(, 9_ h_ve intervals as support sets A,B C._, that is:��i) J€fOfor(_A, and J(=Ofor(_A;��ii) gTJ fO for_ _ _J an d 9_= O for_ _ _,��and if the support sets do not intersect (AnB X _), then we have that P(_ > _)�is either O or l_ dependin6 on whether A > B or A < B. In these cases one                  -�c_n spe_h of an order relation bet___een distributions, that is a relation of the�fOrm J€ < 977, reSp. J€ > 9_. In the general CaSe, when O < P(( > _) < 1 the�number P(( > _) c_n serve _s a measure (indicator) foT such an or_ering. For                  _�this re_son we sh_ll denote M(J(,9_) = P(( > _).�



________            _  _(_  __ )_ ___ _( )_ _ _ (_)_ _ __J___J_ _( _) ___oo___ h   (   )     d����������������---------    ,,^N'     __���B�__                                      ___������A -��Figure 1: _oTnain de_n2t2on Jor Pr(( < O)���In what follows we investigate some rules for the computation of M(J(,__)�especiaIly suitable for the case when the support sets of the densitics are (com-�p_ct) interv_ls. A possible way to compute __ (J( , g_) is classically the following.�The de_nition domain of Pr(( < O) is represented in _gure (1) , so we have:��_                   M(J(,__)  =  P(( > _) = P(( > O) = 1 - P(( S O)�O            O�=  1 -    7__ (()d( = 1 -          J€ (z + t)g_(t)_5 dt,(1)�-_          _=-oo  t---�where J_ (_) is the density of (, _nd 9_(z) is the density of _.�Thus fol_mul_' (l) ca_l be used for the computation of __(J(,__7) = P(_ > _).�However, we show here that an easier technique can be used in t__e c_se when�-                  the support sets of the densities are intervals.�So, in the present worh a simple method is proposed for the c/omput_tio_1�of the probability P(_ > _), where (, _ are two __e_l random vari_bles with�-^                  lcnown densities. Tl1e method is illustr_ted for some famili_r densities Gaus_sian,�uniform).���2   _echnique��Let J__ ≡ J_ U (-_) U (_). Let B = ___b, bJ, _f_ <_ b, __, b _ J__. The probability�' ^                  P(_ _ B) for a random variable with _ density J to belong to the interval B�..   bp    B   F_   Fb    b�lSglV_ny    _   =    -   _=b(tdt;nOtetatF-_=OcJn�F(_) = 1.      '�Proposition_ For any two randoTn _ar2a_les _, _ wżth g_i_en dens2ty J_unctżons�J€, g_ an_ any 2nteg_r n > O and systeTn o_ real nu172bers tl,..., t_ _ ]_ an_�ti < ti+_ (_or n = O the syste7n 2s consjdered ernptyJ, we have:�n+l     th       t_�__(J€,9J,)  =   _  pk_    J((t)dt    9,,(t)dt,       (2)�_1    th_1      tl-1���15�



__kk1Kt_ll+____l1l__h  _k__1l+__2_l_  _  _         t           (                    ______��������������whereżn�O,  k<l,��IT_ tl_e CaSe k' = l tI_e ValUe OJ _kk de_en_S O_ the deta2lS OJ J( aT2d 9_ ,                         - _�Proof_  Denote A_ = [-_,t1],A_ = _t__1,t_J,ż ≡ 1,.. .,n,A_+l = _tn,_J.�Applying the co__ditional prob_bilities formula for the division of I_ we can�_vrite:                                  '                              _��M(J€,9_)  =  P((>_)= _P((>_,(_Ah,__A_)��n+1�=  _ P(( > _ _ ( _ Ah,_ _ A_)P(_ e A_)P(_ e A_)���=  _ pk_P(( e Ak)P(_ e A_),��where_k_ = P(_ > _ _ _ _ Ak,_ _ Al) = (O, ifh < l; 1, ifk > l),                            _-�In the c_se k = l, that let us c_ll J€ _nd 9_ the densities of € and _ on Ah.�(Note that they a__e not the restrictions of J( and 9J, to Ah). Then we have:                       .��ph_ =           J€ (_)ĝ_ (y)d_dy           (4)�2= th-1  y-- th-1�This implies the proposition.�The above formula can be considered as a discretisation of (1) but it has�t1_e advanta6es that the integrals (4) are de_ned on the same sub-interv_l for�the two variables and are thus easier to compute. Moreover the considered sub-�inte_'v_ls can be small and it m_y be easy to obtain bounds for the coemcients                   -_�Ph_ _�Th_'ee obvious cases when the value of M is easily determined can be re-�treived with this formula:                                                   n�_or _ny two random variables _, _ with given density functions J, g, resp.,�wehave�a) If _ _ g, t1_en M(J, g) = 1/2;                                              _�b) In tl_e case wl_en J(_) = O for every _ <_ t, and g(2) '-- O for every z > s,�t _> s, then __(J,g) = 1;�c) In the case when g(_) = O for every _ <_ t, ___d J(_) = O for every 2' > s,�t >_ s, then M(J,g) = O.�T__ese cases are retreived under appropriate division (t;) on l_. N_rnely, in the                   _�case _) talc_ I_ _s a single interval (empty division set, n = O); in the cases b),�c) t_lce n = 1, t_ = (s + t)/2.�In wh_t follows the preceding technique b_sed on forrnul_ (2) is applied t.o the                   _�computation o_ the measure M in the cases of some well-hnown distributions.�



________   ___p_ rp( J)J /s_A  _o__0_o1__o___2___cs__e___s___l_____11_/t_,__st_____2____J__0r_eldsps_ _Th_Ju(Js 2thJe (dtJ)e_dntsltydq_f_u_J_s__n_ttt(c___ttttl)_5o_ttJnNttNs(__t_to_)_tdf__ (d( a))nJ/d(s_Tshar)e___����������������������������������_                              Figure 2: two Caussian dżstrżbutions���3   Uniform Distributions��Let, us consider two T_ndom variables ( and _ de_ned on two intersecting inte_'-�v_ls A and _. A ≡ __a, áJ _n_ _ = __b, _I with a > _b. Tal_e n = 3 and t1 = _b and�t2 = à. With the notations of (3) we have ob__iously: pl2 = pl3 = p23 = O _nd�p21 = p3_ = p32 = 1. Concerning p__ ,p_2 ,p33 we _re in the case of both ( _ncl _�_elonging to the sarr_e sub-interval with _ same const_nt, probability density, So�p1_ = p.__ = p33 ≡ 1/2. _ote that in fact only p22 has _n interest as in formula�-                 (2) the prob_bilities P(_ _ A_) and P(_ _ A3) a__e null.���_   Gaussian Distributions             ,��L_t us consider thc same ir_tersectin6 interv__ ls _s _hove but witl_ two di__1'ent�Gaussia__ distributions J€, 9_ on each intervalJ having me_n v_lues rn_, Tn2,�_                 res.  andvrin    2  _              _      _            ..�J€(2) = (2___)-'/2ē(~-m_)2/(2_ĵ),  g_(_) = (2__;)-'/2é(2-m2)2/(2_2). As-�sume 1n1 S ___. Tahe n = 2, t1 and t2 is the _bscissas of tl1e points common�_                 to J((2) and _7J(2), _nd denote A_ = _-_, t_J, A_ = _t_, t_JJ and A3 = _t2J_J,�,,                  As before formul_ (3) 6i__es pk_ = O fork_ < l and p__ = 1 t'or kn > l. CoI1cerni1_g�the coemcientsph_,k = 1, 2,3 they de_end on the v_lues of_1J_2J__,_2 _nd�they have to be computed with the integr_l of formul_ (4). As ex_mple let us�here compute pl_. By hypothese _ and _ are in ___ then Pr(_) _ A_ = 1 and�t_             t_�__  l'N  Oe tUSCaN  l≡__€    _n   2=____ tt_   en~�                  N               tl    _�_=  _  lan  9__t9_  __n  p_1=  ,____  y____  € 2__)J(  ._ !lJ   1  2.���Special case 1, 7n_-=Tn2. Then (t_+t2)/2= __. Thc problemis symmetric�_l_dpl1 = 1-p33.��S_ecial case 2. _1 = _2 = _. In this case tl = t2 and A22 = ø.��Similar formulae have been deduced for the Bet__ distribution.���.                                          17�



_c  21918N 5                     _   __t _                               __n_n_____�����������������5   A Note on Applications                                        _��Thes, e _'esults can be be uscd for tre_ting branchings using comp_risons of in-�tervals when these interv_ls have a non empt__ intersection. They c_n also be�_pplied to t__e problerns of interpolation and approxim_tion in the case of inter-                   __�val (uncertain but bounded) d_t_ with given densities (distributions). T1_us this�_ppro_ch m_y _nd useful applications in mathem_tic_l modelling situations. On�the other hand this approach contributes to the _rithmetic thėory of stoc1_astic�numbers _3I.���_eferences                                                        _��[1J R. Alt and S. M_rhov, ''On t1_e Al__ebr_ic Properties of Stoch_stic Arith-�metic. Compa__ison to Interv_l Arithmetic'', In: W. Kr_mer _nd J. Wol��von Gudenberg (eds)., Sc2enti_c Co_putin9, Val2date_ Nu112er2cs, Inter_al�Methods, Kluwer, 2001, pp. 331-341.��2] R. Alt and J. Vignes, ''V_li__tion of. Results of CollocaXion Methods for                   ._�ODEs wit__ the CADNA Libr_ry'', Appl. Nu_er. Math., 199GJ Vol. 20, pp. 1-���_3J _. M. Chesne_ux and J. Vi_nes, ''Les fondements de l'arithmétique stochas-                   _�tique'', C,R Aca_. Sc2,, Paris, Sér. I, Math., 1992, Vol. 315, pp. 1435-1440.                     .��_4] J. Vignes _nd R. Alt, ''An Emcient Stoch_stic Method for Round-O� Error�Analysis'', In:  Accurate Sc2eT_ti_c CoTnputations, L.N.C.S. 235, Springer,�, pp, 183_205N                                                       ,�



______/       __                  e         _�������������������On-  Some Algebraic Properties of Stoch_stic��-                                   Numbers���_ene A_t1 and svexoslav Ma,l_ov2���1Labo,ato;;e L_p6, un;ve,,;te p;e,,e et Ma,;e c,,;�4 _1acc Jussieu, 75005 Paris,, France�-                              2 S ection C 'Biom_the_naticstt�Inst. of Mathematics and Computer Sci.�Bulgarian Acaderny of Sciences�'                            ''Acad. G. Bonchev'' st., bloch 8,�BG-1113 So_a, Bulgaria����1   Introduction��_                 Interval arithmetic and stochastic arithmetic h_ve been both developed for the�same purpose, i.  e.  to control errors coming from _oatin6 point arithmetic�of computers _nd validate t,he results of numerical _lgorithms p_rformed on�_                 computers. Interval _rithmetic dclivers gu_ra__teed bounds for numerical results�but requires special _nalysis and _lgorithms.  On the other hand s, tochastic�_rithmetic is a model for the Cestac method which provides con__ence intervals�with hnown prob_bility and can be easily implemented in existing numerical�-                softwares. This worh continues our study from _1I of the algebraic __roperties�,                  of stoch_stic _rithmetic based on the com__arison _vith interval al'ithmetic in�miclpoirlt-_'_dius form_ ___d on thc _l_'ebraic structur_s th_t are inducecl ___ thc�__                operatiorls on the two sets (stoc___stic numbers _nd intervals) cf. _7J.�In the present paper following similar develope1_ents of inte1_val arithmetic�we introduce spaces analogous to quasilinca,r sp _ces _5, 6J.���2   Stochastic Arithmetic��_                 Stochastic arithmetic has been mainly studied in _3, _, 9J. A stoc/2ast2c nu7nber�X is _ gaussian r_ndom variable with _ lcnown mean value rn _nd _ l_nown�st_ndard devi_tion _ �nd is denoted X = (rn , _). The set of stoch_stic numbers�is denoted as S = ((1n,_) 1 rn _ i_,_ _ _+).  Stochastic _rith__etic is in�fact a theoretical model for the discrete stoch_stic arithmetic which is used�in the Cestac method in which _ and _ are computed using a Monte-Carlo�technique consisting in performing each arithmetic oper_tion sever_l times _vith���l9�



_x1 + _y2 __ (1n1 + _Tnt2, __2l + __2)  _                             ______ _ _�����������������an _rithmetic with _ randum rounding rnode, see _2, 8, 9J. Hence the Cestac                  _�method t_hes naturally into account the correl_tion between errors whereas�stochastic arithmetic actually does not. Anyhow in most _pplic_tions the results�predicted with stoch_stic ar'ithmetic _re identic_l or very close to those provided�by the Cest_c method.  Thus stochastic arithmetic is considered as giving a�.   good algebraic model for the Cestac met1_od which uses the following classical�property.                              /�Property: If _Y = (Tn, _) _ S, O <_ ß <_ 1 and r is _ reali2ation of X , then�t1_e_'e exist _p only depending on ß, such th_t��_ (r _ _Jn - _p_, Jn + _p_J) = 1 - ß.           (1)                  -��Ip,x = __ - _p _, Tn + _p __ is the con_dence interval of /_ with probability�1 - ß.  Equ_lity (1) is a well-hnown property of gaussian random variables.�_or ß = O.OJ_, _p _ l.9G. The Cestac method computes Tn _nd _ by sampling,�stoc__astic _rithmetic computes _ and _ algebraically.����3   _rith_etic  _perations  Between  Stochastic�Numbers��Let X1 = (rn_,__) _nd /Y2 = (Tn2,_2) be two stoch_stic numbers.  (Usu_l)�equality between two stochastic nuI_bers X_,X!_ is de_ned by: X1 = __2, if�_1 =_2 an d_1 = _2.                                                  _�In this worh we co_Jcentrate on the operations addition�����and multiplication by scalars _ _ I_��7 _X = (1_, l_l_).                                   _����We 1__ve show_J in _1I th_t the set S is an abelian monoid with respect to                  _�additio __ with cancellation law.�N_ultiplication by scala_'s satis_es:��a) First distr2_utive law: _ _ (X + Y) = _ _ X + _ _ Y;��b) Associati_2ty: _ _ (x _ X) = (_x) _ X;��c) Ider_tity: 1 _ _Y = X.��Ren2arh. The second distributive law: (_ + _) _ X = _ _ X + x _ X does not�hold in general. Moreover, it does not generally hold even for _, _ nonnegcJtive.           ,      ' _�We thus h_ve no qu_si-dist__ibutive law (as in t__e case of intervals) .�



________ __    _     __ __�������The mcan v_lues satisfy the distributive law and thus form a line_r sp_ce.�The standard devi_tions satisfy the following' l_w:�(_) __ _ _ __+m __,  _ >_ o,m > O,�_                 or, equivalentl_.,�(_) __ _ ___+___,  _ >_ o,_ > O.�-                   We investi6ate the sp_ce of standard deviatiuns by embedding it in an ad-�ditive _roup, obtaininġ thus a sp_ce close to a quasilinear space with 6roup�structure _6I.�_eferences�_                  _1I R. Alt and S. MaT'hov, ''On the Algebraic Properties of Stochastic Arith-�metic. Comp_rison to Interv_l Arithmetic'', In: W. Kr_mer and J. Wol��von Gude_berg (eds.), Scient2_c CoTnputin9, Val2dated NuTnerics, Inter_al�Me_I2o_s, Kluwer, 2001, pp. 331-341.�[27 R. Alt _nd J. Vignes, "Validation of Results o_ Collocntion Methods for�ODEs with the CADNA Libr_ry'', _ppl. Nu_er. Math., 1_96, Vol, 20,�_                    pp. 1-21.�_3J J. M. Chesneau_, ''The Equality Rel_tion in Scienti_c Com_uting'', Nu7ner.�Al9o.J 1994, Vol. 7, pp. 129_143.�__] J. M. Chesneaux and J. Vignes, "Les fondemcnts de l'_rithmétique stochas-�tique'', C.R Ac0J, Scj., Paris, Sér. I, N_ath., 1992, Vol. 315, pp. 1_35_1440.�-                  [5J M. I_racht and G. Schröder,  "Zur Intervallrechnung in Quasilinearen�Räumen'', CoJnputżng, J973, Vol. 11, pp. 73_79.�_6I S. Marhov, ''On the Algebraic Properties of Intcrvals and Som_ Applica-�_                    tions", ßel2able Co1nputjng, 200l, Vol. 7J No. 2, pp. 113_127.�_7J S. M. _1mpJ ''Fast and Parallel _nte__val A__it,hmctic'' , _IT, 1999, Vol. 3,�pp. 534-554.               '�[8J J. Vignes, ''Review on Stoch_stic Appro_ch to Round-O� Error Analysi__�and its Applic_tions'', Math, an_ CoTnp. jn Sj7n., 1988, Vol. 30, No. 6,�_                    pp. _81-491.�_9J J. Vignes, ''A Stoc_astic Arithmetic for Reliable Scienti_c Comput_tion''�MatJ_. and Co7np. in S2n2., 1993, Vol. 35, pp. 2J3_2G1.����21�



__BrltgFltrt_tnel_vye Brdaocn_he__J_ta_unwd_1 tJAohn_nn__evceurvylto1_ ettll _2   ___n___�����������������������Computer Algebr_ Style                             _��(Multiprecision) Interv_1 _nd Complex Arithmetic���������'Dept of __a_ne_atics _nd co_puter science�University of Antwerp (UIA)�Universiteitsplein 1, B2610 Antwerpt _elgium�( baclcelJ ,cuyt ,verdonh ,j vvloet ) @uia. ua. ac. be�2Research Assistant _wo_vl_anderen����1   M_tivation��Using the c_ppro_c1J in [2, 4, J_I , interval bounds for v_lues in J_ or ]_U _-_, +ooJ,�which is w1__t one is interested in in most industrial applications, c_n be com-�puted. These approaches, however, do not in all c_ses reAect _ll th_t is hnown                  _�about the interval v_lued expressionsJ as is required during prototyping or in _�computer algebra environment.�A similar rem_rh holds for the complex arithmetic guidelines proposed in                    .�Annex G of the latest C progr_mming' l_ng'u_ge st_ndard [1I. The _pproach is�sumcient1y correct when some addition_l b_ckg'_'ound information is av_ilable�_bout the ev_luated expression. The lach of such inform_tion, however, m_y�lead to the ambiguous interpret_tion of results.                                    _�In the authors' implementation, _ more theoretical point of view on interval�_nd complex _rithmetic is proposed to t_chle th_ _bove issue.  It is n_tur_l,�when tahing a computer al6ebra style viewpoint, to dea1 not only with double                  _�precision, but also consider true higher precisions.���2   _nterval Arithme_ic:                                         _�The_ry versus Implementation��In both [2J and _4], the authors review the implementation of the basic oper_tions                  -�in interval arithmetic, and in particular discuss the di�erent appro_ches given�in the literature for interval division when the divisor i_terval contains 2ero.�Division by an interv_l cont_ining 2ero is _ speci_l c_se o_ an inter__al function                  _�for which the interv_l arguments contain points' outside the domain of the un-�



_________ _    __n      ( _)    __   ,_  __r ]��������������derlying point function. In _5J a gener_l _pproach is presented to deal with such�situations and to remove any restrictions on the domain of interval functions,�_                  This _pproach fully exploits the avaiIability of the underlying IEEE hardware�and has been emciently implemented in [3].�_hile interval division is de_ned di_erently in _2J and _5_ when the divisor�__                  cont_ins 2ero, part of t__e di�erence can be tr_ced b_clc to the following. Un-�derlying any implementation of interval arithmetic _re two sets, a number set _�d _ set I _ of inte,vals _hich is _ subset of 2_. In 2��-_                             _ =I_�I(_) =(_a, bJ l a, b e _,aS b) u (J - _, bJ l b _ _)�u ( [a, +__ l a _ _) u (J - _, +_ _) u (Ø)��while in _5J��_=_u (-_,+_)�I_= ([a, b7 l a,b e _,aS b)��In both cases, an interval can be easily represented by a pair of (properly    '�_                  rounded) IEEE _o_ting-point numbers.  This ease of representation comes at�a price, however, because the choice of the set _ has crucial implications for�the de_nition of interval functions. Even thou6h an interval function satis_es�__                  the containment principle, it can only contain the range of the underlying point�function in _. If the range of the point function is _ subset of _, there is no�problem. But if the underlying poînt function is unde_ned or complex-valued�for some values of the interval arguments, returning an element of I(_) may�_'                  lead to unintuitive results, as we shall illustr_te. This also expl_ins _vhy in [2J��_1,2J/_o,o7 = _��while according to _5]��[1, 2J/[O, OJ = (_) n (]_ u (-_, +_)) c _-_, +_J��In this presentation we give an alternative, computer algebra style appro_ch�to remove restrictions on the domain of interval functions. To achieve this, we�_' llow for the emcient representation of_ non-real results. We indicatc some im-�_                  portant properties and _dvantages of this _pproach and show how the presented�ideas can be implemented in a multiprecision interval arithmetic library without�perform_nce overh_ad.���3   Complex _rithmetic:�_,                     Theory versus _mplementation��In the s_mc w_y that the _pproach in _3I is desi6ned to o�er interval arithmetic in�a way that seamlessly blends in with IEEE Roating-point _rithmetic, the Annex���23�



_1zJ _ ( 2_ _  t   ____  _                             _____)_ _������������������G of t1_e latest C programming lang_uage standard _lJ lists recommendations for                   __�implement_tions of complex arithmetic which fully respect the underlying IEEE�Ao_ting-point arithmetic.�We explained ho_v i__ interv_l arithmetic this leads to discussions about ex-�pressions where the result is either unde_ned or not exclusively real. In complex                   "'�_rithmetic conAicting results also come _rom the dimculty of representing and�computing with t1_e Riemann in_nity. Support for proJective in_nity has mostly�been dropped in _oating-point implementations and hence _mplementations of                   _�complex _rithmetic struggle in situations which require correct in_nity _rith-�metic.�In oTder to salvage possibly incorrect complex results, the Annex G suggests�to assign a double meaning to the IEEE NaN (Not-a-Number) when it occurs in�'   complex expressions involving in_nities: _ N_N real or imaginary p_rt indic_tes�either an unde_ned value or an unhnown value. This, however, does not fully�t_he care of all problems, _s the following example illustrates.                              _-��double _,y�comp1ex z                                           _�2=2_���_ __o24 _ 4 )_ /o ( _4 _,, ')                                     -_��z = z x (y+_i)��The correct mathematical result is z = undefined.  The Annex G proposal                   _�however returns 2 = _ + ooi because it fails to recognize y as mathematically�unde_ned. When tryin6 to rectify th_ result of 2 x (y + _i) involvin6 an in_nite�z, it Jumps to the other interpretation of the NaN value y.                               _�We sh_ll indic_te ho__ this t,ype o_ problems can be overcon_e by the intro-�duction of yet additional special v_lues. Our alternative approach gives rise to                     .�an emcient implementation which is fully compliant with the theory of complex�analysis, as would be required in a proper computer algebra style implementa-�tion.���Re_erences��_1J ANSI/ISO/IEC 9899-1999. Internat2onal C Stan_ard, Anne_ C: I_C 6O_~9_�_ coTn_atż_le coTnplez arithTnetic (inJorn_ativeJ, ANSI, 1999.                             _��_2J T. Hickey, _. Qun, and M. Van Emden. "_nterval arithme_ic: from principles�to implementation'', Journal oJ the ACM, 2001, Vol. 48, No. 5, pp. 1038-�1068.��[3] Sun Microsystems, Interval arith_etic in the Forte JtT72J C++ coTnp'ile_, avail-�_ble at http: / /www .sun. com/forte/cplusplus/interval.     .                    .      ' _�
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y                ___ _����������������������An Improved Tool for DisXribution Envelope                   _��Determin_tion, a Technique for Interval-Based,��Veri_ed Arithmetic on R_ndom V�riables                    _���Daniel Berleant, Lizhi Xie, Jian2hong Zhang,�_nd Gerry Sheblé                                -_�Department of Electrica1 and Computer Engineering�Io_va State University, Ames, Iowa 500l1, USA�b erleant@iast_te. edu                               -����1   Summary           '                                     -_��When random vari_bles possessing arbitrary distribution functions must be com-�bined via +, -, _, /, min(), n__x(), etc., Monte Carlo simulation is commonl�emplo_'ed. However, Monte Carlo simulation assumes either independence or�(less commonly) some othe_' speci_c dependency rel_tionship, among other lim-�itations (Ferson 199G). Discretization of the distribution function followed by a�numerical method is _n alternativc. Numerical methods can relax the require-                 _�ment of N_onte Carlo that the distributions have a known dependency relation-�ship, in which c_se the results are typic_lly envelope curves within which the�cumulative distribution of the result must lie re6_rdless of the dependency rela-                 _�tionship between the operands. The operands themselves can _lso bc expressed�with envelopes in order to bound the e�ects of discreti2ation of the input dis-�tributions (Berleant 1993; Williamson and Downs l990). This p_' per describes�Statool, a software tool that implements Distribution Envelope Determination�(DEnv), _ numeric_l al6orithm for performing arithmetic on distribution func-�tian oper_nds (Berleant _nd Goodman-Strauss 1998). Our previously reported�tool was Iimited to indepen_ent _'andom variables (_erleant and Cheng 1998),                 _�a signi_cant limitation.  Improvements to St_tool are currently being driven                  .�by the needs of applic_tions in accordance with our research strategy, which is�to identify such applic_tions and then to modify Statool as needed to support                 _�them.  However, identifying goo_ applications is itself _ research topic.  We�are currently exploring' appIications to the electric power industry (Sheblé and�Berleant 2002; Berle_nt et al. 2002), and h_ve obtained recent results on time�to completion of multiple t_shs _nd time to failure of two components _7,8J .�



______                        _ ___  ___���������������2   Introduction��_                  __ndom v_riables ma  be combined usin  standaTd o erations such as   _ _�/J Tnin(), and max(). When the random v_ri_ble oper_nds arc assumed inde-�pendent, results may be calculated using a discretized convolution approach�_                  (Ingram et al. 1968; Colombo and Jaarsma 1980; I__plan 1981). Discreti_ation�error may be bounded by an interval based extension (Berleant 1993). We have�described _ tool i1nplementing this (Berleant and Cheng 1998), however it is�desirable though non-trivi_l to extend that worh by climin_ti__g the assumption�'                  th_t the random variables are independent, thereby ha__dlin6 the case where�their dependency relationship is unknown and unspeci_ed. In this case of un-�speci_ed dependencyJ obtaining bounded results requires th_t the entire range�-_                  of possible depcndency relationships be accounted for, inclu_ing independence�as one of the in_nite number of possible dependencies. W1_ile the traditional�appro_ch of Monte Carlo simulation does not bound the range of results that�are possible when depe1Jdency is unspeci_ed (Ferson 1996), the desired bounds�can be obtained with othe1' techniques.  A copula-based _pproach (_anh et�al.  1987) whiclJ w_s signi_cantly extended by Williamson and Downs (1990)�and termed Probabilistic Arithmetic, has been implemented in a commerci_lIy�-                  _vail_ble software system, RishCalc (Ferson et al.  1998).  DEnv (Distribu-�tion Envelope Determination) is described by Berleant and Goodman-Strauss�(1998). A comparison of DEnv and _robabilistic Arithmetic reve_ls underly-�_                  ing similarities (Regan et al., submitted), as well _s di�erences (Berleant and�Goodman-Strauss 1998) th_t motiv_te its software irnplementation as well as�conXinued development in other ways.�This paper report,s _ software implementation of DEnv (see Fi6_Ires 1 and 2).�This tool represents an advance over our previously developed tool, as described�next.��_                    _ Calcul__ion of z = J(2, _J) when 2 and y are not cJssumed independent�(_erleant and Goodman-Strauss 1998) is nov supported. The previously�clescribcd tool assumc,s random vari_blcs are independc__t.  T1_e current�tool bounds the r_nge of results that are plausible when independence is�not assumed. Fi6ure 1 shows an example.��_ Calculation of Jna2(2, _J) _nd nz2n(2, y) for random v_ri_bles _ and y is�-                     now supported. This can be useful in problems lihe determining the time�to complete two concurrent tashs, because the completion time of both is�the same as the completion time of the tash that _nishes second, i.e,, the�m_imum of _he two individual completion times.��_ Calculation of z _- J(_, y) in some instances __here the interval expres,sion�for J(2, y) leads to excess width is now supported.  Although in DEnv�_                     _ _nd y are prob__ility distributions, DEnv reduces opcrations on distri-�butions to oper_tions on intervals, and the net e_ect of excess _vidth in�the interval calcul_ted for J(_, y), 2 _nd y intervals, is e_cessively wide�envelopes derived for _(._,y), where _ _nd _J are distributions. The tool���27�



__             _                                       _  l                             __������������������handles suc_l expressions under the severe rest__iction that the function is�monotonic over the box de_ned by the range over which distributions _�and y a' re non-zero. While it would be desirable to incor'po_'ate more ad-�vanced techniques for reducing excess width for non-monotonic functions,�even the current capability extends the state o_ the art for performing                   ''�oper_tions on distributions of unhnown dependency, allowing evaluation�of expressions such as that which produced Figure 2 without excess width�in the envelopes because excess width is removed from the underlying                   __-�interval evaluations of t1_e expression.��_ Calculation of cascaded oper_tions' is now supported. These _re cases in�which Xhe res__lt of one operation is used _s an input to the next operation.                   _�T1_e distributions used as inputs to an operation are discretized density�functions, while t__e output of an operation consists of bounding envelopes�which are cumulative distributions. Thus to use the output of an operation                   _�as the input to another operations requires converting a pair of bounding�CDF envelopes into a disc_eti_ed density function. We have done this by�6eneraliz,ing the histogram representatior_ of an input to allow overl_pping�bars. This irl tur'n enables conversion of the envelopes to the generaIized                   -�histogram form, as will be dcscribed in the full paper.  The generali2ed�histog_ram form can then be used as an input to an operation the same�way _n ordinary histogram discreti2ation of a density function can.                      _���3   Algorith_ic _ssues��Calcul_tion of results in the case of unspecined dependency between operands�is based on a Joint distribution t_ble_u in which _iscreti__tions of each oper_nd�into intervals and associated probability masses form the margin_ls, and the                   -�interior cells are subJect to constr_int5 imposed by Xhe marginals. Linear pro-�gramming is called subJect to these constraints, as a subroutine to _nd each�desired point on the left and right envelopes. Only a limited number of points�need to be four_d this way, because the discrete nature of the problem allows�connecting the points safely tu produce st_ircase-lihe envelopes in which each�point is a bend in the staircase. While many details were covered in Berle_nt�and Goodman-St_'auss (1998), the li__ear programming aspects were not. There-                   _-"  ,�fore we will review t1_e DEnv al6orithm in the full paper, emph_sizing the linear�.            programming aspects. Details on the algorithm as it appIies to particular prob-�lems, including its line_r programming aspects, may also be found in other works                   __�under review and available t'rom the _uthors.                                         '���References                                                        --��[1_ S. Ferson, ''What Monte Carlo Methods Cannot Do'', HuTnan and _colog-�2cal R2sh _ssessTnentJ 1996, Vol. 2, pp. 990-1007.                                 '�����28                                          _�
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___        ?nn00                _                               _________�����������������_igure 1:  Two normal distributions each with x = 1 and _ = 1 were tail-�trimmed to within _-3, 5J (because the tool is currently limited to numerically                   '�valued bounds). These distributions were used as input variables. Given no as-�sumptions about their dependency relationship, staircase-shaped left and right�envelopes were computed which enclose the space within_ which the distribu-                   _�tion of (a sumciently large numbcr of) products of _s_mplcs of the inputs must�travel regardless of their dependency relationship. There are also three smoother�curves showing the product distributions for three particulaidependency rela-�tionships that _llow the curves to be computed relatively easily. One of these�is for independent inputs, a__d was computed using the Monte C_rlo-generated�products of 100,OOO samples of the inputs. The other two are _nalytically de-�rived di_tributions of the product assuming Pearson correlations of 1 _nd -1.                   '�����������������������������Figure 1:���Tigure 2 follows on next page: _K and Y are inputs.  Z constitutes envelopes�_round the result when the dependency rel_tionship between X _nd Y is un-�speci_ed, and Z = (38_Y-8_X)/(O.08_Y+O.048 _X). The cumulative forms                   _�of histo6ram discreti2ations of PD_s (X and Y) are pairs of CDF bounds that�each looh lihe two staircases in which the top bends of the lower curve touch�the bottom bends of the upper curve. The cumulative form of the result does�not in general obey th_t constr_int, and her_ce c_nnot in general be displayed�correctly as a histogram. It can be displayed correctly in cumulative form, as�shown in the lower subwindow.�����������3O�
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_______����������������������Economic Dispatch:  Applying Interv_l-B_sed��Dependency An_lysis to _n Electric Power��Problem        /���Daniel Berleant, Jian_hDng Zhang, RuJun Hu,�and Gerald Sheblé                                 __�Dept. of Electrical and Computer Engineering�Iowa State University�Ames, Io_va 50014, US_                               _����1   Sum_ary           _                                       _��A common way to model uncertainty in the value o_ a _uantity is to use a prob-�ability de__sity function (PDF) or its integral, _ probability distribution function�(CDF). When two such values are cornbined to form a new value equal to their�sum, product, max, etc., the new value is termed a derżved d2stribution_5J. It is�well-known that derived distributions may be obtained by numeric_l convolu-�tion, Monte Carlo simulation, and analytically for speci_c classes of input dis-                 -�tributions, ur_der the assumption th_t the input distributions are independent.�It is also possible to obtain derived distributions for specined dependency rela-�tionships other t__an independence. However, it is not _lways the case th_t the                 ___�dependency relationship is hnown. Thus there is a need for obt_ining solutions�without _ssuming independence or any other speci_c dependency rel_tionship.�There are two numerical algorithms th_t have been implemented in softwa_e�far this. Numerical appro_ches have the advant_ge of applicability to a very�wide class of distributions. Probabilistic Arithmetic _6J is implemented in the�commercially _vailable software tool RiskCalc _3J. Interv_l-_ased Dependency�An__lysis (IBDA) _2J, which extends ou_' previous tool _1I by eli_in_ting t__e                 _�independence assumption, is implemented in the softw_re tool Statool _nd is�available upon request from the _uthors. While the two tools h_ve fundamen-�tal sin_ilarities [4J , a signi_cant di�erence qvith respect to the present problem�is that IBDA supports, and Statool implements, excess width removal in the�underlying interval calculations, from some expressions. In this paper we apply�I_DA to gener_lize a solution Xo the well-lcnown econoTnżc d2spatch problem in�electric po_ver gener_tion to the case where the dependency relationship between                 _�the fuel costs of two gener_tors is unspeci_ed.�������32�



_______                ___ _ +l_(p2 l +_ (( _1 +1_o+o8___)),1_+_2p__o_)_+2v(2 (62 +2 + o o42 _2 +__2)o,),  ((3_))  _��������������_   _he Problern��'                 _he economic dispatch problem in electric power gene_'ation may be stated as�follows. It' is desired to determine how much power should be generated b__ each�of two gene_'ators to meet _ given level of dem_nd so t1_at total _ene/r_tion cost�-_                 is r__ini__i_ed. O__e uf a num_er of appro_c__es to solvin_' this pro_lem is termed�LaGrangian Rela_ation _7J. We incorporate uncertainty into the LaGran6ian�Rel_xation technique for solving the sample problem by modeling uncertainty in�the cost of fuel to run the generators with probability distributions, postulating�in addition that the dependency between the twu fuel costs of the two gener_tors�is unhnown (as would occur if one eenerator burns oil and the other coal). The�uncertainties are then propagated through the algebraic expression derived b_�-                 the LaGr_ngi_n Relaxation technique.�-                    First, we specify the cost equations as��F __ v  gp  o.o24p2  go   F __ v  Gp   o.o4i2 + 12o��where P_ _nd Pj are the power outputs of gener_tors 1 and 2 in meg_watts,; vl�_nd v2 are the fuel costs for generators 1 and 2 in $ per M Btu; and F_ and�_                _a are the gener_tion costs for given power output levels and fuel cost rc_tes.�Therefore generation costs change nonlinearly with power output according to�the following equ_tions.��_                         dF1    g  o  4 p   d_2�-=V1  +  ,   1,  -=v2(6+O.08P2)�1               2�Solving the problem requires minimizing an obJective function��___F  F __v  gp  o. 24p2  g      p   .  i2��subJect to the constraint P = P1 + P2 where P is the total customer demand�^^                for electric power which for this e_ample _ve tahe as 400 me_awatts. This 6_ives�_ constr_;nt function�P=Pl+p2= 400.                (2)�By the method o_ L_grangi_n multipliers from calculus, _t _n extreme value of�this obJective function,�dF_   d Fj�"                                  dP1   dP2�for some _. This is derived from the Lagrange function L which relates obJective�function F and con_traint (l) according to L = F + _ _ P, which implies�aL   dF1(P1)�'   _Pl    dP1�_                for generator 1 and similarly for 6enerator 2.�From (1) and (3),��v1 (8 + O.048P_) = _ = v2 (6 + O.08P_j),  P2 = 400 - P1,���33�



_()                   ____������������������and solving simulta__eous equations for P_ gives                                      __��38v2 - 8vl�l=_J  _2=400-P1J�.  V2 +  .   v1�as the most economical _mounts of power to generate fr0m generators 1 and�2 to meet the demc_nd (assuming those amounts aTe within the capacity of�both generators). P_ and _2 are easily calculated ror rcal va_ues of v1 and v_,�but given distribution functions for v_ and v2, the problem requires evalu_ting                   _�an expression on r_ndom variables v_ and vJ_ involving a sum, di�erence and�quotient.  Solving it by dividing a di�er, ence of r_ndom variables by a sum�results in excessively wide envelopes on the CDFs for P1 and P2 because the                   _-�sa_ne oper_nds occur in bot1_ te_'ms, leading to excess width in the underlying�interv_l calculations. Instead the entire expression must be treated as a single�binary operatian on v1 and v2. Figure 1 shows the results given PDFs describing�v1 and v2.���3   _iscussion and Conclusio_                                     _��Statool currently ha' s certain limitations.  Planned extensions include the fol-�lowing.��1. Asymptotic pdf t_ils. The process of discretizing a pdf into a histogram�does not presently allow for the case where _ pd_ tail trails o� to plus�or minus in_nity.  Yet this implies setting de_nite bounds, though any                   _�speci_c such bounds might be hard to Justify.  Indeed unusual and ex-�treme v_lue,s can occur in the electric power dornain, as happened for�example in the California power crises recently.  The solution is to al-�low the discretization to include open intervals with an end point at oo�or -_. This in turn _vould require the arithmetic operations to be de-�_ned on suc1_ intervals. Fortunately this is possible, e.g., _1, _) + _1, 2I =�[2, oo), (-_, -1J _ [-2, -1J = [1, _), _1 , 2J/ [-1, 1J = (-ooJ _), etc.                       _��2. Parti_l dependency. While the system currently can calculate eit1_er under�the assumption of independenceJ or with no assu_ption _bout dependency,�p_rti_l inform_tion about dependency is often present in real problems.                   _�Correlation values are a typical example. An example would be prices of�di�erent fuels, for which one would expect a generally positive correlation.��In the full paper we will explain the IBDA algorithm, _nd also include ex-�planations _nd _gures, showing how assuming independence results in stronger�results, while e,xcess width in i__terval ev_luation of equation (4) leads to we_lceT�results. We will also r'emarh on t__e implic_tions of the CDF bounds to decision-                   ^�mahers.                                                                ,�Figu1_c 1: Solu_ion fo__ P_ of e4uation (4), given the histogram-discretized�PDFs for v_ _nd v__J shown.  The CDF for optimum po_ver generation from                   _�generator 1 v_ill be within the cr_velopes shown regardless of the dependcncy���34                                          -�



_______                   _____l     __   _ _   __   n      _         __ __ _ _  v   _��������v,   ;;;__;'__'c'', ''?  _,;,,,_  :___ ''_''�5.O                                     7.O�'                   V2                  , _, ,,   _?___, ,,____ , __n�4.5                                     1.5�P_�l65.230                           29_.667�Figure 1:�relationship between inputs v_ _nd v2. The envelopes might be sumcient for a�decision, or might point out the need for additional information gathering to�sharpen the input distributions and/or identify their dependency relationship�sumciently to sup_ort a decision.�_ _                 References�_1J D. Berleant and H. Cheng, ''A Software Tool for Automatically Veri_ed�Operations on Intervals and Probability Distributions'' , Relżable Co1nputing,�_                    1998, Vol. 4, No. 1.�_2J D. Berleant and C. Goodman-Strauss, ''Bounding the _esuIts of Arithmetic�Operations on Random Vari_bles of Unhnown Dependency using Intervals'',�_el2a_le Co172put_ng, 1998, Vol. 4, No. 2, pp. 147-165.�'                  _3J S, Ferson, W. T. Root, _nd R. Kuhn, RAMA5 ßish Calc: ßżsk Assess1nrnt�_                   wżth Uncerta2n, Nu1nbers, Applied _iomathematics, Satauhet, Ne_4 Yorh ,�1998. See also http://www.ramas.com/rishcalc.l_tm.�_4I H. _egan, S. Ferson, and D. Berleant, _guzvalence o_ Fi_e MetJ2o_s _or�-'                   _ound2ng Uncerta2nty, submitted.�_5l M. D. Springer,, Tl2e Algebra oJ Rando_ Variables, WileyJ 1979.�_                 _6I R. Willianlson and T. Downs, "Prob_bilistic Arithmetic I: Numerical Meth-�ods for C_lcul_tin_ Convolutions and Dependcncy Bounds'', International�Journal oJ ApprD_ż1TLate Reason2ng, 1990, Vol. 4, p_. 89-158.�-                 _7I A. J. Wood and B. F. Wollen_erg, Power Cenerat2on, Operat2on, an_ Con-�trol, 2nd ed., Wiley, 1996.��35�



_p      p   y  cs__ _ynd Ay stcrsotnom_ yt and   ______t__r������������������������V_lid_ted Integr_tion of Astero_d Orbits���Ma,tin _e,zl and K olco Malcino2 J���lDe _rtment of_n si�National Superconducting Cyc1otron Laboratory                        _�Michigan State University�East La__sing, MI 48824t USA, berz@msu.edu�2De artment of_h si�University of Illinois at Urbana-Champaign,�Urbane, IL 61801-3080, USA, mahino@uiuc.edu����Dedjcated to ßaJnon Moore, who started żt all��From the earliest d_ys of self-v_lidating methodsJ the integration of orbits�i__ t__e solar system has _'anhed high on t1_e interest of researchers_ in fact the�early worh of Ramon Moore in this area presented one of the _rst practic_l�applications of self-validated and inXerval methods.  In this talh we focus on                  _�recent developments in this directionJ speci_c_lly the integration of near-e_rth�asteroids and the exclusion of collisions with earth. We review both previous�worh and show various new improvements to the performance of the technique.�The appro_ch is b_sed on t1_e Taylor model approach, which allows for a�description of functional dependencies without same of the limit_tions of di-�rect interv_l methods. We review boXh the TayIor model appro_ch as well as�the basic ide_s of the veri_ed integrator VI. First, the method has a sharpness�t1_at scaIes with a high order of the domain si2e. Furthermore, it largely _voids�the so-c_lled dependency problem that arises in the validated evaluation of ex-�tended calculations. This is done by explictly describing dependencies on initial�conditions as a high-order Taylor polynomial and a small interval remainder at�any time step. Various practical examples related to this question _re given.�Fin_llyJ the method scales very favorably to higher dimensions and can alleviate�the so-called dimensional curse. We present a few examples of the methods for�v_lidated optimi2ation _nd quadrature. We also discuss the various platforms�Xhrough which the methods c_n be used, including the C++, F90, and COSY�interfaces.                                                         --�When applied to the veri_ed integration of ODEs, the method successfully�avoids the so-called wrapping e�ect problem, which is in essence a manifesta-�tion of the dependency problem that unavoidably occurs in the very e_tended                 -���36�



__t________                   _          l    __����������������functional dependence of _1_al conditions on initial condit,ions as prescribed by�_                  the step-by-step integration scheme. It also allows _ simple combination of the�_requently separated steps of _nding an a priori inclusion and then subsequently�performing a more sophistic_ted actual step. M_ny of the det_ils of the methods�_re discussed in a talh by Kyoho Mahino at this meeting.�For the _urpose of integr_tion of asteroid orbits, a f_r-reaching control of�the wrapping e�ect is crucial because of the unavoidably rather lar ge initi_l�dom_ins to which the dyn_mical quantities are hnown. _e discuss in detail tl1e�'                  perform_nce of the T_ylor-model b_sed integrators for a full model of dynamics�in the solar system, including rel_tivistic and other corrections that le_ds to _n�accuracy within the hilometer domain for typical integrations. The validated�methods allow a control of the overestimation to a few percent over inXegration�periods of up to lOO ye_rs, which is sumcient for detailed stu_y of possi_le�collisions of near-earth _steroids with earth.���������������������������������������������������37�



__tfrulorme rauplperso_(Jlm) ____tlo_n( to thwe_d_Jen(n_d_r_l_)_teo_flandteeggrre_e_l_a_d(J_)h_ere_rnww_ >(2__o) _tJc(_2n)db2ebryeparqeuse__dltread_                  ___________��������������������Computing Tight Bounds for the L1-Norm of                    -'�Peano Kerne1s      ,                             '��Chin-Yun Chen�Departrnent of Appl_ied Mathematics�National Chiayi University, Taiwan                             _�email: cychen@mail .ncyu. e_u .tw���The purpose of this paper is to point out essential consideration for com-�puting tight bou__ds for the error constants required in the error estimation of�_ numeric_l quadr_ture rule.�Due to TearloJ cf. _2, GJ, the qu_drature error _(J) :-- I(J) - S(J) resulting�            N   N         _  N        .__tt�M�'-  i--_  _   _        7      _�aS�b�_(J) _   I_T(_) J(r) (_) _t J             (l)��where J _ Cr_aJ _J, 1 <_ r _< d+ l _nd the Peano hernel _r,(t) is de_ned by��K,c_) :-- _, (c2 - ,)_T-'>)���.th (,_ ,)(,) ._ _(2- t),�'    r!�(_-t)_ J   for 2>t�2-t) +:--              -  '�O,   _or 2 < t�Genel'_l1y, the q__adrature error (1) is estim_ted according to�b�__(J)l <_ _IJ{'_ll_ N   _K,(_)ld_ ,            (2)��or for validated computation�_                b�_(J)  _  J(_}(ra,bJ)_   K,+(_)dt-J{,}(ca,_J)_   K,-(t)d_,   (3)��hereK+, _.-_max_rt  o  K- t ..__m_x_Kt  o.                              -���38�



____t __              _ftoThnefJA(relrl)rslbot Jrr(ae()ls6_h)thllmtd_o_arJtdwl_of_Knrcd(l2(_mt))e_dhtnthdod(JJ3_)foatKrhcelo(em_tr)rdpJou_rxcl(nong(sttf)h_)en/t(esdrJroa_rK1c)ron(stdt_)_hdn_N t1ahhJnN_db _lJ_arrbK_(_tr) l(_tt)th_dy_llystt����������������'                    I_ K, (t) is de_nite on _a, bJ, i. e. K,(t) does not chan gc si gn on _a , b J, then�_                   '             _     _      b                  _N��not be a dimcult tash, at least not for w(2) = 1. However, this is not the usual�c_se. According to (1), we h_ve�_'                                      _�_(__) = _! _   Jí,_ (t) dt,    1 _< r _< d + 1.         (4)��b�__                  t OOWSlmmelateytat  a  ,t  t=O Or1 _<r< _  . Tl Sl m p l _ S�only the _eano l_er'nels of hi_'hest orders mc_y be de___ite. If Ir J + _ (t) is de(jnite�b      .          d +_      _�aJ  ,t en  a  r    lSe qUa  O   _      +  ., W l C  C _ n  e e a S l�computed.  On the other h_nd, if K_+_ (t) changes its si6-n on _a, bJ _nd/or J�is not sumciently smooth on _a, bJ , i. e. _ _ C_ _aJ bl, l _< r _< d + 1 , then for�            '   '                      b  +        b  _�have to be hnown, where l <_ r <_ d + 1.�_                        _                   '                      '��to compute all the 2eros ofIr, (t) at _rst, then to inte gr_te K, (t)      betwcen�;                                                         _ 2 ż _ _ _ + 1 J�_                  every two adJacent zeros within e_ch subinterval __;, 2; +_ J, cf. _11, 9, lO J. Since�it is not easy to identify all the zeros of _e_no hernels numericall y, hence , in�_11J the method w_s only applied to Kr for r = 1, 2, in _9I the method was�only _pplied to K_ by _nalytically con_rming that for G_uss-Le __endrc rules K d�possesses only the 2ero O. In _10J the _rst trial for the whole ran ge 1 _< r S d + 1�was undertahen and interval comput_tions was used. However, the n u m e r i c a l�results presented in _l1, 9, lOJ reveal themselves to be valid_ted or im proved. In�-                  the literature there was also much e�ort given for estimatin g a__ u p per bou n d�_�Or  a Kr t  t, c , 2, 5, 3J _. ,4mong them, good results ln 6eneral can onl�be obt_ined for r = d+ 1. For 1 <_ r _< d, the most suggested u p per bounds are�_                 relatively coarse. This paper adopts the same method used in _11, _, 10 J _n _�has successfully gained signi_cant improvement in the com put_tional qualit y for�the whole range 1 <_ r _< d + 1.�,                    In the presentation, essential consider_tion for _oin g the com putation, the�algorithms as well as numerical results with com parison to p u b l i s h e d b o u n d s�are proposed. All the ideas presented in this pa per c_n also be a p pl i e d t o o n e-�dimension_l S_rd l_ernels appearing in _he error re presentation of a numeri c _ l�_                 cubature rule.���References  '��_1J GN Alefeld and J.'Her_ber6er, Introductjon to Interval Co1nputatżon, Aca-�demic Press, NeW Yorh, 1983.��_2J H_ Brass, QuadraturverJahren, Vandenhoecl_ & Ruprecht , Goettin g'en , 1st�ed., 1977.���3_�



___ __    _t                          __________������������������_3J H. Brass, ''Error _ounds based on Approximation Theory'', In: T. O. Es-                  _�pelid and A. Genz (eds.), NuTnerżcal Integratżon, Kluwer Academic Pub-�lishers, 1991, pp. 147-1G3.��_4J H. Br_ss, ''Erro_' Estimation for the Clensh_v-Curtis' Quadr_ture Method'',�In: U. W_nnagat (ed.), Abh. Braunschw. Wżss. _es., Verl_6 Erich Goltze,�1992, p. 43-53.                         ,��_5I H. _r_ss and K.-J. Foerster, "On the estim_tion of linea_' functionals'',�Analys2s, 1987, Vol. 7, pp. 237-258.��_6J _.-J. Davis _nd P. Rabinowitz, Met1_ods oJNurnerżcal Integrat2on, Academic                  _-�Press, New Yorh, 2nd ed., 1984.��[7J R. Hammer, __. Hoclcs, U. _ulisch, _nd D. _at2, NuTner2cal Tool6o_ Jor�Ver2_ed Con2_utjng I, Springer, Berlin, 1993.��_8] R. Klatte, U. Kulisch, M. Nea6_, D. Rat2, and Ch. Ullrich, _A5CAL-XSC,�Springer-VerIa6, 199 1.��_9I F.-G. Lether, "Cub_ture error bounds for Gauss-Legendre product rules'',�SIAM. J. Nurner. Anal., 1971, Vol. 8, No. 1, pp. 3G_42.��_10J U. Storc1c, Ver2_zżerte Berec72nung rnehrJach geschachtelter s2ngulaerer In-�tegrale der Caskinet2k, Ph.D. thesis, Universitaet K_rlsruhe, 1995.��_l1] A.-H. 5troud, _nd D. Secret, Caussian Qua_rature Forrnulas, Pretince Hall,                  _�Englewood Cli_s, N__w Jersey, 1966.��������������������������������4O�



________                 m_ore_usua_l form_urlJ_tlo(n whe)r_e 2 h_s th___ forr_m z(   __)J  _? (2 ot_) + _N (N_N_)_N,���������������������Tow_rds Valid_ted Glob_l Optim_l Control���B ruc e C hrist i anson�Numerical Optimisation Ce__tre�^'                             _  University of Hertfordshire�H_t_eld, England, Europe����Consider _ discrete-time optimal control problem in the followin6 d2rect form:�choose control values uz. _ RP for each timeste p O < i < N so as to minimize�_                 z = F(_N) where _o is some _xe_ constant and the state e quation is 2 i + _ =�J2 (_2, uż) for O 5 ż < N. Here each J; is a smooth map from R_ x RP _ R_ _nd�,                 F is a smooth map from R_ to R. The dimension of u; m_y depend u pon the�timestep ż, but _or notation_l convenience we omit this re_nement.�We lose nothing hy restricting _ttention to target __nctions of this form: tl_e�                      t                _  N_1  .  .  .� -  2--O  _  21 i�can be reduced to the form 5 = F(zN) by _ugmenting each state 2; with a�-                 new component _2 _ ß de_ned by vo = O;v2+1 -- _2 + _2 (2i ,u;) and dennin g�F(2N , vN) = vN + FN (_N).�In the direct formul_tion the Np independent variables are the controls u ;�-                 O 5 ż < N.  Typically the number of timesteps, and hence the number of�independent ___riables is very l_r6e (millions). This mahes the validated solution�of such problems dimcult.        '�_n t1le alternative żnd2rect formulation, the onl y i__de pendent v_riables are�the q components of an initial costate 2o. At eac1_ timeste p 2, the current co__tl'ols�u,; and the successor costate _;+_ are im plicitl y de_ned, in terms of tlJe curr e n t�state _i and current costate 2;, _y the costate equ_tions and tl_e Pontrya gin�-      ,           equations��_                    _    J      T_    o    I      T�_i -  2,; _i_Ui  _i+l =  _   u , ż _i,U2  Zi +l =��The state equation _i+_ = _; (2;, u;) then gives _;+_ in terms of_; and u ;. In the�indirect form__l_tion, the req4irement fo_' the p_th to be o ptimal is th_t 2�'                 F__N) = O which we observe c_n be reg_rded as a form of the tr_nsversaIit y�-                condition. For an optimal path (although not in general) the numerical val_les�of the costates _; are equal to those of the ad_o2_t st_tes _2- _ _z /__ __�For a non-optimal path, the residu_l value r = _N - _' (2N) of the tran,sver-�_                s_lity equation gives a measure o_ how far the initial c/ost_te value 2 o di_ers from�that for the optimum path. An important advantag_e of the indirect approach����1l�



_( c_u zJ  D   c_J ycBAJ c)JJ ccccJJJJfJJ JJ_J_l__DDD_ 1n__o1cccJJ?caa(JJJ(+)((()ccJJ(D)))J_ cccJJJ_)Jlt/  _JJ c_oa(t(  ))  J       _                 n______������������������for valid_ted methods is the drastic reduction in the number of independent�variables, from Np to _.�In 1983 PantoJa described a computationally emcient stagewise construction�of the Newton direction for the direct formulation. Recent,ly _6J we formulated�an  indirect _nalogue of PantoJa's algorithm, which gives exactly the Newton�step ao for tl_e initial cosX_te with respect to a terminal transvers_lity condition.�We believe this indirect r'eformulation of PantoJa's algorithm potentially forms�a useful tool fo_' attaching the problem of verined global o_timal control using�interv_l _netho ds.�We conclude this abstr_ct by giving a _calar (non-interval) form of the indi-�rect PantoJa algo__ithm, _nd then indicate some of the possibilities.                           "^���Step 1.  Given the _xed initi_l value for _o, set a trial initial value for 2o. For�j from O up to N - 1 calculate u; _ RP;2;+1,_;+_ _ R9 by solving the implicit                    _�costate and Pontry_gin equations, respectively��TN         _    J  T�_i -  , ,;  2i+l =  ;   .Ui =  u,;  2i +l =��for u; and 2';+_ and setXing _;+_ = J2(2;,uż).���Step 2.  Set z = F(_N), and de_ne aN _ R_, DN _ R_X_ by                              _��DN = F''(2N);    aN = -r  where r = 2x - F'(2N).��Step 3.  For ż from N - 1 down to O calculat,e a; _ Ra; A; , D; _ R_X _; B; _�RPX4_,Cz. e ßPX_ b��T     J    N   T�i =  _ ,;   i+1  , ,i + 2i+1    _,,;��T     J    _   T�; =  u,;   i+1  2,; + 2i+l    u2 ,i�J  T     /    N   T  JJ�i =  u ,i   ;+1  u,;   2i+1    u ,,;�where _.J denutes ev_luation at (2;,u;), and we write (for example)��_  _�J  T     J              2;+1 l       '   2i+1 m�_   _i+l  , i     Or       _   i+l l ,m  _  etC_�'        '  j,h       _    Ui J'            _i k��_f C_ is singular then the algorithm fails, otherwise set��T c-l��J  T      T  _l  J  T�ai =  ,.,;  ai+1 -  ;  ;   u ,;  ai+1�and STOP.                                                           '���_2�



______                _g_v  t e co_rrespoll_d n_6 ro_( o_f)A __  _t w(__lere J  (ar/)a)_o for the mldpolnt of����������������'                   Either the algorithm fails to terminat,e, or else _t the end ao satis_es�d�2N -_ _N +ao__ 2N-F 2N  =�2o�_                    Since in the region of _n optimum path we have that all the Ci are positive�de_nite _6J, the indirect algorithm can be combined with a variational analysis�to provide a largeish box around the (believed) global optimum for 2o in which�interval Newton est_blishes that only one solution to the transversalit y e quation�exists.          _�_or ex_mple if we set r to be a cartesian basi,_ __ector, then the al6orithm�i es h        i        __  _l       __    ~       '   t�_-                 the box [2oJ = 2o + _. Using Automatic Di�erenti_tion techni ques [l J we can�di�erentiate through the costate and _ontrya6in equations to evaluate ra1J ges�_,                  for the derivatives B = __r/d_oJ.  Then any optimal point in [_o] is alsa in�_                 _([_oJ = 2o + ao + _[I - ABI.�This should si6ni_cantly ease the taslc of proving other boxe,s to either co _l-�tain no solution to the transversality equations, or to be suboptimal.�We stress that the outline given here is very simplistic (it is _ssumed that�_ll state and control constraints have been incorpor_ted into the target function�by penalty ter_s, for instance) and that much worh remains to be done before�-!:                  global optima for control problems can be validated rigorously in a reason_ble�-!'                  time. Nevertheless we believe that the approach set out here is a viable manifesto�for a pro6ramme to achieve this.���'                 References��_1J M. Bartholomew-Biggs, ''Automatic Di�erentiation of Im plicit Tunctions�=.                      using Forward Accumulation'', Con2pu_at2onal OptżJn2zatżon and A p pl2ca-�t2ons, 1998, Vol. 9, pp. 65_84,��_2J M. Bartholomew-Biggs, S. Brown, B. Christi_nson, and L. Dixon, ''Au-�-                     tomatic Di�erentiation of Algorithms'', Journal o _ Co_ putatżonal an_�'                      Appl2e_ Mathe1natics, 2000, Vol. 124, pp. 171-190.��_3J _. Christia1Json, "_everse Accum'ulation and Implicit Functions'', Optż-�-'"                     _2zation _etho_s and SoXware, 1998, Vol. 9, pp. 307-322.��__J B. Christianson, ''Cheap Newton Steps for Optimal Control _roblems:�Automatic Di�erentiation _nd Panto Ja's Al 6orithm'', O p t 2 Jn i z a t i o n M e t h-�o_s and So_ware, 1999, Vol. 10, pp. 729_743.��_5I B. Christianson and M. Bartholomew-Biggs, ''Globali_ation of _antoJa's�_                     Optimal Gontrol Algorit,hm'' , In: Fro1n SiTnulat2on to Opt2_2zat2on: 3r_�Internatżonal ConJerence on Auto1nat2c Dż_erent2ation, Springer LNCS,�2001 (to appear).���43�



__          _t             y                 _  ___________t�����������������_6I _. Christi_nson, "A Self-Stabili2ing PantoJa-Lihe Indirect Al gorithm for                  _�Optimal Control'', OptiTnjzat2on Methods and So _ware, 2001, V o l. 1 6,�pp. 131-14_.��_7] T. Coleman and _. _iao, ''An Emcient Trust R'e gion Method for Un-�constrained Discrete-Ti_ne Optimal Control Problems" J Co_ putat2onal�Opt2Tn2zatżon and Appl2cat2ons, 1995, Vol. 4, p p. 47-GG.��_8J D. Conforti and M. M_ncini, "A Curviline_r Search Al gorithm _or Un-�constrained Optimiz_tion'', Opt2m2zatjon Metl_ods an_ So Jvware, 2001 (to�appear).               '��_9J L. Dixon and M. Bartholornew-Biggs, "AdJoint-Control Transformations�for Solvin6_ Practical Optimal Control _roblems'', Opt27nal Control Ap-�pl2cations and MetJ2ods, 19_1, Vol. 2, pp. 365_381.��_10J H.  Kab_iwada et al,  Numeri_al Der2vat2ves  and Nonlżnear Analys2s,�Plenum, Ne__ Yorh, 1986.��_11I J. F. A. De O. _nnt,oj_, Al_or2thms Jor Constrained Op_jm,2zat,ion, _rob-�lems, _1l.D. thesis, Imperial College o_ Science and Technolo g y , Universit�of London, 1983.��_12J J. F. A. De 0. Pantoja, ''Di�erential D ynamic Pro grammi n g a n d N e w-�ton's Method'', Int _ Control, 1998J Vol. 47, No. 5 , p p. 1539_1553.������������������������������������44�



__   _   ___Escola p__oll_te/cn_.cat pdus_el.ndpl_avod.nedxace a Gs_tpa_ro/oolls__cpsaaa4lo_�������������������Computing with Sets of Prob_bilit y Me_sures���"                   F_bio  aliri   2   nl  o é   r l  F r r i  d    h2�_nd Cassio Pol o d e C a m o s3��-                         1�Săo Paulo, SP - B r a z i l�2univ  Estadu_l�^                              Ponta Grossa, P_ - B r a 2 i l�3 po _t ifíci _ univer�Săo Paulo, SP _ B r a 2 i l����,                   The computation_l mani pulation o f p r o b a b i l i t y m e a s u r e s o _ t e n r e q u i r c s t h e�''                treatment of interval vaIues, not onl y d u e t o n u m e r i c a l e r r o r s , b u t a l s o d u e t o�more fundamental dimculties: w e m a y w a n t t o m o d e l i m p r e c i s e b e l i e f s; w e m a y�have incomplete hnowled ge _bouX probabil i t y v a l u e s; w e m _ y b e i n t e r e s t e d i n�__                mer6ing beliefs from grou ps of e x p e r t s; a n d w e m a y w i s h t o v e r i f y t h e e � e c t o f�perturb_tions in probabilist,ic models _2, 17I. Such dimculties have oft,en led to�the study of interval prob_bility and related theories. The 6oal of this p_ per is�to present a brief overview of me t h o d s a n d r e s u l t s t h _ t c a n b e r e l e v a n t t o t h e�^               v_lidated manipulation of prob_bilisti c m o d e l s.�The most general re present_tion f or i m p r e c i s i o n i n p r o b a b i l i s t i c m o d e l s s e e m s�to be provided by the theor y of sets of probabil i t i e s ( c _ l l e d c r e _ a l s e t s _ 1 3 J). I n�-               this worh we focus on closed c o n v e x c r e d a l s e t s ; t h e r e _ r e a x j o m _ t i c d e r i v a -�tions of such credal sets __ nd other variants _12, 16, 17I. Consider two examples.�First, consider a binar y varia bl e X a n d t h e s e t o f m e _ s u r e s d e _ n e d b y t 1 J e i n -�_               terv_l P(X = 2o) _ _O.3, O.4 J, where P (X = _ o) i s t h e p r o b a b i l i t y o f t h e e v e n t�(X = _o) - here a sin g'le interv_l c a n d e _ n e t _ _ e c n t i r e_ c r e d a l s c t.  S e c o n d,�consider a variable Y that c_n tahe thr? .e v_lues, ( y o, y _, y 2 }.  A p r o b _ b i l i t y�distribution for Y is entirely de_ned by _ three-valued vector ( p o , p _, p 2) s u c h�_               that p2 > O and _ __pi = 1. We can build a cr e d a l s e t b y t a h i n g a d i s t r i b u t i o n�p (Y) and consider i n 6 t h e s e t o f a l l d i s t r i b u t i o n s r ( 5/) s u c _ _ t h a t t h e d i � e r e n c e�IR(A) - P(A) J is always smaller than some positive e for an y event _ ( w h e r e�_               R(_) is the me_sure induced b y r (Y) and P (N) i s t h e m e _ s u r e i n d u c e d b y p ( 57)).�This type of credal set i_ called a totul z7ar2at 2 o n n e i g h b o r 1 _ o o d i n r o b u s t s t _ t i s -�tics _10J,�Given _' credal set Q (X ), we can obtain u p p e r e _ JJ e c t a t 2 o n s f o r a n y b o u n d e d�function: __J(X)J = maxpeQ _p__(X)I. Lihewise, we can de_ne lower e_ pec-�tatżons_ ___J(X)J = minp_Q _p _J(X)I. Lower and upper expectations de_ne_ 5�



__          _        _        _  __    _                        _____������������������expectations intervals, and the theory of credal sets can be viewed as a theory�that manipul_tes expect_tion intervals in a principled manner. We assume dis-�crete models in this p_per, noting that an _ssessment of the form _[J(X)J = _�is equivalent to a linear inequality _x J(2)p(_) <_ _.�Conditioning is generally t_hen to mean elementwise, _pplication of Bayes                   -"�rule; the cond2tżonal cred_l set Q(XtY) is obt_ined by _pplying Bayes rule to�each element of the Joint credal set Q (X, Y) _8, 13J.�Consider _rst the comput_tion of upper expectations _[i(/Y)] _vith respect                   _�to credal sets speci_ed by linear const_'aints. We obtain a linear progr_m with�an_lys, is going bach to the worh of Boole and with extensions b_sed on column-�generated met1_ods, as reviewed by H_nsen et al [9I.�A more i__teresting challenge is the computation of upper posterior expec-�tations _[J(X)IYI.  Still assuming linear constraints, we now h_ve a linear�frc_ct,ior_al opti_ni2ation problem [1__J. The most emcient method to deal with�these problems seems to be the Charncs-Cooper tr_nsformationJ which reduces                   _�the fractional problem to a linear program _11, 14J.  Other methods, such as�_VaIley's iter_tive scherne and the Dinlcelbach-Jagannath_m algorithm (hnown�in statistics as _avine's method) can be of value in speci_c cases _6J.                         _�An important situation in practice is the computation of _[J (/_) _YJ with re-�spect to a cred_l set Q (X) and a collection of ''lihelihood'' credal sets Q (Y _X = _),�for all values of X. 5urprisingly, we can still reduce this problem to _ linear pro-�gram with some mild assumptions on the sets Q(Y_X = _)J using an algorithm                   _�presented in [6_.�We now consider the imp_ct of independence reI_tions. The _rst dimculty�is that there are several de_nitions of independence for credal sets _5J.                        _�One possible de_nition (episte_żc 2_depende_ce) states that variables X and�Y are independent when _[J(/Y)_YJ = _[J(X)] and _[g(Y)IX] = _[g(Y)J for�_ny bounded functions J(X) and g(Y). Algorithms for inference in multivari-�_te models based on epistemic independence are presented in [7], but their�computation_l complexity seems to be quite high. A simple Marhov chain as�W _ X _ Y _ ZJ where all v_riables are binary, all probabilities are de_ned�by intervals, and e_ch variable is epistemically independent of all ascendants                   "�given the direct ascendant, de_nes _ credal set Q (W, X, Y, _) with more th_n 6�million extreme points!�A second possi_le de_nition for independence (strong żndependence) requires                   __�th_t any extreme point of Q (X, 5/) satis_es p(X IY) = p(X) and p(Y_X) = p(Y).�Computation of upper posterior expect_tio__s is now a multilinear prograrn with�many possible local m_ima.  There has been great e�o_Nt to solve such pro-�gr__ns when multiv_ri_te models _re represented by directed graphs (follow-�in6 t__e successful theory of Bayesian networhs).  Exhaustive algorithms have�been implen_ented; the JavaBayes syste_n, freely distributed by the _rst author�at http://www.cs.cmu.edu/NJav_bayes, o�ers some support for strong indepen-                   _�dence. Simulated annealing and genetic search havc also been tested [3, 4J. Al-�though the optimization problem is a reverse geometric program [1J, geometric�duality c_nnot be ecJsily used here, because the number of dual variables is po-                   _�tentially huge. The most promising approac1_ seems to be br_nch-and-bound al-���46                                          __�



__ ________     _  __          __��������������,          gorithms, coupled with redundancy-elimin_tion computations. Bec_use graph-�'                ic_l structures can be used to generate bounds on probabilities, it is possible�_                 to gradually ''cut'' the sizes of credal sets when loohing for a global maximum.�At the s_me time, convex hull algorithms can be used to elimin_te redundant�vertices from credal sets.���References��_                  _1J M. Avriel, AJ_ances żn Ceornetr2c Progra1nm,żn_, Plenum Press, New _rorh,�1980.         '��'                   _2J J. O. Berger, Statist2cal Decision Tkeory and Bayesjan Analys2s. Springer-�- _                    Verlag, l985,��[3J A. Cano, J. E. Cano, _nd S. Moral. ''Convex sets of prob_bilities prop-�agation by simulated _nnealing'' , Proc. oJ the Int. Con_. on InJormatżon�"                    Processing and Manage1nent oJ Uncertainty 2n Knowledge-Based Systerns,�J994J pp. 4_8.��_4J A. Cano _nd S. Moral, ''A genetic algorithm to _pproxim_te conve__ sets�of probabilities'', Proc. oJ the _nt. ConJerence on InJor1natżon PrDcess2ng�and ManageTnent oJ Uncertainty żn Knowledge-Bused SysteJns, 1_96, Vol. 2,�pp. 859_864.��_5I _. Couso, S. Mo1'al, _nd P. Walley, "Examples of independence for imprecise�probabilities'' J Proc. oJ the Firs't Int. Sy_p. on Imprec2se Pro_abilitżes and�Tf_e2r Appl2cat2ons, Ghent, Belgium, 1999, pp. 121-130.��_6J F. G. Cozman, ''Calcul_tion of posterior bounds given convex sets of prior�probability me,asures and lilcelihood functions'', _ournal oJ Co7nputat2onal�_                    and Cra_h2cal Statist2cs, 1999, Vol. 8, No. 4, pp. 824_838.��_7J F. G. Co2man, "Credal networhs", Art2_c2al Intell2gence, 2000, Vol. 120,�''                     pp. 199_233.��[8J F. J. Giron and S. _ios, "Quasi-B_yesian behaviour: A _nore realistic ap-�proach to decision mahing_'' , In:  Bayesżan Statist2cs, Unive__sity Press,�1980, pp. 17-38.             '��_9J P. Hansen, B. Jaumard, M. P. de Arag_o, F. Ch_Iny, and S. Perron, ''Prob-�_bilistic satis_ability with imprecise probabilities'', Internat2on_l _ournal oJ�_                    Appro22Tnate Reasonin9, 2000, Vol. 24, No. 2-3, pp. 171_189.��_10] P. J. Huber, ßobus_ Statistżcs, Wiley, Ne_v Yorl_, 1980.��_                 _11J B. Jaumard, _. _ansen, and M. P. de Arc_6'âo, ''Colurnn 6_nerat,io_J mct,hods�for probabilistic logic'' J ORSA _ournal on Comput2ng, Sp_'ing 1991, Vol. 3,�_To. 2, pp. 135-148.����47�
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______      _TlNbo2r csendes_1 _ Leonca FdJ(l_y_o_)c__Fa_Fs(ya(yd) o)2_t and Tnm_cul_da Garcl/a2��������������������The Application Fields of the ReJ ectIndex��P_r_meter in I_terv_l Methods for Glob_1��Optimi__tion������__                      1Institu_e of Informatics, University of Szeged�H-6701 Szeg_ed, Pf. 652, Hung_ary�Dept. Arquitectura de Computadores y ElectTónica�"                      Universidad de Almería, 04120 _4lmería. Spain����_-                 Suppose that for a 6iven function J: _ C_ _^ t _, the global minimum J*,�or an _pproximation of it (J) is a priori known. It may be obt_ined far exc_mple�using a loc_l search algorithm or during the execution of the _&B algorithm for�global minimi2ation. Let us de_ne a p_rameter pJ_ (Y) called RejectIndex as:���pJ*(Y) = _-   -    e _O, lI, Y C_ __.���Capitals denote intervalsJ underline and overline the lower and upper boun_s,�respectively. The inequality J* >_ _F(Y) holds, since pJ* is ev_luated for intervals�Y for which F(Y) cont_ins the glob_l minimum value.�-                 This parameter w_s designed mainly based oT_ the following: tT__dition_lly an�intcrv_l Y with the minimal value of_F(Y) was considered as the best candidate�to contain a global minimum. HoveverJ usually the larger the interval 5', the�_               larger the over-estimation of the range J(57) obt_ined in F(Y).  Therefore a�box could be considered as a good candidate to contain a global minimum Just�because it is larger th_n others. In order to compare subintervals with di�erent�__               si2e f_ir1y we normalize the dist_nce be_wecn J* and _F(Y).�The ide_ behind pJ* is simply that we expect the over-estim_tion to be nearly�symmetric, i.e. the over-estimation F(Y) - J(Y) above J(Y) is closely equal to�the over-estim_tion 'J(Y) -_F(Y) below J(Y), for small sub-i_Jtervals cont_ining�_               _ global minimi7,er point (th_t is _t the same time a stationary point). Hcnce, _or�such interv_ls Y the re__tive place of the global optimum v_lue inside the F(57)�interval should be high, while for intervals far fro1n global minimi2er points pJ_�-               must be small. Obviously, there are exceptions, and there exist no theoretical�proof that pJ_ would be a reliable indicator of nearby global minimi2eT points.�B_sed on t,hese ideas, several application _elds of pJ* and its vari_nts were�investig_ted.  The t_llc plans to summ_ri2e them in a systematic way,  The�



_________�����������������ReJectIndex has been previously used in parallel interval B&B algorithms as a�predictor of the camputational worh associated to boxes in the worh tree. In _1 J                  '�it ha_ been shown that using _eject Index an almost perfect worh load balance�for parallel implemenXations of the Interval __B algorithms can be obtained. It�can also be c_pplied to improve the multisection decision rule to achieve bett er�ove_'all efnciency (see [2J), since in the neighbourhood of minimizer points the�interv_ls must be subdivided into more subintervals to decrease the number of�function evaluations.                        '�For hard to solve glob_l minimi2ation problems it ma y be an o ption to�drop the guaranteed reliability (at least short term), and to get rid of those�generated subintervals that can hardly contain glob_l minimi2er points. This can�be done again on t__e basis of the pJ_ values. According to our ex periences, this�technique could be an e�ective measure, and probIems unsolv e d b y t r a d i t i o n _ l�interval methods could be solved by interval _inimization methods usin g the�related heuristic reJection rules _3, 4J. To heep the reliability of interval methods,�the reJected subi__tervals can be written into an output _le for a possible later�processing.�The fourth way for utilizing the ReJectIndex is to use it in the decision which�one from the list of candid_te subintervals is to be chosen for the next subdi-                   -�vision. The interval selection rule is a ver y sensitive part of the B&B m e t h o d,�since over two decades no new paradigm _vas suggested in this _eld. Casado and�coworhers suggested a new (not necessarily reliable) interval selection method�based on pJ_, and reported improvements in emciency in _5 _. It was shown in�_6J that with hnown global _ninimum value or with a good approximation of it a�di�erent new interv_l selection rule ensures the conver gence of the mi n i m i 2 _ t i o n�procedure to global minimi2er points, and that it improves _ gain the emcienc y�of the algorithm substantially.�Two further papers address additional issues on ReJectIndex: the article of�Kreinovich and Csendes shows (_7I) that Xhe interv_l selection rule based on pJ_                   _�is optimal in cer'tain sense; and Marhót and coworhers suggest new al gorithm�p_rameters similar to _eJect Index for constrained minimi_ation problems _8I,��Acknowledgments. The research was supported b y the Ministr y of Educ_tion�of Spain (CICYT TIC99-0361), and by the Grants FKFP 0449 /99, OM__ ES�24/2001J OTKA T O1724l, T 32118 _nd T 034350.���References                         '��_1I L. G. Casado and I. GarcíaJ ''New Ioad balancing criterion for parallel inter-                   -�val global optimization algorithms'', Procee_2ngs oJ t J_e 16th IAST_D Inter-�nat2onal Con_erence on Appl2ed InJor112at2cs, Garmisch-Partenhirchen, Ger-�many, 1998, pp. 321_323.��_2J L. G. Casado, I. García, and T. Csendes, ''A new multisection techni que�in interval methods for global optimi_ation'', CoJ__uting, 2000, Vol. 65 ,�pp. 263_269.���5O�
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__                                       ______������������������������Progress in R_tional Approxim_tion Theory��Using Interval Arithmet,ic���Annie Cuyt����In the p_st 2J_ years a lot of e�ort h_s been put in the investigation of�multiv_ri_te rational approximation techniques. See for inst_nce the extensive�bibliography in [2J.  In this talk we will discuss the added value of interval               '-�arithmetic _4_ when it comes to:��_ the formulation of conJectures about the convergence behaviour of certain�multivariate P_dé approximants, such _s)a Nuttall-Pommeren_e an_logue�in higher dimensions (see [3I),��_ the _evelopment of a relia_le and fast method for the computation of               _�multivari_te ration_l approximants th_t give rise to a structured linear�system of de_nin6 equations (see [1]).���References��_1] S. Becuwe and A. Cuyt, ''Multivariate Padé _pproxim_nts: homogeneous or�not, that's the question'', _roceedjngs oJI_ACS _OOO, 2000.��[2I A. Cuyt, "How well can the concept of Padé approximant be generalized to�the multivariate case", J. Co_put. Appl, Math., 1999, Vol. 105, pp. 25_50.                _��[3J A. Cuyt, K. Driver, and D. LubinshyJ ''A direct approach to convergence of�multivc_riate nonhomogeneous Padé approxi__nts'' , J. Co_put. Appl. Math.,�199G, Vol. 6_, pp. 353-366.                                           -��_4_ A. Cuyt and _. Ve1'donk, ''The need for hnowledge and reliability in nu-�merical comput_tion: case study of multiv_riate Padé approximation'', Acta�Appl, Math.J 1993, Vol. 33, pp. 273-302.                                   _�������������52�



_____                m_n_tgTrfeltncweeesr_gl_l_rtvehel_nsl_nstbeeytrel_tsshtenedo FtltlnNan/nlltthleNnetEesrltecvam_tllNecvnet_cnttodhre_odry_ytnal__smr_el_cnl_nobtneehrc_vov_nlltvomerx_optfrolNalcynehsltetndadrnu_dst tTrtl_hh_ele��������������������Interval Arithmetic Applied to Structur_l Design��-                       of Uncert_in Mechanic_l Systems���OlivieT Dessombz, FabTice Thouvere2,�Jean-Pierre L_îné, and Louis Jé_équel���_aboratoire de Tribologie et Dynamique des Systèmes�_                              Ecole Centra_e de Lyon�BP 163, 6913l Ecully Cedex, France�E- Mail: dessombz@mecasola. ec-lyon. fr������-               mech_nical structure, one has to consider Finite Element Modeling, w h ic h le_ ds�to matrices (such as sti�ness, mass, or damping matrix). Thus, l inear systems o f�equations are to be solved. If some of the mech_nical p_r_meters are uncerta in�_                _t design stage, or are variable such as the weight of _ tanh, they c_n be mo de le d�using the interval theory. The uncert_in p_rameters c_n be geometr ic_ l ones�(length, thiclcness,...), or physical ones (Young's Modulus,... ). T hen t he��problem is written as:��AI(_) = (b)                  (1)��with _AJ _ _A7 and (b) _ {b). Although several problems c_n be distingu is he d,�_s done by Chen _nd Ward in _17 _nd by ShaTy in _8J, we will focus e_clusively�in this p_per on the outer problem which is de_ned as _33 ([AI, (b)) ,where _A I�is an interval m_trix _nd (b) an interval vector:��_33([AJ, (b)) = (_ e ]__t(3_A] _ [AJ), (3(b) _ (b)) J [A J (_) = ( b))   ( 2)���Oettli and Prager theorem _5J give the ex_ct solution set.�Nevertheless, this method is quite dimcult to use with matrices correspon d-�_                ing to re_l physic_l c_ses in _ n-dimension_l problem. Most of the timet we w i l l�consider the smallest in_erval vector containing _33 ( _A I , (b) ), w h ic h is de _ne d�as a_33([AI, {b)). In this case, this ensures th_t the true solution is inc lu de d�_                in the numerical solution found 0_33 (_A_, (b)).�The existing algorithms used to solve _33(_A I, (b)) have been _ormu l_ te d�for reliable computing on _ numerical point of view. In _n interval matr ix for�



_mwgholdulus varl     t   _a_hN__2_1  ah22__ t          pp___l_a3k2_l  a4_kh22l2_ tk2t__ t    _        _____������������������ i __stance, each tern_ can vary independently of e_ch other in its intervalJ which                 _� is gener_lly sh_rp.� If the interval formulation has to be ad_pted to mechanicst the dependence� between the parameters must be tahen into _ccount. M_ny of the terms of the� m_trices aTe depending on the same parameters. For ,example if the Young's� .es .,, _ tne st_._ness m_trl.x c,n fo,m,__y be _,_.tten a  k11  kl2�� .cn _.s nox tne same as akll  akl2  tnat ,.s treated as  alkll  a_h_2  w_.€h                 _��al J a2, a3, a4 varying in a independent ly.�Moreover, the sti�ness matrices _re symmetric positive _nd de_nite. If all�the matrices ___J _ _KJ are consideredt we must notice that many of them do�not physic_lly correspond to sti�ness matrices. We shall then consider several�problems. For a system with few in_ependent degrees of freedomt general algo-�'     rithms c_n be used. Nevertheless, any information on the special form of the�m_trices (symmetric positive _nd de_nite for a sti�ness m_trix, for instance)�is lostt and the solution set can be widely overestimated. The problem is then�formulated as:               .                                          _���_AI _ [AoJ + T __ [A,,]   (b) _ (bo) + T ßp(bp)       (3)���N and P are the number of par_meters to be tahen into _ccount when building�the m_trix [A] and the vector (b). e_ and ßp are independent centered intervals,�enerally [-1J 1]. _AoI _nd (bo) correspond to the m__trices and vector built from                 _�the me_n values of the par'ameters.�Nevertheless, a ,special algorithm is required, bec_use the solution set is not�given by a combination of the bounds of the parameters, The following section                 _�is devoted to the present_tion of _ novel algorithm which enables to obtain a�robust and including solution.�Our aim is obtaining _n including solution by me_ns of a new _lgorithm.�The _lgorithm that has been choosen is the _ump's inclusion ([4]), which�relies on the _xed point theorem. In the general c_se, this algorithm converges�rapidly, with a good accuracy (see [6J)J and the convergence conditior_s h_ve�been studied by Rohn and Rex in _7J.                                          _�In order to _pply this algorithm to the mech_nic_l. formulation some _dap-�tations are required, due to the speci_c di�erences of the mechanical problems�highli ght e d p r eviou s ly.�_et us consi_er a system in which only one parameter is an interv_l. The�general equation of this system is:��([Ao] + a_A1I) (_) = (b)   a _ a            (_)                 _��And the p_rticular form of the matrix h_s to be tahen into account (see _2J).��[AI = [AoJ+a_A1I                 (5)          '�
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_t      Ll___ _   _/ _   __ _   _ _   _ l__      assume                 _______ _������������������structure (Figure 2). It ca__ model for instance the structure of a building, as                 _�in _3J.�It is a 18 elements structuret with 12 degrees offreedom. Only a concentrated�load on the beams is considered, applied on the DOFF 3, the torque F =�3 Nrn The p_,amete,s of the model are xhe lengths 0f the beams L1 __ L2 __                 '�1 Tn the ine,tia _ __ , 1o-8 4 Tn4 and thei, _rea s __ _ 1o-4 Tn2. VVe�that the bending rigidity _ is uncertain (_ = 210 t 10%o CPa).�We will study the two-dimension_l frame structure from a dynamical point                 '�of view. In the Finite Element Modelt we use _ Euler Bernoulli Beam model,                    -�leading to a stiAness and a mass matrix. We suppose that there is hysteretic�damping (_ = 2To) in the model. Because _ll of the beams _re identical, some of�the modes are relatively close to each other. This means that when the bending�rigidity is varying, the eigenmodes c_n overlap each others.  This behavior is�illustrated in the Figure 3, where _ harmonic torque is applied on node 3 of�the truss. The collocated transfer _Inction H(3, 3) is computed th_nhs to the                 _�proposed algorithm, _nd compared to deterministic transfe_' functions c_lculated�for various values of the Youn6's modulus.��'               6      1      8      9      IO�ll�0�Ll   1      2      3      4      s�o                          _ 12�O�F��O�_a     _a     Da     0a     0�L2     L2     L2     L2��Figure 2: Two dimensional frame structure with 12 DOFF. A torque _ is applied�onnode 3.��As we can see in Figure 3, the proposed algorithm can tahe overlapping                 _�eigenfrequencies into account.  It leads to an envelope of the modulus of the�tr_nsfer function. Some of the deterministic transfer function have been plotted,�to show that t__e envelope found does not overestim_te the real solution too                 __�much.�We will also consider a three blades wheel that is m' odeled with a 7 DOFF�system (see Figure 4). As the 3 blades are identical in the deterministic modelt�the eigenfrequencies are found as multiple eigenv_lues of a matrix sy_stem.  If�one of the blades îs mistuned, then the eigenvalues _re no more multiple ones,�and new reson_nces can appear.�On Figure 5 the transfer function H(1, 3) is shown. Blue line represent the                 _�deterministic case for which all of the three blades are identical, and magent_�lines the envelope of that transfer function, when the blade one has an uncert_in�Young's modulus (_ = _o t 10To). The envelope shows four reson_nce 2ones                '�This is due to the mistuning phenomenon.                                 '���56                                        --�
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_pp                      _            l                             ______������������������ integrated r'esource model.� In 1997 a new proJect, MechaSTEP, was initiated within the scope of ISO� 10303 focusing on a neutr_l data form_t for the data exchange between mecha-� tronic systems.� This abstract presents results in the _eld of the requirements analysis on� ISO-Standard 10303 STE_ for interval arithmetic purposes.  We aTe mainly� concerned with Part 42 of the inte6rated resources, which is entitled ''Geomet-� rical _nd Topologic_l Representation'' and with Part 47, which deals with shape                 _� variation tolerances.� Part 42 ir_cludes construction speci_c_tions for the geometrical and topo-� logic_l representations of _n obJect. Furthermore, it contains requisites for an� explicit representation of an obJect model. Geometric description altern_tives� are the volume based, the surf_ce based and the wireframe based designs. Spe-� cLal attention is paid to Faceted Boundary _EPresentation (FBREP) models� belonging to the _rst altcrnative together with Manifold solid _oundary REP-                 -�__esentation (MBREP) and Constructive Solid Geometry (CSG) models.�Recently, there is a growing interest in researching methods for valid_tion�and veri_cation in applications. For .example, path-planning, locali2ation and                 _�traching of a mobile robot using techniques of scienti_c computation are de-�scribed in _GJ.  In a recent proJect funded by the German Research Council�(DFG) we implemented emcient and accurate _lgorithms for distance calcula-�tion bet_veen a Aexible Tobot and a t_rget or obstacles in the complex envi-�ronment _nd for the resulting contact problem _71. Robust solutions to these�problems are also used in the collision-free p_th planning if a given end-eAector�is moving amid a collection of hnown obstacles from _n initial to a desired _nal                _�osition. For simul_tion purposes, the obstacles ar'e taken to be a collection of�polyhedr_l surfaces. Accur_te noating-point algorithms have been implemented�based on suitable projections and using controlled rounding and the precise dot�roduct whereby veri_ed error-bounds are ensured _2, 3J. If the end-e�ector or�the sensor is t_ken to be a single moving point, an emcient distance algorithm�applicable to non-convex polyhedral surfaces is to be used _4J. In _9J is described,�how interval met1_ods can help a moving robot with uncertain sonsors to avoid�collisions with obst_cles.�To allow _ data transfer to mechatronic modelling _nd simulation softw_reJ�the representation of polyhedTa using tlle FBREP models of the STEP-standard                _�has been highlighted. GeometTic elements like points, .curves, and surfaces have�been described and topological relationships between them identi_ed: the vertex�points of a polyhedron in a Cartesi_n coordinate system as geometrical and the�position of these points on its faces as topologic_l input data. This information�is given in _ simple ASCII-_le.�We implemented an inte__face which transforms this _le used in our algo-�rithms into a STEP-based one and vice-versa using P_rt 21 of the implemen-                _�t_tion methods in STEP for clear text encoding of the exchange structure.�The output _le consists of two parts: the header and the data section.  The�he_der section includes entity declarations and the d_ta section the descriptions               ' __�of the given input data using the EXPRESS lan6uage. The latter is divided�



___��������������� '          into three subparts: the _rst for the description of the boundary of each face� '                of the polyhedron with speci_cation of the Cartesian coordinates, the secon d� -                for the description of the faceted surf_ce and the thi_-d for the description o f� the polyhedron as a closed shell. In general, STEP-_les _re very l_rge: a more� complex geometrical obJect will require several hundred lines with many pieces� of repeated inform_tion. Thus, _utom_tic generation is necessary.              .� In the next version, the interface should also handle cylindric_l, conica l,� spherical, B-Spline or oAset surfaces _s a part of the integrated resources in� P_rt 42.� '                  STEP Part 47 is about shape v_riation tolerances. Information a bout to l-� er_nces is important for product de_nition. M_ny interface de_nitions consi der� talerances only in design information lihe the Initial Graphics Exch_nge Spec i _-� _                 c_tion (IGES), _n ANSI-standard for exchanging geometric design in format ion� between CAD systems or the corresponding French national Standard d' éc hange� et de transfert 5ET. The disadv_ntage here is that these dimensioning _n d to ler-� ancing speci_cations _re not supported in current Computer-Aided Engineering� and M_nuf_cturing systems.  STEP w_nts to remedy this situation and in-� tegrates various single-feature and related-feature tolerances.  A tolerance in� STEP can either be a tolerance for sizes or for g'eometr_y. To desc__ibe to lerances� _'                for dimensions, uncertainties in lengths oT an6les are stored in interva ls w it h� lower and upper bounds. A r_nge of _cceptable values, also hnown as 1imits� and _ts', may be selected from a standard cat_logue of acceptable ranges. Addi-� tion_lly, _ tolerance can be de_ned by only one bound and by signi_cant digits.� Finally, a nominal value may have no tolerance bounds _ssociated with it.�Geometric toler_nces address the acceptable deviation of the form of a man-�ufactured obJect and _re __sually expressed as an area or volume in which t he�_                re_lised form must lie [11J. Toler_nces in geometry mainly concern speci_cations�about oTientation (perpendicularity, parallelism, angularity), loc_tion (concen-�tricity, symmetry) or sh_pe (_atness, straightness, cylindricity) _12I.  In this�_                paper, _ general STEP-based dimensioning and tolerancing data model is de-�veloped and implemented.�Tolerances of measures and geometry are suitable _or interval calculus in two�_                directions. In modern modelling systems lihe MOBILE extensions for interval�arithmetic have been _dded _8J. _n [5I a new kinetostatic tr_nsmission element�was modelled with interval arithmetic.  Thus, not only uncertainties in the�length of the arms of multibody systems or uncertain weights at the end-e�ector�'                 of _ m_nipulator can be modelled in simulation systen_s but also 1_ew types�of (geometric_l) elements.  For a standardised description of such a modelled�system both types o_ tolerances in measure and geometry _re needed.  Thus�-                far the STEP concept is basic_lly right. Although STEP o�ers the possibility�of storing uncertain info_mation in intervals this information is linhed with the�speci_c obJects of a model. Here, a more gener_l usage of interv_ls would be�desirable. For ex_mple, a complex modelled obJect which consists of vertices,�edges, and faccs is stored as an instance with exact values in STE_. Additionally,�toler_nces can be introduced at one point of the description, such as at _ line�segment.  Althou6h these toler_nces a�ect further elements of the o bJect, for�



__      _____������������������instance a verte_ point on the line, these dependencies are not stored in a�STE_-_le. However, t1_ey can be worhed out from other information. Thus, the�ability to store information about uncertainty in all parts of _ STEP-_le would�be helpful. For this purpose a basic data type for intervals is needed.�To include self- _nd cross-reference tolerances, Tsai e.t al. [12J introduced the                 _�notion of a tolerance n__tworlc which represents shape features as nodes and ge-�ometric tolerance speci_cations as arcs connecting' nodes. They construct these�networhs for single pieces and, by means of recursive algorithms, for assembled                 _�products as well. The corresponding STEP product data _le implements the�tolerance networh with appropriate baclc and c_'oss references.�The other way to use interval calculus in building tolerance dependencies is�by checking the consistency of given tolerances with interval arithmetic. Interval�arithmetic provides a tool with w__ich to calculate the guaranteed encl_sures of�computational results and enables us to determine the enclosure of a value at�one part of a STEP descTiption resulting from tolerance information in other                 _�parts of the _le. If the STEP tolerance value for this part does not _t in the�enclosure, the whole STEP-_le is not consistent. Otherwise, the result of such a�computation should be stored within the STEP-_le. If there are di�erent wa__s�to calculate an enclosure for the same value, the intersection of the intervals�should be chosen to get tighter enclosures. At this point, another reason arises�for a basic interval data type.�To illustrate the bene_t of interval arithmetic in tolerancing data models, we                 _�cheched the complete ''geometric dimensions and dimensional tolerance ex_m-�ple" described in [11J and proved its consistency by transferring the STEP-data�into the extended MO_ILE modelling system. This example covers the repre-                 _-�sentation of all the dimensional tolerances supported, including plus-or-minus�deviations, m_ima, minima and nominal dimensions, limits and _ts, and sig-�ni_cant dig'its.���References��_1J R. Anderl, and D. Trippner, ST_P; Standard Jor the __change oJ Product�Model Data, Teubner, Stuttg_rt, 2000.��[2J E. Dyllong, W. Luther, and W. Otten, "An accurate distance-calcul_tion                 -__�algorithm for convex polyhed_'a'', Relia_le Co1nputżng, 1999, Vol. 3, No. J_,�pp. 241_254.��_3] E. Dyllong and W. Luther, "An accurate computation of the distance be-                 _�tween a point and a poIyhedron'' , Vol. 80 of CAMM 99 Annual Meet2ng,�Metz, France, April 12_1G, Wiley-VCH, Berlin, 2000, pp. S771-S772.��_4J E. Dyllong and W. Luther, ''Distance-C_lculation Between a Point and a�NURBS Surface'', In: P.-J. Laurent, P. S_blonnire, L. L. Schumaher (eds.),�Cur_e and Sur_ace Des2gn - Saint Malo, 1999, Vanderbilt University Press,�Nashville TN, 2000, pp. 55-62.                                    ,       -'����62�
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__t                            _      ____������������������������Interv_l Methods in Digital Signal Processing                   ""���Willi_m W. Edmonson, Ph.D. /�Dep_rtment of Electrical Engineering�H ampt on University�Hampton, Virginia                                  _����Interval methods represent a relatively new research direction in digit_l sig-�n_l processing. Thou_h, in the closely related _eld of controls there has been�much work th_t can also be applied to signal processing.  In general interv_l�methods provide a way for providing veri_cation of computations or _s an op-�timi2ation procedure.  Interval arithmetic provides a method for determining                 _�how numerical errors scale as a result of implementing algorithms on compu-�tation_l m_cl_ines of various word lengths _nd number representation.  The�traching of numeric_l errors can be exploited in signal processing through the                 _�use interv_l arithmetic since the computations are done on various types of com-�puters. Computing systems used range from dedicated processors using nxed�point arithmetic with short word lengths to supercomputer's using _oating point�_rithmetic with very large word lengths.                                        _�The estimation of system parameters from noisy data represents another�import_nt topic in signal processing. If the system h_s feedbach or is nonlinear�then the associated obJective function to be optimized can be nonconvex. This                 n�_vould require global optimization methods to insure that convergence to the�absolute optimal is achieved.  Interval methods, _ deterministic optimi2_tion�method, advantage over other global optimization methods is its _bility to _nd�the global optimum of nonconvex di�erentiable or non-di�erentiable obJective�functions. It represents the method to attempt nrst ifthe one has no hnowledge�of where the global optimum might exist on the parameter sp_ce.�This talh will focus on the research that was done by the author in ap-                 -�plying interval methods to digital sign_l processing. Worh which covers both�optimization _nd _nalysis. In optimi2ation, we will discuss the use of interv_l�methods for solving the sinusoidal parameter estim_tion problem. Rese_rch on                 _�ad_ptive systems usin6 interv_l analysis to v_lid_te the results and to monitor�stability and errors will _lso be discussed. The talh will end with _ discussion�on problems and prospects of using interval methods in signal processing.�The sinusoid parameter estimation problem consist of determining the�m_ximum-likelil_ood estimates of sinusoid par_meters from a signal that consists�of sinusoids and additive noise. We will present three algorithms that integrate�



______                 p                        t                       g����������������'                interval methods for global optimi2ation with procedures th_t decompose t he�roblem into sm_ller ones. The interval method used is a global optim i2at ion�technique that is based upon the branch and bound principle. More speci _ca l ly,�decomposition of the problem is accomplished via the expectat ion-m_ im i2_ t ion�algorithm and the grouped coordinate descent algorithm.  Although a forma l�-                 proof of conver6ence is not addressed, the perform_nce of the algorit hms from�simul_tions was shown to be s_uperior to the popular iterative qu_ dr_t ic max i-�mum lilcelihood (TQML) method.�__                  An ad_ptive system i.s one that c_n _d_pt to a changing environment t hroug h�optimi2_tion of the systems parameters.  Thereby, its o b ject ive func t ion can�vary as a function of time.  Adaptive _ltering algorithms can h_ve pro b lems�converging to the optimal parameters due to numerical errors _nd tr_c h ing a�time-varying obJective function. These errors are m_nifested thToug h insta b i l ity�of the algorithm, aTithmetic precision caused by _nite word length o f t he pro-�cessor, slow convergence and the ability to tr_clc a time varying minima. T he�_                use of interval arithmetic yields a better performing algorithm by:��_ Monitoring certain parameters of the optimi_ation algorithm to eliminate�instabilities c_used by m_thematic_l oper_tions o f num bers o f very d i �er-�ent order of magnitude.��_ Bounding the results.��_                   _ Bounding the parameter space to insure the algorithm converges to a�stable _lter.��_ In conJunction with heuristics or evolutionary str_tegies for fast conver-�gence to the global minimum.��M_ny of the adaptive nltering applications will be implemented on a _nite wor d�length machine that are optimi2ed to implement multiply-sum operations fasX�and emciently, i.e. digital signal processors. These machines implement ar it h-�metic operations, basic to signal processing algorithms, of addition, subtr_c-�tion, and multiplication. This implies that a reduced version of interva l _r it h-�-     ,            metic oper_tions can be implemented and is fe_sible for development on _e l d�rogramm_ble gate arrays (FPGA's).  This could further lead to deve lop in�h_rdware for an _d_ptive system that a_apts to both the parameters an d t he�_                 structure (word length, _lter order, and the number of inputs and outputs ).�To change or _dapt the systems structure, it must have the ability. to monitor�performance and for ,the hardw_re to evolve based on changing conditions o f its�_                 opeTa t ing env ironmen t.�The problems _ssoci_ted with applying interval methods to signal process-�ing is the _dditional time required for arithmetic operations and the lack o f�_wareness amongst the signal processing community. To overcome the problem�-                 of speed is to develop dedicated hardware that is optimal for interval arit hmet ic�oper_tions, e.g. FPGA's.�
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____       t              p pp     sc_ott_(pF1ers_on_)_t tt t  _ 1 ( __  y )g t   y     t          t            t�������������������Ex_ct Bounds on Sample Variance of�Interval Dat_���1  Lev Gin2bur 1�vladik 'K,einovicn2  and Monica Aviles2���_                    lA  _ied Biomathe1n_xics  1oo NoTth Count,  Road�Setauhett NY 11733, USAt (scott,lev)@ramas.com�2com uter science De a,tment universit  of Tex,s at ßl _aso�_-                   El Paso, TX 79968t USAt (mavilestvladih)@cs.utep.edu����Abstract�We provide a feasible (quadratic time) algorithm for computing the�Iower bound __/ on the sample variance of interval data. The problem of�computing the upper bound V is, in general, NP-hard.  We provi_e a�fe_sible algorithm that computes V foT many reasona_le situations.�Formulation of the problem. When we have n results 21,..., 2_ of repeated�measurement of the same qu_ntity, traditional statistical _pp_'o_ch usu_lly starts�with computing their sample _verage��21+. ..+_�-                                _ --    n�and their sample variance�, __ 2+...+,  __ 2�_                            V_�_-��(or, equiv_lently, the sample st_nd_rd devj_ation _ = _); see, e.g., _1].�_                 Sample v_ri_nce is _n unbiased estimator of the variance of the distribution�from which observations are assumed to be randomly sampled. For Gaussian�distribution, this estimator is a maximum likelihood estim_tor of the distribu-�__               tion variance.�In some practic_l situations, we only h_ve intervals x; = ___,- , 22J of possible�values of _2. This happens, for example, if instead of observing the actual value�2; of the random variable, we observe the v_lue 2; measured by an instrument�with a hnown upper bound _; on the measurement error; then, the _ctual�(unhnown) value is within the interval x; = _2~; - _;, _; + _;l.���67�



__            tvgp     g t_   l(x  2_Et) r +EeJ J(__J t _equ) es roo (_2JN )_( ccloomop5J2_ )_t/o a st p  ,  _e                 ____�������������������As a resultt the sets of possibIe v_lues of _ and V are also intervals. The�interval E for the sample average c_n be obt_ined by using straightforward in-�terval computations, i.e., by replacing each elementary operation with numbers�by the corresponding operation of interval arithmetic:.��X1 +... + X�n�Wh_t is the interval __V, VI of possible values for sampIe variance V?�When the intervals x; intersect, then it is possible that all the act__al (un-�hnown) values 2; _ x; are the same ' and hence, that the s_mple variance is�O. In other wordsJ if the intervals 1_ave a non-empty intersectiont then _V = O.�Conversely, if the intersection of x; is empty, then V cannot be Ot hence _V > O.�The question is (see, e.6., _2J): What is the total set of possible values of V�when thc above intersection is empty?                                         _�_or this problem, straightforward interval computations sometimes overes-�timate.. E.. fo, x  __ x  __ o 1  the actual v __  ,  _,  2 2 and hence th�actu_l range V = _O, O.5J. On the other hand, E = [O, 1J, hence                           _�2      E2�1 -     X2 -   =  J     t  _  _��Three interv_ls x; equal to [0, 1J s1_ow that a centered form also does not always                 _�lead to the exact range.�The problem re_ormulated in statistical terms. The traditional sample�variance is an unbiased estimator for the following problem: observation points�_; satisfy t __e equation _; = u - e;, where u is an unlcnown _xed constant and�the E; are independently and identically distributed random variables with zero�ex ectation and un_nown variance ,2.�In our pape_N, we w_nt to handle a situation in which each observation point                 _�_ż SatiS_eS the COnditiOn _i - u - _2 _ _; _ _-1, 1_t where the valueS __ are�assumed to be hnown. From this model, we can conclude that each u + E; is�contained in the corresponding interval _; + _; N _-1, 1J = x;. As a solution to                 _�this problem, _4e tahe the interval consisting of all the results of applying the�estimator V to di_erent values 2_ _ x_,..., __ _ x_.�Our _rst result:  computing _V.  FirstJ we design a Jeas2ble algorithm for                 -�computing the exact lower bound _V of the s_mple variance. Spcci_callyt our�al orithm is  uadrat2c__i1Tce i..  it r   ir    _2    '  ut  i n l  e s for�interval data points x; = [__2-, _;I. We have implemented this algorithm in C++,�it worhs really f_st. The algorithm is as follows (the pToof that thi,s algorithm�is correct will be provided in the full paper):��_ First, we sort all 2n values __,_, _; into a sequence 2(l) <_ _(2) <_... _< _(,).�This sorting requires O(n _ log(n)) steps.��_ Second, we comPute __ and _ and select all "small intervals'' __(h), 2(h+l) J�that intersect with ___, _J.                                              -���68�



______          _         (l  _  v    J  1  _ ___o_) _   (    )    __ (  _ )_2_   _        _����������������_                 _ For each of selected small intervals __(k),_(k+1)], we compute the ratio�_                   rh =Sk/Nx, where   _ e '   _�              2,.+  __,,�i__2 ; >2 (n+ _)    i_'2J- S2 (k )��and Nh is the total number of such ż's and j_. If rk _ __(_.), _(k+_)7, we�go to the next small interval, else we compute��-'                        ,_er  1,             2       _�h _ _ '        _2i-r  +      _j-r   _�_ -�2__2__ >2(h+1)       i__2J' <2(h)��'f Nk = o, we tahe v; _e '��_ Finally, we return the smallest of the v_lues Vh as _V.��_               Second result: computing V is NP-hard. Our second result is that the�gener_l problem of computing V from given interv_ls x; is NP-hard.�Third result: a feasible algorithm that computes V in many practical�_ _               situations. NP-hard me_ns, crudely speahing, that there _re no general ways�for solving all particular cases of this problem (i.e., computing V) in reasonable�time.�However, we show that there are algorithms for computing V foT many�reasonable situations. For example, we propose an emcient algorithm A th_t�computes V for the case when the ''n_rrowed'' interv_Is _~_; - _;/n, _; + _;/nJ�- where 22 = (_2__ + 2;)/2 is the interval's midpoint and _; = (_22_ - __)/2 is�_               its h_lf-width _ do not intersect with e_ch other.  We also p1_opose, _or each�positive integer k, an emcient algorithm A. k th_t worhs whenever no more than�k "narrowed'' intervals can have a common point.�-            .   Acknowledgments.  T1_is worh was supported in part by NASA under co-�operative _greement NCC5-209 and grant NCC 2-1232, by NSF grants CDA-�9522207, E_A-0112968 and 9710940 Mexico/Conacyt, by the Air Force Omce�of Scienti_c Research grant F49620-OO-1-0365, and by Gr_nt No. W-OO016 from�the U.S.-C2ech Science and Technology Joint Fund.�The authors _re greatly th_nhful to the _nonymous referees for very useful�.    suggestions.                 '���References��"               __I S. Rabinovich, JMeasurernent _rrors; T_eor_ and Practjce, American Insti-�tute of Physics, NewYorh, 1993.��_2J G. W. Walster, ''Philosophy and practic_lities of interval ___ithmetic'', In:�R. E. Moore (ed.), _elżability żn Cornput2ng, 1588, pp. 307_323.����_'                                     69�



__      _      t     probabl_ll_tpl_e_spopfd_l_t_ereNntpossl_tble v_luces__tottf,_moeo_sNuorer_mtghentctgeorutpronrtkr_y@2_c__tso_uat2_de__,p___e2d_tu_ _t                ______t__������������������������Absolute Bounds on the Mean of                       -��Sum, Product, etc.:  A Prob_b, i1istic��Extension of Interval Arithmetic                       _���scott Ferson1  Lev Gin,bu, l�vladi_ Kreinovicn2  _nd Jor e Lo e22�1A  _ied Biomathemati�Setauhet, NY 11733, USA, {scott,lev)@ramas.com                     _�2com  sci  u Texas E_ paso Tx 7gg6g v_adi����Abstract�We extend the main formulas of interval arithmetic for di�erent arith-�metic operations __ _ _2 to the case when, for each input _ż , in addition�to t__e interval xż = ___2,,_2J of possible values, we also hnow its mean __�(or an interval Eż of possible values of the mean) , and we want to _nd the�corresponding bounds for _J _ 22 a_1d its mcan.��Error estimation for indirect measurements: an important practical�problem, A practically important class of statistical problems is related to data                  -�-           processing (indirect measurements). Some physical qu_ntities y _ such as the�distance to a star or the amount of oil in a given well - are impossible or dimcuIt                _�to measure directly. To estimate these quantities, we use jn_jrect me_surements,�i.e., we measure some easier-to-measure qu_ntities __,... ,__ which are related�to y by a hnown relation y = _(__,.. .,__), and then use the measurement�results _i (1 <_ j <_ n) to compute an estim_te ŷ for y as y = _(__,... ,2_).�For exampIe, to _nd the resistance R, we measure current I and volta_e V, and�then use the hnown rel_tion R = V/I to estimate resistance _s R = V/I.�Measurement are never lOO%o _ccurate, so in reality, the actu_l value _; of                _�ż-th measured quantity c_n di�er from the measurement result 2;. In proba-�biIistic terms, _2 is a random variabIe; its probability distribution describes the�_e'��is desir_ble to desc_'ibe the error _J - y of the result of data processing.�Often, we hnow (o_' assume) that the measurement error _2; of each direct�measurement is normally distributed with a hnown standard deviation _;, and�th_t measurement errors corresponding to di�erent me_surements a_'e indepen-�dent. These assumptions _ Justi_ed by the central Iimit theorem, according to�which sums of independent identically distributed random variables with _nite               '���7O�



_____                     _�����������������moments tend quichly toward the Gaussian distribution _ underly the tradi-�-                 tional engineering appro_ch to estimating measurement errors.�In some situations, the error distributions are not Gaussian, but we hnow�their exact shape (e.g., lognormal). In many practical measurement situations,�_                however, we only h_ve part2al information about the probability distributions.�The need for robust statistics. _aditional st_tistical tec_1niques deal with�the situations when we l_now the exact shape of the prob_bility distributions.�_                 To de_l with practical situations in which we only have a p_rtial information�_bout the distributions, speci_l techniques h_ve to be invented. Such techniques�_re called methods of robust statistics. They are called robust bec_use they are�usually designed to provide guar_nteed estimates, i.e., estimates which _re valid�'                for all possible distri_utions from a given class.�Interval computations as a particular case of robust statistic5.  An�important c_se of partial information about a random variable _ is when we�_                hnow (with probability 1) th_t 2 is within a given interval x = ___,_], but�we have no information about the probability distribution within this interval.�In other words, 2 may be uniformly distributed on this interv_l, it may be�_                deterministic (i.e.J distributed in a single value with prob_bility 1), distributed�according to a truncated Gaussian, bimodal distribution - we do not hno_v.�So, we c_rrive at tl_e following problem:  for each of n r_ndom variables�_1,..., _,_ J we hnow that it is located (with probability 1) within a 6iven interv_l�x; = ____,,_;J. We do not hnow the dist1'ibutions within the intervals, _nd we do�,            not hnow whether the random variables 2_ are independent or not. Wh_t can�we then conclude about the prob_bility distribution of y = J(2_,..., __)?�-                   Since the only information we h_ve about each variable _; consists of its�lower bound _2__ and upper bound _;, it is natural to ash for similar bounds�y = __yJ-yJ for _J. As a result, we arrive at _he following problem:��^                 GIVEN: an algorithm computing _ function J (__,..., __) from R_ to R and�n interv_ls x1,..., x_,�TAI_E: all possible Joint prob_bility distributions on ß_ for which, for ec_ch�ż, _i _ x; with probability 1;�FIND: the set Y of _ll possible values of _ random variable y = J (__,..., 2_)�for all such distributions.    '��One c__n easily provc th_t Y is equal to the range J(x_,..., x_) of the 6iv_n�function _ on given in, terv_ls, i.e., to (J(21,... ,__) l__ _x1,... ,x_).�_                   This is exactly the problem solved by interval computations. The main inter-�val comput _tions _pproach to solving this proble,m is to tahe into consideration�that inside the comput_er, every algorithm consists_ of elementary operations�(arithmetic operations, min, max, etc.). For each elementary operation J(2,y),�^                 if we hnow the interv_ls x and y for 2 and y, we can compute the exact range�J(x,y); the corresponding formulas form the so-called 2nter_al ar2thn2etic. We�



_   _(   _)/(     ) ___  _ ___   _      _                     _______�������������������c_n therefore repeat the computations forming the program J step-by-step, re-�placing each operation with real numbers by the coTresponding operation of�interval a__it__Ir_etic. It is hnown that, as a result, we get _n enclosure for the�desired r_nge.                         .                               _�Comment. In the above text, we considered the case when we have no infor-�mation about the correlation between the random variab,les. We have proven�that in the above problem, if we assume independence, we still 6et the same                 __�range.�Tor functions of two variables, we can consider two additional cases: when�__ and __ are highly positively correl_ted (i.e., crudely speahing, that _1 is�(non-strictly) increasing in __, and when _; is highly neg_tively correl_ted (i.e.,�when 2_ is decre_sing in 22). In both cases, we get the same range Y as in the�above case of no information about the correlation.�New problem. In some practical situ_tions, in addition to the lower and upper�bounds on each random vari_ble _;, we hnow the bounds E; = [___,,_;I on its�mean _;. In such situations, we arrive at the following problem:��GTVEN: an algorithm computing a function J(__,... ,__) from R_ to ß; n�interValS Xl _ _.., X_, and _ interValS E1, _.., E_ t�TAKE: all possible Joint probability distributions on R_ for which, for e_ch�i, _; _ x; with probability 1 and the mean _; belongs to Ei;�FIND: the set Y of all possible v_lues of a random v_ri_ble y = J (_1,..., 2_)�and the set E of all possible values of _[y] for all such distributions.��A similar problem can be formulated for the case when _; are lcnown to be�independent, and for the c_ses when n = 2 and the values _; are highly positively�or highly negatively correl_ted.                                             _�If we can _nd the range for degenerate intervals E; = __ż, _;], then we can�use interval computation to extend these formulas to arbitr_ry intervals E;.�Similarly to interval computations, our m_in idea is to _nd the corresponding�formulas for the cases when n = 2 and J = _ is one of the basic arithmetic op-             '�erations (+, -, _, min, max). For example, ifwe hnow two ''triples'' (_2__,_;,_;),      .�(j = 1, 2), what are the possible triples (_J, _,ý) for y = _1 _ 22?�Main results. For all basic oper_tions, the interval part (y,y) of the result is�the same as for interval _rithmetic.�We provide explicit formul_s for the interv_l E of possible values of _ = _ _y_.�For ex_mple, for multiplic_tion, when we hnow nothing about the correlation,                 -_��= m in (pl,p2) 'z'_ '_2 +max (p1 -p_, O) '21 .___ +max (p2 -p1, O ) '___ ' 22 +��min(1 -p1, 1 -p_a) __2_ N____,��W ere _; =  _; - ____  2'; - ____ .�



__________               _( __ _copt _J)    2       _ _    __t____o   _         g         y   t������������������Convex-Concave Extensions for Polynomi_ls������_                      1University of Applied Sciences / FH Konstanz�'  Konstan_, Germany�Technica_ UniveTsity Hamburg_Harbur�_                               Hamburg, Germ_ny���A frequently used approach for solving nonlinear systems, combinatorial�optimi_ation, or constrained global optimization problems is the generation of�relaxations _nd their use in a branch and bound frameworh. Generally speahing,�_ relaxation of a given problem has the properties th_t��(i) ea_ feasible point of the given problem is feasible for the relaxation,�(ii) the relaxation is easier to solve than the given problem, and�iii) the solutions of the relaxation converge to the solutions of the original�roblem, provided the maximal width of the set of feasible points converges�to 2ero.��For m_ny problems _ rel_xation c_n he constructed, if the functions which de_ne�the problem can be bounded from below by amne or, more gener_lly, by convex�functions.�In our talk we address the co1_struction of convex lower bounding and equall�concave upper bounding functions for multiv_riate polynomials. Both functions�together constitute a so-called conz1e_-conca_e e_tens2on. For polynomi_ls this�is obtair_ed in a natural way if we represent the given polynomi__l (for simplicity�we consider here only the univariate case and concentrate on the unit interval���p (_) = _a;2 '��in its Bernstein form '�     p(2) = _b;B;(_)��_               where the�



___( (( ))     _) _    ( (  )   _   _      )   _n_____������������������are the Bernstein polynomials. The coemcients of this expansion, the so-called�Bernstein coemcients, can easily be computed from the coemcients of p:��i  (i.)�__=   -_ aJ-, _=O,1,...,_  (nOte thatbo=p(O),b_=_(l)).                      __�j=O  J��A fundamental property of t__e Bernstein expansion is its, conve_ l_ull propert_��_               _'�: _ _   C CO__   _  : Z=0,l,...,_�P(_)           .    bi��which states that the graph of p over I is contained in the convex hull (denoted                 -�by conv) of its control points. Based on this property, convex_concave exten-�sions of increasing complexity can be constructed (we are giving here only the�construction of the lower bounding function). E.g., we obtain _n amne lower                 __�bounding function if we consider the straight line which p_sses through a facet�of the lower part of the convex hull of the control points, the slope of which is�given by the absolute value of the slope between the control points associated�with the smallest and next to smallest _ernstein coemcients, A convex lower�bounding function is provided by the lower part of the convex hull of the control�points.�In Figures 1 and 2 convex-conc_ve extensions for a polynomial of fourth                 _�degree over the intervals _O, O.5I , _O, O.6I, _O, O.7J and _O, 1J are displayed. In Fig.�1 the extension is based on one amne upper and lower bounding function. The�_gure shows that this convex_concave extension is not inclusion isotone.  In                 _�Fig. 2 the extension is provided by the convex hull of the control points. In this�special example the convex hull is inclusion isotone. We show that this property�holds generally. However, it should be noted that inclusion isotonicity is not a�necessary prerequisite for constructing and using convex-concave extensions.�In the multivariate case the _mne lower bounding function c can be charac-�terized as the optimal solution of a linear programming problem. We present�an upper bound for the di�erence p - c which exhibits in the univariate case                 _  -�quadratic convergence with respect to the width of the interval.�Due to rounding errors, inaccuracies may be introduced into the calculation�of the Bernstein coemcients and therefore of the bounding functions. This may                 _�le_d to er_'oneous results in applications. We are giving some suggestions for�the way in which the calculations have to be performed so that veri_ed results�areobtained.����������������74�
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__ ___ _  _t          __n____����������������������Ontologies for Continuous Glob_l Optimiz_tion���La__rent Granvilliers and Mina Ouabiba�IRIN - University or Nantes  '�B._. 92208 _ 44322 Nantes cedex 3 - France�e-mail: {6ranvilliers, oua. biba} @irin. univ-nantes .fr����Global Optimi2ation tachles the problem of _nding all feasible points of _ set of�constraints that optimi2e an objective function. In the following, we restrict our�attention to Continuous Glob_l Optimization, and more speci_cally to Global�Optimization over interval domains _6, 9I.�We believe th_t Software Design for Continuous Global Optimization has�things in common with Astronomy of Sixteenth Century. Many powerful sys-                _�tems implementing various solving techniques h_ve already been developed.�_owever, there exists no general cooper_tion architecture _4I describing hnowl-�edge sh_ring among solvers. More precisely, a cooperation model would de_ne�repre,sentations and speci_cations of shared _nowledge, _nd protocols of com-�munication.�In Knowledge Engineering, the problem of representing shared and reusable�hnowledg_e among soft_vare agents has heavily been studied in the recent past.                _�This probIe_ can be addressed by ontologies. An ontolo9_ _5I is a speci_cation of�concepts of a given domain and relationships among them. One of the obJectives�is to lay foundations for libraries of reusable components and hnowledge sharing�functionalities.�Knowledge based systems (KBS) are often modeled by means of three con-�cepts: taslc, PSM (Proble_n Solving Method) and dom_in _8J:��_ Domain describes the hno_ledge of a particular domain, e.g., global opti-�mi2ation.��_ Tashs de_ne problems that should be solved, e.g., constraint solving.                   -��_ PSMs de_ne resulution processes of problems, e.g., LP techniques.��The relation between them can be speci_ed by means of sem_ntic linhs:                    -��_ Intra-concept Iinh for the relationships between two identical concepts�tash/tash, PSM/PSM and domain/dom_in.��_ Inter-concept link for two di�erent conce pts. Such _ linh can be us e d t o�transfer information between them.�����76�



______       _         __%___s___ t ___t__t____ _ _ _ ________ __ _ ___0__ _ _ _ _ _ _ _ _ _ _t__t_________t  t_t_t t_t_t              _���������������'                          Representation������������;     ,.,,,._:    ._    _,,.4  Cooperation��;' s__      ;. ..,='�����Components��_                    _igure 1: ObJectives of Ontologies Design for Solver Cooperation.���A real-world application can be seen as a composition of speci_c components�_                described by means of tashs, PSMs, domain, intra-concept and inter-concept�linhs. _n the optimiz_tion domain, tas1c ontolog'ies desc,ribe classes of optimi2a-�tion problems and relationships between them.�__                  For example, Glopt _3_ is a PSM of some speci_c problems (tashs) de_ned�by a bloch-separable objective function subJect to bound constraints or bloch-�separable constraints. In that case, tash/PSM inter-concept linhs transfer the�speci_c format of the problem s_ructure called NoP1. Glopt implements branch-�and-bound technique (PSM) which is often used by many other problems. As�a consequence, there is _ need for describing _ generic branch-and-bound algo-�rithm which can be specialized by me_ns of PSM/PSM intra-concept linhs.�_                  In this worh, we are designing ontologies for the dom_in of Continuous Glob_l�Optimi2ation. This research is part of the COCONUT proJect from the Euro-�pean Community. We have noticed that most of existing systems and platforms�_                for Continuous Global Optimization implement speci_c _nd intra-solver cooper-�ations (dotted box of Figure 1): no heterogeneous encoding of data structures,�one cooperation concept, e.g., se_uential or concurrent, brich solvers _nd rout-�               ing of data _xed a pr2or2.  We have then identi_ed two directions for future�research [2J:��_ Modeling of ext_a-solver cooper_tions, at two-levels: hno_vledge sharing�_                   and strategies of application of solvers.��_ E_traction and de_nition of generic and reus_ble components.��_                  Part of this research was concerned by the de_nition of an ontology for�a speci_c intra-solver cooperation: constraint solving using Branch-and-Prune��'_ comp_c_ form__ for specifying general cons_r_ined nonline_r op_imiz__ion prob_ems.�



__t ___________������������������Algorithrns b_sed on Interval Constraint Satisfaction Techniques _10 7.  This�worh has led to the implementation of a C++ library of reusable components and�generic st_'ateg'ies. In this extended abstr_ct, we brie�y desc_'ibe desi gn decisions�supported by the ontolog'y.�Branch-and-Prune Algorithms are generic in essence; they alternate domain                 _-�pruning by enforcing local consistency techniques and interval computations _7J,�and br_nching to traverse the search space _nd exhibit all the solutions. Four�levels of genericity have been identi_ed and represented in our library:��_ Genericity w.r.t.  Interval Arithmetic (IA). IA is used to compute�'             _        reliable approximations ofranges.ofreal functions, The evalu_tion offunc-�tions needs to be independent of the IA library in order to plug in extern                 -�IA libraries such as Bias, Jail and Sun's Forte. Another motivation�is to easily interc__ange libraries for solving _ problem, e.g,, for the use�of a multi-precision library such as mpfi for handling inst_ble numerical�comput_tions. The interval dat_ type is implemented by the trażts C++�technique de___ing all services required by Branch-and-Prune AI6orithms.��_ Genericity w,r.t.  interval extensions.  The truth value of interval�constraints is computed in two consecutive steps: evaluation of function�expres_sions using interval extensions, and interpretation of rel_tion sym-�bols.  Interval constraints are parameterized by data types for interval�extensions and interpretation of relation symbols. Note that _or standard�constr_ints, the inteTpretation of relation symbols is given by the IA li-�brary. This mechanism allows one to de_ne constraints for non standard�IA, e.g., modal IA, with no additionnal cost.                                  n��_ Genericity w.r.t. domain pruning methods. This is a main task in�itself since there exist various hinds of algorithms.. The ontology is based�on chaotic iteration frameworh for constraint propagation _1J which has                 _�been adapted for ever_t-b_sed pro6ramming. Doma in pruning is modeled�as an iteration of reduction functions over interval do mains. Areduction�function _nodels either a box consistency operator, or an interval Ne_vton�operator, etc.  Scheduling of reduction functions depends on priorities�and properties of functions, etc.  Strong consistencies are described by�strategies combining local splittin6 and domain pruning.��_ Genericity w.r.t.  branching strategies.  Br. anchin6 strategies are�represented by three components: a strategy for selecting the next variable�domain to be bisected, _ method for splitting dom_ins, and a mechanism�for man_g'ing memorization of domains (copying or trailing).�Such a generic library has many advantages in terms of _exibility, Inaintenance,�reuse of code, prototyping of strategies, cooperation, etc. We believe t1_at this�research on Branch-and-Prune Algorithms can be extended for Xhe wider domain�of Continuous Global Optimization.�Acknowledgrnents. This worh has been partly supported by the COCONUT                 '�proJect IST-2000-26063 from the European Com_unity.���78�
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__       _          _  J                       _     _n_______������������������������F_st or Tight Propag_tion of Uni_ariate Taylor                 _��Coe_cients���Andreas Griewan_����It is by now well understood that, for functions de_ned by computer pro-�grams Taylor, polynomials in several variables can be recovered from _amilies of�univari_te polynomials. We observe here that by adapting an idea of Kronecher                _�it is possible to get by with a single univariate polynomial of rather high order.�_ence the ev_luation of higher derivatives can be based on the propagation�of univariate Taylor polynomials though the sequence of arithmetic functions�and elementary intrinsics de_ning the'function _t hand. This can be done with                ^�very regular memory access patterns, and using Ne_vton's method or other _xed�point iterations everything can be reduced to a small number of convolutions.�Thus the convolution becomes the worh horse of higher order di�erentia-                n�tion. It m_y be performed either optimal in the interval sense with a quadratic�complexity or _ast in essentially linear time using FFT. Either way one _chieves�signi_c_nt improvements on the basic recurrences due to Moore, but so f_r we�have not found a "best of both worlds'' i.e. , f_st and tight propagation method.���������������������������������8O�



____                         )     r����������A Brief History of Interval Analysis�Eldon R. Hansen��_                  In this talh, we disc.uss the origin and early history of interv_l analysis.�We describe Moore's early worh and the work of others that Moore in_uenced�directly.  We discuss highlights _n_ milestones in the develop__ent of interval�_                analysis. Some topics are:�_ The origins of interval arithmetic�_                  _ Alternatives to intervals (circular arithmetic, ellipsoids, par_llelopipeds)�_ Extended interval arithmetic�_                  _ The development of means for using interval arithmetic�- subroutines, precompilers, compilers, l_nguages�_                  _ Moore's early worh�- concepts, terminology, and properties of interval arithmetic�- theorems�- application of interval an_lysis to various problem areas�_ E_rly reports, p_peTs, and boohs�_ People who inAuenced the development of interval analysis�_ Interv_l analysis in Germany�_ The development of tools for use in interval comput_tions�- evalu_ti0n of irration_l functio_s�-'                     - represent_tion of interval functions (centered forms, etc.)�- Taylor expansions, _utom_tic di�erentiation�_                     - slopes, generalized interval arithmetic�_ The development of interval methods in various speci_c problem areas�- line_r algebra (Gaussian elimination, preconditionin6, eigensolutions,�etc.�- nonlinear equations (methods, existence and uniqueness, etc.)�



______          t  _        ____________������������- optimi2ation�- ordinary di�erenti_l equations (initial v_lue and boundary value prob-�lems)�- parti_l di�erenti_l equations�����������������������������������������������82�



________                (            r     _                                 _            _���������������������� Tr_ining Feedforw_rd Multil_yer Interv_l�� Arti_ci_1 Neur_l Networ_s��� --                             .     Chenyi Hu� University of Houston-Downtown� Houston, Texas 77002, USA���� Ever since the mid-1980's, arti_ci_l neur_l networhs have been app lie d to� solve various application problems such as pattern recognition, classi _cat ion,� con€rol, and decision m_king _ith imprecise input data.  An _rti_cial neur_ l� networh (ANN) is an inform_tion-processing paradigm inspired by the way o f� hum_n brain processes information. It is composed of a large number o f hig h ly� "'                interconnected processing elements that _re analogous to neurons and are tie d� together with weig-hted connections that are an_lo6ous to syn_pses. _a in ing� ANNs is simil_r to le_rning in biologic_l systems involves adJustments to the�_                synaptic connections th_t exist between the neurons.  Through exposure to�a trusted set of input/output data, an ANN adJusts its connection weig hts�syn_pses). These connection weights store the hnowledge necessary to solve�application problems.  Therefore, tr_ining ANNs is the most critical part o f�their applications.�In this presentation, we speci_cally report our worh on applying interva l�methods in supervised tr_ining of multilayer feedforw_rd ANNs.  We will re-�-                view the related basic concepts of _rti_ci_l neural networlcs _t the beginning.�Through analy2ing the mathematical model of tr_ining multilayer feedforwar d�ANNs, we categori2e the tr_ining problem into two types. Since data sets t hat�__                used to train a neuT_l networlc are usu_lly imprecise, they should be better rep-�resented with intervals rather th_n real numbers. Therefore, we have interva l�valued neur_l networhs. Finally, we will report our result th_t tr_ining a interval�wei6hted multilayer feedforward arti_cial' neur_l networh can be reliably solved�by currently _vailable interval _lgorithms and software pac_ges.�



__          _  _ _ _  __J ___�����������������������Validation of Fe_sible Oper_ting Region in��Chemical P ro cesses���Haitao Huang                                   _����Studies on process safety and _exibility are two m_Jor issues for chemical                 _�proces_s dcsi6__.  _nalysis of process safety that can be ensured within some�operating space is mathematically the same as analysis of process feasibility�being maintained in certain opcratir_g boundaries. Therefore, although they are�usually treated separ_tely in research and practice, they share a basic feature:�sear'ching feasible operating space from possible design space.�At present, with classic methods, it is impossi_le to identify the accurate�feasible region when the region is in a sh_pe other than hyper-rect_ngle.  To                 _�solve the problem, this worh begins with the identi_cation of a new modelling�relationship, region to region, and then a new concept of region model frame-�worh against traditional point model frameworh for the new relationship is pro-                _�posed. The basic component in the new frameworh is a simple region that is�a hyper-cube formed by range values of the considered process variables and�parameters. The dimensions of a regior_ is mathem_tic_lly represented by in-�terval vector.  The new model also has other advantages such as uncertainty�info1_m_tion description and non-line_r process behavior modelling.�Secondly, methodologies for region simulation are proposed. One main fea-�ture is the proposed bounding strategies. Unlihe point simul_tion, which is done                -�by solving di�erential and algebraic equations, region simulation is performed�through the proposed bounding strategies. For example, for linear problemsJ�natural inclusior_ of interval analysis is directly applied for region bounding.                  __�The other main fe_ture is the region tr_nsition model. Hybrid systems ap-�pear commonly in chemical processes especially when closed loo_ controllers are�e_ployed. In a point model, this is dealt with hybrid state transition networh.�In the re6ion model, _s sets of conditions rather th_n point conditions are con-                _�sidered, new features are introduced. The region trans'ition model is devised in�the worh to deal with these new fe_tures.�Thirdly, based on the concept of region _nd methodologies of region sim-                _�ulation, an algorithm for searching the feasible space in possible design space�is devised.  It is illustrated by several case studies th_t with this new model�we are able to get the _ccurate shape and si2e of feasible region within ac-�ceptable tolerance. Since closed-loop controller application is one of the main�features in chemical proces,ses, fourt,hly, strategies for dealing with dynamic pro-�cess disturbances and modelling of closed-loop controllers in the region model�_repromosed.                                                        _-���84�



_________________                             _  _           __                    _���������������,            Finally, an optimis_tion formulation is proposed for maximising the size of�'                fe_sible re6ion by tuning control p_r_meters. As shown in case studies, qu_n-�"                tit_tive process safety _n_lysis and _exibility studies are uni_ed in the new�model.  Since the model is able to identify _ccurate fe_sible region, it f_cili-�tates inherent s_fe process design. The framework h_s been implemented in an�_                obJect-oriented architecture that m_hes it easier to represent a system than the�equation-oriented approaches .�



_t  l                       _________����������������������On Existence and Uniqueness Veri_c_tion for��Non-Smo oth Functions���R. Baher Kearfott                                _�Department of Mathematics�University of Louisiana at Lafayette�U.L. Box 4-1010�Lafayette, Louisiana 70504-10lO�USA�email: rbk_louisi_a. edu����1   Summary��It is hnown that interval Newton methods can verify existence and uniqueness�of solutions of _ nonlinear system of equations ne_r points where the Jacobi ma-                _�trix of t1_e system is not ill-conditioned. Recently, we have shown how to verify�existence and uniqueness, up to multiplicity, for solutions at whic__ the J_cobi�matrix is singul_r. We do this by emcient computation of the topologic_l in-�dex over a small box containing the approximate solution. Algorithmically, our�techniques mimic the non-singular case (both in algorithmic steps and compu-�tational complexity), and can be considered as żncoTnplete Causs-Seidel sweeps.�Since the topological index is de_ned _nd comput_ble when the Jacobi ma-�trix is not even de_ned at the solution, one may speculate that emcier_t algo-�rithms can be de_ised for veri_cation in this case, too. In this talh, we discuss,�through ex_mples, hey techniques underlying our simpli_c_tion of the calcula-                _"�tions that cannot necess_rily be used when the function is non-smooth.  We�also suggest when degree computations involving non-smooth functions m_y be�practical.�Our examples _lso shed light on ou_' published work on veri_c_tion involving�the topological degree.���2   Introd_cti_n and Some Details��Given _ system of nonlinear equations F(_) = O, numerical methods produce�an appra_i_ation 2 to _ solution 2_. It is then sometimes desirable to compute�bounds�������8G�



_______                of Fl(_) l_s po_slNtl_vet ml_nus the number of solutl_ons of F(2) __ o l_n 2 _t wh(l_c1h)�����������������2  =  (21,22,,__,2_)�=  ( ____ ,_1 ], __22, _2 ], _ , _, ____,, __ _,��such that _ is the center of 2 , and such that _ is guaranteed to cont_in _ solution�'_                __ to F(2) = O. This leads to the problem��Given F: _ _ __, where _ _ ___, rigorousl_�_                         verify:��_ there exists a __ _ 2 such that F(__) ≡ O.���Here, _3_^ represents the set of n-dimension_l vectors, as _, whose components�_re intervals.�If the Jacobi matrix F'(__) is non-singular and continuous in _, then we�can use interval Newton methods to verify existence and uniqueness of .__ _ _,�F(__) = O; see [3, Chapter 8J, _4, pp. 219-223I, and the references thereir_. Such�interval Newton methods are of the form��_ = N(F;_,_) = 2 + v,               (2)��where�_                                  _(A, -F(_)) c _,                 (3)��where A is _ Lipschit2 m_trix for F over _, _nd where��_                       _(A, -F(2)) = (_ _ I_^ l 3A _ A with AX = -F(_)).      (4)��Here 2 is some point in 2 (often t_hen to be its midpoint) th_t, in the context�of this p_per, we consider to be an approxim_te solution.��Theore_ 1 ((4, TJ_eore1n 1.19, p. 6_J, orżgżnally JroTn (8JJ Suppose�_ = N(F; _, _) js the 21nage oJ 2 and _ un_er an interz7al Newton Tnethod. I_�_                _ _ _, itJollows that there e_ists a unż_ue solution oJF(_) = O w2thjn _.��Recently, we have developed techniques th_t can verify existence of solutions�to F(_) = O within 2, even when F'(_) = O for so_e 2 _ 2. These techniques�_                are based on computing the topological degree d(F,2,O) of F over _. If every�2 _ 2 where F(_) = O has the J_cobi matrix F' (_) nonsingular, then d(F, 2, O)�is equal to the number of solutions of F(_) = O in 2 at which the determinant��the determinnnt is negat,ive. However, the integer d(F, 2, O) is both continuous��m_y be singular, _nd indeed, even non-smooth, in the interior int(_).�^                  Our recent worh, as other worh dealing with t__e topological degree, depends�on a basic formula that relates the topological degr_e to solutions of a derived�system over the boundary of _. In contrast to previous literature on computing�



__                             _  __ ____t_______�����������������the topological degree, in our recent worh in _1J, _7J, _5J, _6J, and _2J, we are not�given _ large box _, but we construct _ sumciently small to a_low us to use a�local model of F to both reduce the dimension of the search on the boundar�and tu greatly speed the resulting low-dimensional search. The process includes�1, preconditioning the system,              '��2. applyin6 a local model to the preconditioned system to reduce t__e dimen-�sion, _nd                           '��J. using a local model to predict where the solutions to the derived system�are on a_.�Our analysi,s indicates the veri_c_tion proceeds in _ (n3) time for r_nh-defect�1 Jacobi matrices; this order has been veri_ed experimentally with solutions to�_nite discretizations of a model problem with n up to 320.�The question we ash here is: "Can we do similar simpli_cations and devise                 -�a successful algorithm if F is de_ned in a piecewise fashion, or is otherwise�non-smooth?'' We consider several examples.�See http: //interval. _ouisian_. edu/preprints/nonsmooth_degree. ps�or http: //interval. _ouisi_a. eduJpreprintsJnonsmoo_h-degree .pdf for�a preprint that contains _dditional det_ils.���References��[1] J. Di_n, __2stence Ver2_cat2on oJ H2gher Degree S2ngular Zeros oJ Nonl2near�SysteTns, _hD thesis, University of Louisian_ at Lafayette, 2000.��_2J J. Dian and R. B. Kear_ott, __2stence _er2_c0tżon Jor s2ngul0r and non-�s7nooth zeros oJ real nonl2near systeJns, 200l.��_3J E. R. _ansen, Clobal Opt2rnżzation Usjng _nter_al Analysis, Marcel Dehher,�Inc., New Yorh, 1992.��_4J R. _. Kearfott, ßi9orous Clobal Search: Contjnuous Pro6leTns, Kluwer, Dor-�drecht, Netherlands, 199G,��_5J R. _. Kearfott and J. Dian, _z2stence zreri_cat2on _or l_j9l2er-degree sin9ular�zeros oJ coJnple_ nunl2near s_sternsJ 2000, preprint,�http: //interval. louisi_a. eduJpreprints/degree_cplx. 0302. p_f.��[6J R, B. Kearfott and J. Dian, "Verifying topological indices for higher-order�ranh cle_ciencies'', Journal oJ Cornple22ty Theory (to appear).��_7J R. B. Kearfott, J. Dian, and A. Neumaier, ''Existence veri_cation for singular�2eros of complex nonlinear systems'', SIAM _. NuTner. Anal., 2000, Vol. 38,                 _�No. 2, pp. 360_379.��_8I A. Neumaie_', Inter_al Methods Jor SysteTns oJ __uations, Cambridge Uni-�versity Press, Cambridge, England, 1990.                                     _����88�



___________              t TB_bttaccmgm_aTepu_l_c__hl_nornrhul_v_uorrclg_hel_N_dm_aeotettcmtct_ry FltslrT_hrboMugshxfpyomFlltl_oap1m_mro_rmynheurnr_ms_a_uacbtooml_et_euJNttgdmthctsyorhtllN€etthselllNnsuNhe_ehln_l_t_n_meppeqccltcNlgNeh_o4ntraglnt_amla_e_usrlln_N_ceasns)lngenolello_N(ela_d_sldl_dvled_ldlt_mn_gyyttnltTstssedlh_w_lNftogenpnpmra__lcth_oyvr_l_esfeshogulelm_uunreedtepralon_cdl_oom_trnodl_mennerpeoul_tnolll_tNnscaes_sgdhswesrhl_amgsesaslnlorl__eelo_lrlhen_wgceetwdgly_med_g_eafsorcantnaenhdthtrepfs_lmtvtlpr_ulNrlatnl_ee1l_hpt_l_nc_eetclepcc_mrlv)lop_eh_elcoashocoerl_clea_tla_tluemcc_monmlcollcnphntce_oylnt_vafsntpld_a+urleth_t_pptlol_nst_esrlud_cnlvmreumrneoq+rgyt_uetlxtlbedtsatenussnvleteqleurue_yelss_secsglrenluNlNn(soytnrplN_dl_tsstdwmcetll_l_vd_foptl_roeytrtrclo_slll_____tohedoopsnotltortls_nnwplhfserohhlf_snegpusls_lgtpsrenl_vatlloN_luxNtrnsetecbs_wmlmseeree(lhtl_lutspl_mrtssmnrtllsNv_hutprmpetrgaetacgols_olehr_locroonplrhrob_nttyeotevdymgosttrusl_mlchmmr_l_lteoedrgtssrllct_cmesallgcxlral_ee_ho_rw_sy_maw_artnam__ohfetsdr_hml_hst)llNetphldtmxlN_xecnm_rltteeotlstanllm_Nvqthcrtmgdh_sc_ls_lhmohogathunlgh_umltccl_cnhwlbatee__ne_glo_llt_lNntedt_smleanstngr Btfe(lh_ccgetrelbl_elg4tccmcu__tt_leutol_a+la_acothlo_npstenblt_vt_olnfcmlnNlme_o+_gosuosesecsc_u_s_loub)ltutrrsrupssttt_n_mrT_xle_ephevrfeeuhvsbtpoesrtgn_hexeptsetllc_uN_ohodcrn_gepertceeooosucmt___llmtrytnhgr_ef_e_cep_cltcttedcltt_dnlmxosetyocfllctt+hte_llhd_sdud_tloNh_oe0lv_smonsaltfllnen+Necnnnmvenoeloscroctlldycte_le_dlrtarcfcyporptvsttthsulosf_ols_tlpesl_rp_elhueeosops_cmypra_ccle_rmxoetrn_ttslon_llfNe Tt_ope_e_lp_atscwhswvsheedbtnnremb H_cucaednl_le_eareohwttlrge_oerlt_ts_oemrprlNll_ltlhf_een__enlfdlNdnrwcolu_lo Ttnltuolcdasyhecc_d__fyhNlsf_f_l_lt������  C-XSC 2.0:  A C++ C1_ss Libr_ry for Extended�  - -                           S cienti_c C omput ing�  W__lter Krämer _nd Werner Hofschuster�  University of WuppeTt_ l, Germ_ny�� developed signi_c_ntly. Si_ce November 1998 the C++ st_n d_r d _ 3 I is _v_ i l_ b le� The new version C-XSC 2.O _2I conforms to the C++ st_nd_rd.���� -               in the progr_mming language C++.�� forhugeproblems.������dard problems of numeric_l analysis.�In contr_st to Yumeric_l M_them_t ics, w here resu l t.s _re some t imes m e r e l y s p e c u l _ t i v e,�proven to be correct.�



__hat l_s nevv l_n c _xsc 2_o7_   _            J        _    y               _____����������������� C _ XSC consists of a run time system written in ANSI C _nd C++ including� an optimal dot product _nd many prede_ned data types for elements of the� most commonly used vector sp_ces such as real and complex numbers, vectors,� and matrices.  Operators foT elements of these types are predenned and can� be called by their usual operator symbols. Thus, arithmetic expressions and� numerical algorithms are exp__essed in a notation that is very close to the usual� mathematical notation. C - XSC allows to write veri_c_tion _lgorithms in a wa� which is very neaT to pseudo-code used in scienti_c public_tions. All prede_ned               _� numerical operators are ofhighest accuracy. Th_t is, the computed result di�ers� from the correct result by at most one rounding.� While the emphasis in computing is traditionally on speed, in C_XSC, the� emphasis is more on _ccuracy and reliability of results.  The total time for� solving a problem is the sum of the programming e�ort, the processing time,�and the tin_e for t__e interpretation of results. We contend th_t C -XSC reduces�this sum consider_bly.                                                _�C++ program_ers should be able to use and write programs in C-XSC�immediately.  C-XSC simplines programming by providing many prede_ned�data types and arithmetic oper_tors.  Programs are much easier to read, to�write, and to debug.����'       _ All routines are now in the namespace cxsc��_ Explicit typecast constructors��_ Constant values passed by reference are now passed by const reference��_ The error handling is done according to the C++ error handling using�exception classes                                               _��_ Modi_cation in the _eld for subvec_ors _nd submatrices��_ The library uses templates extensively                                   __��_ The source code of C-XSC 2.O is freely _vailable from�http: //www. math. uni-wuppert__. de/~xsc/xsc/download. htm_��_ Older C - XSC programs have to be modi_ed sli_htly to run with C - XSC�2.O. We will discuss this point in our t_lh��_ The source code of a new veTsion of the C++ Toolbox for Veri_ed Com-               _�puting L1J which worhs with C-XSC 2.0 is freely available from�http: /Jwww. m_th. _i-wuppert_l. de/~xsc/xsc/downlo_d .html��The following _reas are covered by the C++ Toolbox for Veri_ed Comput-�ing _1] (Its current version is freely available and Tuns with C-XSC 2.O):�



_________                 _cc   lems lNn ordl_n_ry dl__erentlt_l equatl_o_ns2_��������������� '            _ One-dimensional problems: Extended interval divisionJ Ev_luation of poly-� nomials, Automatic di�erentiation, Nonlinear equations in one variable,� -                     Global optimization, Accurate evalu_tion of arithmetic expressions, 2eros� of complex polynomials.�� _ Multi-dimension_l problems:  Linear systems of equations, Linear opti-� mi2ation, Autom_tic di�erenti_tion for gr_dientsJ _acobi_ns, and Hessi_n,� YonlineaT systems of Equations, Glob_l optimi__tion, Initial value pTo b-��� Additional self-verifyin_ problem solving routines based on C-XSC 2.O are� _vail_ble (e.g.J a slope arithmetic in forward _nd in reverse mode, numerical� quadrature and cubature [9I, valid_ted bounds for Taylor coemcients _5]; for� downloads see� http: J/www. math. uni-wuppertal. de/_xsc/xsc/cxsc_softw_re. html) or w i l l� be m_de available. Further developments will be discussed in our talh. We will� __                 also comment on other interval tools, especi_lly on INTLAB [6J and Sun com-� pilers [7] supporting interv_ls. We will see th_t so called containment comput_-� tions _8I can be used, e.g., to compute (with rather small programming e�ort )� enclosures of all roots of functions over _nite and in_nite dom_ins.� Acknowledgments: Many colle_gues and scientists (see _2l P_ragraph l) have�directly and indirectly contributed to the re_li2ation of C-XSC _nd C- X S C�_                 2.O. The _uthors would lihe to Xhanh each of them for his or her cooperation.�Keywords: C_XSC, C++ Class Libr_ry, Interval M_thematics, V_lidated Nu-�merics, Enclosure Methods, INTLAB, Cont_inment Comput_tions���References��_                 _1J R. HammerJ M. Hochs, U. Kulisch, and D. R_t_J _t+ Toolbo_ Jor Veri_ed�Computing: Bas2c NuTnerical Problems, Springer-VerlcJg, Berlin, 1995.��27 W. Hofschuster, W. Krämer, S. Wedner, and A. WiethoA, C-XSC 2.O: A�_++ Class L2brary Jor __tended Scienti_c Computing, University of Wup-�pertal, 2001, pp. 1-24.��__                 [3J ISO/IEC 14882: Standard Jor the _t+ Programmjng Language, 1998.��4I R. Klatte, U. Kulisch, C. Lawo, M. R_uch, and A. Wietho�, C_XS C _ A�_t+ Class Ljbra'ry /or Sc2ent2_c Computing. Springer-Verl_g, Berlin, l993.��[5I M. NeherJ "Validated _ounds for Taylor Coemcients of An_lytic Tunctions'',�Reliable Comput2ng, 2001, Vol. 7, No. 4.��_                 [6I S. M. Rump, "INTLAB -INTerval LABoratory''J in T. Csendes (ed.), De-�_elopTnents 2n Reliable Computing, Kluwer, 1999.��Avail_ble from R. Lohner (see http://www.uni-harlsruhe.de/_Rudolr.Lohner�



_t           t_                          _     ___________���������_7I Sun Forte[TMI Developer 6 update 2 compilers (see                               __�http: //www. sun. comJforte/index. html)�[8_ G. W. WalsterJ et _l., The ''S�Tnple'' Closed Interval SysteJn, Sun Microsys-�tems, Feb 2000.                                                     ____�_9J S. Wedner, Ver2_zierte _est2TnTnun9 sin9ul_'rer Integrale - Quadratur und�Xubatur. Dissertation, Universität KaTlsruhe, 2000.  /�



_____                scceoctmso_fpnon_retrheegvl_oste_hrpyle_omfpfuenc_rocnlw_ttl_thoeanl_drcntl_omshmceeuspnseutsvta_earlrll(_tut_eahern1lsmnyg__s_)eelhtb_t_lo_l_rvcxu_exllt Jdss_l__mytyb_o_pet__pel__l_em_nrmoc2svley1ul_ndddteeaedvatl_enloNlnnoeptxsh2coceJefoprtntahlt_noe_gnl_nepftmorl__efeeetnhertvef_sudelnuot_csm_ttl__al_oonl_nnnd1����������Extended Interv_l _ower Function�W. Krä_er and J. Wol� v. Gu den ber��The gener_l power f_nction,���is not de_ncd for _ < O.�'_                  On the other h_ndJ well-hnown formul_s exist for y _ Z or for some y _ _.�_n the frameworh of an extended interval arithmetic compu t ing con ta inmen t�_               is accordingly extended.�c-2J 2_CO'9"''I _ [-2, 2] [' 'O_' 'O I a _-2J��of functions over _n arbitrary range. In current libraries lihe Sun 's _ 1 _ or ours�2_ the power function is de_ned for positive radican ds on ly. As a consequence�_                the result with the given sample v_lues is�c-2, 2][O'9""I _ co,2J _O'9"" 7 _ co,2 _' 'J _ coJ2.14J���discuss the issue of accuracy.�References�-                 L1J Sun Microsystems' C++ Interval Aríth7netic Programm ing Re Jerence,�October 2000�http: //www. sun. com /forte /cp lusp lus / in terva l / in dex. h t m l�-                 _21 W. Hofschuster et _l., The Inter_al Library fi-lib++ 2. O, Des żgn, Fea tures�and Sample Progra,ms1 Preprint 2001 /4, Universit _t Wupperta lt Dec. 2 O O 1�ht_p; //www. math. uni-wuppertal. de /wrswt / l iteratur. h tm l�3J G. W. Walster' E. R. Hanson, _nd J. D. Pryce, _zten de d Rea l In terva ls�and the Topolog2cal Closure oJ __tenJe_ Rea l Nurn bersJ June 1 9 9 9.�



_2  v_ladl_ lc Krel_novltch_ t Luc Lon_ gpre/1 t and James J_ Buc_cley2                  n_______������������������������Are There Emcient Necessary and Sumcient                  "��Conditions for Straightforw_rd ,Interval��Computations To Be Ex_ct?�����DepaT_men_ of Compu_er Science, U. Texas a_ El Paso�El Paso, TX 79968, USA, (vladih,longpre)@cs.utep.ed_�Ma_h., u. of Alabama __ Birmingh_m, buchley@ma_h.uab.edu                 __����One of the main problems of interval computations is to r_nd a range               __�of a given function on given intervals. To be more precise: given n input inter-�v_ls x_,..., x_ and an algorithm J (2_,..., 2_) th_t transforms n re_l numbers�2_,..., __ into a re_l number y = J (21,... , 2_) , _nd t_le range��y = J(xl,... ,x,) = (J(z1,... ,_,) l 2_ _ x1,... ,__ _ x_}.��Usu_lly, the endpoints of the intervals x; come from measurements, and mea-�surement usu_lly produces rational numbers, so we can assume that the interv_ls�xi have ration_l endpoints. _f we cannot compute the exact range, we can at�least try to _nd an enclosure Y J_ y for the range.�Straightforward interval computations: its advantages and drawbacks,�_istorically the _rst method for computing the enclosure for the range is the�method which is sometimes called ''straightforward'' interval computations. This�method is based on the fact that inside t_le computer, every _lgorithm consists               _�o_ elementary operations (arithmetic operations, min, max, etc.). For each el-�ernentary opeT_tion _(2, qJ), if we hnow the intervals x and y for 2 and y, we�can compute the exact range J(x,y). The corresponding formulas form the so-               _�called żnter_al arithTnet2c. In straightforward interval c. omputations, we repeat�the computations forming the program J step-by-step, replacing each operation�with real numbeTs by the corresponding operation of interval arithmetic. It is�known that, as a result, we get an enclosure for the desired range.�In some important cases, the enclosure obtained by using straightforward�interval computations is actually the exact range. There are several sumcient�conditions for straightforward interval comput_tions to be exact: e.g., it is exact               _�when J(__,..., __) is an explicit expression in w1_ich each v_riable occurs only�once; anot__er condition is given by Hansen in his 1997 RC paper.�



_____                                                                gyg�����������������However, there are hnown cases when the resulting enclosure is much larger�than the act,ual range. For examp le, for t he express ion J (21, _2) = 21 + _1. 22,�str_ightforward interval computations _re exact when __2 >_ O an d not exact�when, e.g., x_ = __21,_1J is a non-degenerate interv_ l an d x2 = _- 1,- 1 _. In-�-                deed, in the second case, J(2_,22) = O, so we have a 1-point range _ O, O I, but�straightforw_rd interval computations resu lt in ____ - _1,__ - _21 _.�More sophisticated methods and the _rst methodological question.�-_                 Sever_l methods have been proposed to reduce the overestimation:  centered�form, bisection, monot�nicity checlc, etc.  E.g., Hansen's generali2ed interv_l�arithmetic tahes into account dependence between interval vari_bles and thusJ�computes the range of _1 + __ _ (-1) as _O, O l.�Each new method improves the enclosures, often reducin6 the enclosure to�the exact range, but for each l_nown method, there are cases when this method�still overestimates.�-                   In such situations, when many methods have been proposed _nd none o f�them is perfect, a n_tural question is: Is a perJect rnetho_ _ th_t would always�return the exact r_nge in reasonable time - possible at all? This methodological�_                 question is important for algorithm designers:                                   .��_ If _ perfect method is possible, then it is reasonable to spend some time�loolcing for it.��_ On the other handJ if such a method is not possible at all, then loohing for�a perfect method would be a waste of time - lihe loohing for a solution-in-�radicals of general _fth other algebraic equation or for a ruler-and-compass�_ngle trisection.��If no general perfect method is possible; then, instead of w_sting time lookin�for such a method, we should looh either for cl_sses of functions _nd/or dom_ins�for which it is possible to compute the exact range, or for algorithms that still�overestimate, but produce better estimates th_n the existing ones.�A (known) answer to the _rst methodological question,  For interva l�computations, this important methodological question was answered in 1981,�when G_ganov proved that the problem of computing the r_nge is NP-hard�(see, e.g.J _1J _nd references therein).   .�-__                   Crudely speahing, NP-hard means th_t there are no general ways for solvin�this problem (i.e., compuXing the exact r_nge) in reasonable time. (As an _side,�it is possible to compute the r_nge exactly in time that increases exponentiall�__                 with n [1J.)  Of course, every NP-hard problem has easier-to-solve subclasses,�and the problem of range estimation is no exception: as we h_ve mentioned�there are sever_l import_nt classes of functions for which __e can compute the�exact r_nge in re_sonable time. However, the NP-hardness result means th_t�when we design a general r_nge estimation algorithm, we c_n, in gener_l, onl�compute enclosures for the desired ran6e.�



_ _ __   ___         __  l                             _____�������������������Maybe the dimculty from the requirement that the range be computed ex-�actly? In practice, it is often sumcient to compute, in a reasonable amount of�time, usefully accurate bounds for y, i.e., bounds which are accurate within a�given accuracy e > O. Alas, for any e, such computatio,ns are also N_-hard.                  _�Second methodological question. When we use _n algorithm - e.g., straight-�forward intervaI comput_tions - to estimate the range, we h__ow that the result�Tnay be an overestimation. But is it?                                          _�As _ve have mentioned, there are many important sumcient conditions un-�der which straightforwar'd interval computations produce an exact range. New�better sumcient conditions are being discovered. However, none of the hnown�conditions is necessary: for each of these conditions, there are cases not covered�by this condition in which the results are nevertheless exact.�Again, we have a natural question: are perfect (i.e., emcient, necessary and�sumcient) conditions possible at all? If they _re possible, then it is reasonable                -�to spend some time loolcing for them. If such conditions are not possible, then�loohing for such perfect conditions would be _ useless waste of time.�Our answer to this question. Let us consider algorithms J(2_ J..., __) that                n�consist only of the opeTations +, - , N, min, and max.�Theorem. Tl2e probleTn oJ c7_eckżng whether Jor a given algorithTn J (21,..., _n)�and gżven inteT'vals x_,..., x_, strajght_orwar_ inter_al coJnputatżons are e2'act,                _�is NP-hard.�A similar result holds if we allow division _s well.�In other words, no feasible necessary and sumcient conditions _re possible for�checking whether t1_e estimate obt_ined by using straightforward computations�is exact. As a result, instead of trying to _nd such conditions, we should fully�concentrate on identifying classes of functions (or functions and box values) for�which straightforward computations lead to the exact range. It is hnown that                _�Gauss elimination and completing the square of a quadratic lead to exact r_nge.�Finding more cases lihe that is worth the e�ort.�Related open problems. In practice, it is usually sumcient to compute the                _�range within a given accuracy e. How dimcult is it to chech _vhether for a given�algorithm J (2_,..., __) and given interv_ls x_ ,..., x_, str_ightforw_rd interval�computations a__e _ccurate within the given accuracy?�What if we consider other methods - such as centered form?�Acknowledgments. This worh wa5 supported in part by NASA grants NCC5-�209 and NCC 2-1232, by NSF grants CDA-9522207, E_A-0112968 and 97l0940�Mexico/Conacyt, and by AFOS_ grant F49620-OO-1-0365.  The authors are�thanhful to Eldon Hansen, WeIdon A. Lodwich, _ill Walster, and to the anony-�mous referees for fruitful discussions.�References.                                                        _�(1) V. Kreinovich, A. Laheyev, J. _ohn, and P. K_hl, CoTnputational co_ple_-�ity and Jeas2bility oJ,.. żnterval coTnput_tions, Kluwer, Dordrecht, 1997.                .�
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____          _                               n_______����������������������Interv_l Arithmetics over a _ield CF (p)����L. V. Kupriyanova, D. V. Speranshy, and V, G. Samoilov�Saratov State University, Russia                             _�cont act email KupriyanovaLV@info. sgu. ru����1   Introduction��Known methods of interval mathematics use, basically, arithmetic of intervals�over a _eld of the real or complex numbers. In this worh interval arithmetic�over the _nite _elds C_(p), where p is a prime number, is introduced, some�properties of ihis _rit1lmetic are proved and equations with interval coemcients�are considered.  Such arith__etic is necessary to develop methods of discrete�systems theory. For example, it is poss,ible to deduce the theory of linear se-�quential machines (LSM), which are denned over the _nite _elds CF (p ). LSM�is a mathematical model of widely hnown actual discrete systems that carry out                _�coding and decoding of information, signature analysis of output reactions of�the device for its technical diagnosis, etc. mom the physical point of view it�is possible to measure levels of values of voltage _or input and output values of�signals, and also levels of state values of memory elements of electronic devices�described by m_thematical models LSM, in ''quantum'' units. As in speci_ca-�tionsJ the values of voltage have upper bounds, limiting value of this voltage�(expressed in ''quantum'' units) Just gives the characteristic p of a _eld CF(p).                 ^�From here there is a necessity to operate with quantum values of voltage in�arithmetic moduIo p. The levels of voltage are measured by devices with some�error, and cons, equently instead of exact values of levels of signals there can be�intervals, wiXllin t1_e limits of which there are their valid valu_s. To date, there�has been no worh on interval arithmetic over nnite _elds, _nd the present worh�can p_rtly _ll in this blanh.���2   Notations and Basic De_nitions��We denote the elements of CF(p) = (O, 1,... ,p- 1), where p is a _rime number,�.     _y small Greeh letters a, ßJ..., and also by Latin letters with feature from below�or from above, _a, a, _b, bJ�Subset a of CF(p) such, th_t a = __a,aJ = (a l _a <_ a <_ a, _a,a _ CF(p)),                 _�we shall call as an inter2or closed interval, where _a and à are its bottom and�top bounds, respectively.�����98�



____________                 tcgJhe 9e_eralz_ze_te__l_nterv_r l o_ fJt__J_2_eelld çF(Jp_e2t)_e_Je_rlThe g2_e_nre1Jr_eaJll_2)ed lNnterv_l _ve sh_ll degs__      _         __��������������� '            We sh_ll interpret record of _ form b = __b, bJ, where _b > b, as a set C F (p) \�'                __b + 1 J b - lI and also to call this set as _n e_ter2or interv_l.�_^                   Tnterval of a form [_a,áJ, where _a = á, we shall call a singular interv_ l _n d to�interpret it as _n element of a _eld CF(p).�'             Set of all intervals over CF(p) we shall denote by IGF(p), and the _atin�-                 letters we sh_ll reserve behind notations of intervals.�Any exterior interval can be submitted as __b, bJ = _O, bJ U __b,p - 1 J.�Let's introduce operations over elements of IçF(p).�Let _ _ (+, -, _, _) be a binary _rithmetic oper_tion. If a, b e I C F (p), t hen��a_b :-- ((=a_ß 1 a e a,ß _ b��de_nes binary _rithmetic operation over elements of ICF(p). Tn case o f d iv is ion�it is prospective, that O _ b.�As against real interval arithmetics, result of operation over an interva l o f�ICF(p) c_n _ppear set of points not being one interval, and represent ing assoc i-�-                _tion of sever_l intervals scatteTed on a numeric_l axis. For examp le, for p = 7,�1, 2I N _2, 37 _ _2, 4I U _6, 6]. We sh_ll n_me subset A _ GF(p) such, th_t��A = U a;,���where a; _ IGF(p), I is a _nite set of indexes and for ż f J a; n aJ_ = _, as��ignate by a capit_l letter. The usual interval ICF(p) is _ special case o f t he�enerali2ed interval. Behind set of _ll generali2ed intervals we shall heep a des i�n_tion ICF(p). Now let's introduce _rithmetic oper_tions over the gener_ l ize d�intervals.�Let A = U a;, _ = U bJ_, whe_e a;,. bJ_ is usual interv_l of _ _e l d C F (p ),��then��A_B=( Ua;)_( Ub,_)=  U  a;_bJ_.���Let's introduce un_ry oper_tion over a usual interval -2 = _-2, -_2 J, w 1_ere�- (' is an element of CF(p), opposite to ( on addition, then the appropriate�oper_tion over the generali2ed interval is _��-X = ( U(-_;).���Let's denote _lso 1/_ -- ( U (1/() , where '1/_' is an elemen_ o_ CF (p) , inverse��to _ on multiplication. Let's introduce operation of multiplication of an interva l�_                 X on a, an element of a _eld CF(p):��'                                    a_X= U _a_(,a_(],�



____   _   __b(b_)J____coc,ot __ t__1_ _ __hh     _  l     _____���������As width of a usual interval _ = ___, 2l we shall call a value�_ - _ + 1,    if 2 is interior,�W 2 =   _  -�_ - __ + p +  ,  l _ ls eXterlOr.�Width of the generalized interval is w(_) = _ w(_;).  '�i_r�3   Properties of Arithmetic Operations in ICF(p)                 -�Let a, b be a usual intervals of a _eld CF(p) t A, B is generalized intervals,�_,_ _ _F(p), then t,__e followi__g formul as allowing to calculate or to estimate                 _�results of arithmetic operations over intervals with the help of operations with�bounds of interv_ls aTe v_lid:�_a+ b a+ bJ,  ifw(a) +w(b) <p,                           _�a+  =  t   -  -          .     -�p-  ,    Ot erwlSe.                     -��_a - b,à - bI,  if w(a) + w(b) < pJ�a-  =   -      -       .     -�p - 1,    Ot erWlSe.��_ .a C_ [__a,_-al, if_(w(a) - 1) <p- 1,��a _ b C_ [_ab, abJ, if _(a) (w(b) - 1) + _(b) (w(a) - 1) < 2(p - 1) ,�where _(a) = _a + a, _(b) = _b + b.�_esides hnown properties, having a place for real interval arithmetics (com-                 _�mutativity and associativity for _dition and multiplication, absence opposite�on addition _nd multiplication for the maJority of ele_ents, subdistributivity,�etc.), the _ollowing properties are valid:                                         _�1. _(A + B)-- _A + _B (distributivity of multiplication to number);�2. (_+_)A C__A+_A;                                                -_�3. w(A _ B) S w(A) _ w (B), where _ e +t - , _, /;�4. w(a + b) -- w(a - b) = w (a) + w(b) - 1, if a, b is usual intervals and                 _�w(a)+w(b) <p;�5. w(_A) = w(A), if _ _ O.�����10O�
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_rccr  (__t  __  (_2 _ _l) t  _dt  __ 2_ (  ___ _3) _  2 t  _dt  __  _ 2 _ _3 3 _  _9               _______��������������� '          We used our T_ylor model based integrator VI coded in COSY Innnity _2 J� and AWA by Lohner _8, 7J to study the perform_nce.  AWA represents the� conventional methods, since it is one of the most successful codes based on                __� conventional methods _nd it is widely spread. Despite of the l_rge si2e of the�� cycle with COSY-VI, while AWA cannot complete the cycle. Both co des ta ke� _bout the same CPU time. The extensive study on the problem _ddresses w hy� the conventional appro_ch [13, 6, 14, 7, 15] could not handle the pro b lem.� The Loren_ system is another good ex_mple to illustr_te how the Tay lor� model based veri_ed integrator worhs.                                         -�� d__   1o        __2     2g      ,   d_3   ,,   8,          .��� Simil_r to the Volterr_ equations, the right hand side is SUI. Since the system� exhibits _ ch_otic motion, it is particularly ch_llenging to validating met ho ds.� Even foT a large initi_l condition box�� _1_,; _ 15 + _-O.01, O.01I, 22;,; _ 15 + _-O.01, O.01I , _3__i _ 36 + [-ON01, O_01 J,�� the T_ylor model appro_ch c_n integr_te beyond the time 5 easily, while AW A                _� bre_hs down _round the time 1.5, indicating th_t the Taylor model metho d c_n� be used for validation of various ODE initial value problems for a larger domain� and longer times.���'     References��1I W. F. Ames and E. Adams, "Monotonic_lly convergent numeric_l two-�''      sided bounds for a di�erential birth and death process'', In:  K. N ic ke l�ed.), Inter_al Mathe_atżcs, Vol. 29 of Lecture Notes żn Co1T2puter Scżence,�Springer-Verl_g, Berlin-New Yorh, 1975, pp. 135-140,��2l M. Ber_ and J. Hoefhens. COSY INFINITY Version 8.1 - progra_min�manu0lt T_chnical Report MSUCL-1196, N_tional Superconducting Cy-�clotron Laboratory, Michigan State University, East Lansing, MI _8824,�2001; see also http://cosy.pa.msu.edu.��3I NI. Ber2 and K. Mahino, "Veri_ed integration of ODEs and Aows with dif-                _�ferential _lgebraic methods on Taylor models'', Reliable Compwting, 1998,�Vol. 4t pp. 361-J369.��4I M. Ber2, K. M_hino, and J. Hoefhens, ''Veri_ed integration of dynamics in�the solar system'', 'Nonl2near Analysis, 2000.��[5I J. HoefJcens, Rigorows Numerical Analysis w2th Hzgh-Or_er Taylor Mo_els,�Ph.D. thesis, Michig_n State Universityt East Lansing, Michigan, US A,�
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__     p(__ Jo_se/ Fpue9r3nJ_(a/2xMnd)lNhe_N____/lmyylenc1r _n_sn_a_w/sbnt(ald_9tJeuM_(tx2ea_r)oa)hf,no/1Tdt_nl t_ft_oTeTomlp_bcuaaon(dtxrl_l_cco_)ss__G__enoJ_n_d__nrel_psa/_ulet9zJ (cxa)sn_a_do3         _______�������������������� A Numeric_l Study on _ New Heuristic__�� Decision Index for Interval Global Optimi__tion����������University of S_eged, Hungary                           _�Dpt. Statistics and Operations _ese_rch�University of Murciat Sp_in�Dpt. Computer Architecture _nd Electronics                      _�University of Almería, Spain����The talh gives an overview on the numeric_l test results of solving inequality�constr_ined glob_l optimi2ation test problems with interval Branch-and-_ound�methods.�In [1, 3J a new heuristic decision index was discussed for unconstr_jne_�_roblems and investig_ted in detail.  This index has the form of pJ(X) :--�- _(X))/w(_(X)), where X is an interv_l vector, J is an _pproximation�of the global minimum v_lue and _ denotes the interv_l inclusion function of�the objective function. This index measures the relative position of the mini-�mum within the inclusion f(X) and it is suitable to be applied as a subinte_val�selection criterion and _s a part of the subdivision rule as _ decision f_ctor.                 _�J. F. Hernánde2 proposed the idea of extending this index for constrained�roblems by t_hing the e�ect of the constr_ints into _ccount in _ similar way:��.   -9_,_ (X)����(where gJ is the interval inclusion function of the Jth constraint). The pu quan-�tity measures the rel/ative position of O within the inclusions of the constraint�functions, i.e. the feasibility ofthe box X. Finally, the heuristical decision index�for constrained problems is formali2ed by pup(J,X) :-- pu(X) _p(JtX). We               -�can conclude th_t if thė pup value for a given box is high, then the box should�be preferred for _n early selection (interval selection step), or it is advis_b_e to�split it into a higher number of subboxes (subdivision step).                         _�In the numeric_l tests we were dealing with two diAerent types of problems:�the _rst was the problem cl_ss of the obnoxious f_cility loc_tion model [4J.�
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_l          l   Eust2acqt ueanlNno3tdr_AnoTs_ytl_Mltatarucaalt__Jo_otunl/ndaAeelzsdTm1_netuf Boc_reomDnmJ_lta_/vptmelu_crtl_l_anaoc3Bl_o/anr_/n2,                       ____  t�������������������� Solving Electric_l Power Load Flow Problems                    ;�� Using Intervals                               ___  _�������� Facultad Politécnica, Universidad Nacional del Este,� Ciudad del Este, Paragu_y, amartine_@politec.une.edu.py         .          -���Universidad N_cional de Asunción�San Loren_o, Paraguay, bbar_n@cnc.una.py                       -���Universidade Federal do Rio GTande do Sul�Porto Alegre, _S, Brasil, diverio@inf.ufrgs.br                      "-����Due to its import_nce to the planning and maintenance of l_rge electrical               _�power distribution systems, the electrical power load _ow problem has been�'      exhaustively studied by electrical engineers. T_hen in this context, the idea of�an interval appro_ch is particularly interesting, if one considers the possibility of�_nding _ll the solutions within a dom_in. This _dvantage is speci_lly important�given th_t non-linearity of the problem give rise to _t least one operating point�(feasible solution) for which traditional controls drive the system to _ coll_pse,�producing an undesirable bl_chout as the ones produced in Bra2il _nd the United�States of America. It _lso allows the represent_tion of the problem's parameters�_s intervals, based on the physic_l values and their respective toler_nce interv_ls,�aiming to the application of the method in the sensitivity analysis of an electrical               _�power system.�.   .     This work _rst presents the use of interv_l arithmetic to solve the electri-�cal power _ow problem in a sequenti_l environment. However, the sequential�_ppro_ch requires expensive computation_l resources (as supercomputers) Llot�_lways _vail_ble to solve the problem in wor_ble time. Consequently, a new�par_llel _synchronous appro_ch running on a local _rea networh o_ personal�computers is presented to speed up the process with resources already avail-               _�able in most organi_ati�ns. This novel approach is based on the interval New-�ton/Generali_,ed Bisection algorithm, that is paralleli2e using _n asynchronous�communic_tion techniques that let each pTocessor of an heterogeneous networh               _�of computers to work at its own speed, sharing results and worhload with other�processors of the networh, to accomplish the calcul_tion go_l in worhable time.�



_________          _pwhere_F __ __ _ __tFxF(xJ (_2)t_x__ee__KKh()(_(Jxl_lt(h_x2__)t t _x__ NNh_1)_t __J_2)(_TxF)_)(xT_h___) _o_nd __zt <_ 2( 2_ <_ __2t (f((4o5r)_))����������������� _                This w_y, the method may be sc_led with _ number of available processors, to� solve problems of greater magnitude.� The electric_l power load _ow problem can be formulated as a quasi-linear� system of equations�� Y_= I(2)       '             (l)�� where Y is the admittance matrix, Y = (yk,;) _ C_^^ t with yk; = Ch _ + Bx; _ C ;� '               _ _ C_ represents the (usually unknown) voltage vector (therefore, n is the�roblem si2e), and I(2) is the current vector, I _ C^.  To facilitate control�of operational restrictions (usually on. the voltage magnitude), the problem is�_                mostly solved in polar coordin_tes _s:��Rk = Vk T V_ (_k_ cos 0k,_ - Bk; sin 0k;)           (2)Q����   k = Vk _ V2 ( Ch; cos 0k_ - Bk_ s in 0k__)          ( 3)���where 0h; = 0k - 0;Vh _ (1 ,..., n), K is the group of the bus b_rs adJacent�to k and h itself.�The use of an interv_l approach for the solution of a non-linear system _s the�one above, brings along some interesting advant_gest such _s high accuracy and�self-validation1 as _vell as proof of root existence and uniqueness of solutions.�The interval approach allows us to _nd the solutions by estimating an interval�_                (or union of intervals) which is expected to contain one or more solution. The�method then will indicate if such solutions exist or not.  Observe th_t point�methods used at present, such as the Newton-Raphsont do not posses these�-                important features.�In this contextt _ non-linear system c_n be written:������1 <_ i < n, ____ y _; are the lower and upper bounds of _;. The interval Newton�method for non-line_r equation systems has quadratic convergence can be used�to solve the problem. The system (4) can be written as a linear interval system,:�����where Xh _ IR^ is the interval vector where the solution X* _ R_ is expected��midpoint of Xh) is the unhnown interval vector which is expected to contain�-                the solution X'; _'(Xk) e IR_~_ is the interval extension of the Jacobian�matrix of FinXk. Xh can be calculated by solving equ_tion (5). The iter_tive�formula for a system with n variables results in:�



_c      J (  cJ  k  cJ (_c  J h  cc  QJ )J   c  Q J_ _  _________���������������.            If xk+1 -_ _  em t  inte,val  tnen €ne non_existence of a solution in xh�is  ,oved.  To com ute xh solvin  5  an  hnown method  sucn as G�elimin_tion Method or Gauss-Seidel interval Method can be used. In this worh                _'�it is used the latter.�In order to solv_ (5) using the interval Newton Method, the applicable in-�terval system may be written as:�Hk  Nk   _h    _h     _ph�_  Lk   vk  -  vk   ≡  _  k            (7)��Hh  yh     '    _h    N   _ph�where  Jk  Lk  = F'(X ); vh  = X _  _  k  = F(Xk)_ and Ht Nt J, L are�the interval sub- matrices that depend of the problem, V and 0 are intervals�vectors.�It is well established in the _eld that the search region for the load Aow�problem is:��0 = _-0ma, , 0ma,J                (8a)���V _ _-(+ 1,( + 1J                (8b)��where 0m,, -_ 100 and ( < 1, _ccording to heuristic recommendation.�System of equations (7) is _rst solved sequenti_lly by using Interval New-�ton/Generali2ed _isection. However, electrical systems _re non-linear system�of large dimensions and requires, computation_l resources not always av_il_ble.�This f_ct motivated our studies of parallel techniques and algorithms in an�asynchronous environment of personal computers to reduce processing times�and to optimize the use of _vailable computer networlcs. To solve the problem                _�in a parallel asynchronous environment as a networh of computers, the origin_l�problem should be partitioned in sever_l smaller sub-problems, in such a way�that each processor of the networh, can worh on its own sub-problems without                _�much intervention of other processors.�A simple appro_ch to partition the low Aow problem in sub-problems when�using the proposed interval method is by dividing the search domain in disJoint�sub-domains. That way, each processor mahes calculations on its assigned sub-�domain without interfering with other processors. Of course, a m_ster process is�needed to manage the wor_ of each processor. In this way, each processor carries�out its search in a particular region, which is smaller that the global domain. At                ^�each processor, the algorithm detects whether a solution exists (or not) within�its sub-domain and itJcommunicates its _nding to the master, which may assign�a new sub-domain for e_ch new available processor, managing lo_d balancing,                n�until the problem is co_pletely solved. Of course, hard sub- problems may be�further sub-divided using Generali2ed Bisection, reducing the total processing�time.�In order to determine the _dvantages obt_ined by the proposed paralleI�method, a Sp (Speed-Up) measure of acceleration is de_ned as the relation�between the sequential processing time and the parallel processing time.���11_�



______                            r           _       _    _������������������-                  In order to verify the proposition's validity, algorithms (both traditional�point method and the proposed interval approach) were implemented in C lan-�guage and several well hnown test probIems were solved, as the IEEE 5 and 1_�bus,bur paradigm, the Monticelli 30-busb_r system and a 88-busbar electric_l�system. The authors decided to use an existing asynchronous communication�facilities, already built in MPI (Message Passing Interface) software without any�existing interval software, considering the dimculty of implementing a reliable�-'               parallel asynchronism in the latter. At the moment is in study the implemen-�tation of algorithms in c-xsc for Linux.�The computation environment was based on a 10 Mbps local area network of�_                5 personal computers with Pentium I_ processors of _OOMH_ and 32 Mb RAM,�running _ Linux Red Hat operating system, In the parallel implementation, one�_cts as the master, NFS and NI5 server and has M_I installed. The others four�worh as slaves.�^                  Exper'imental results show th_t the par_llel _pproach is not only faster, but�it also founds better results with sm_ller _olution diameter and power mismatch�(di�erence between _ctual and calculated power), thus o�ering an additional�_                advantage.�In summary, a par_llel _synchronous interval _pproach to the load _ow prob-�lem seems bene_cial in time reduction and quality of solutions and a conJecture�_          .      of scalability of this _dvantages to larger problems with _n even larger number�of inexpensive computers in a local area networh may be stated.�



_c J_    _(    c J) c __    _(c _  c J) t     1 1   t     ()     ____����������������On the Sh_pe of the Limit of the Tot_l Step�Method in Interval Analysis                         __��Günter Mayer and Ingo Warnhe�Fachbereich Mathematih, Universität Rostoch                      _�D-18051 Rostoch, Ger_any�em_ils guenter. mayer@m_thematih. uni-rostoch. de and�ingo@sun4. _ath. uni-rostoch. de                           _���Given an n x n interval matrix [CJ and an interval vector [b] with n com-               _�ponents the solution set S of the interval linear system [C]2 = [bJ is de_ned�by��S:-- (2eI__IC2=b, C_ cCJ, be _b]}.                         _��Since this set normally cannot easily be described (cf. [7J, e.g.) one loohs for�enclosures of 5 by _n interval vector. One of the simplest iterative methods to�obtain such an enclosure is based on the Rich_rdson splitting [C_ = I - _AJ, i.e.,�[AI ___ I _ [C] ' ([_0_J,à2jJ), and readS��L_J(h+'_ = cAJc_J_h} + cb] ,  k _ o, 1,....          (1)               _��It can be found in _1] and can be reg_rded as the starting point of many other�iterative algorithms for enclosing S, among them such well-hnown iterations              _�like�_2J_h+'J = (I - RccJ) [2__h_ + Rrb]t  k = o, 1t...,        (2)��and�,(k+1)__ I__c  ,(k)+_ b_c;   k__o1...      3��(cf.  _6J, c8I, e.g.)  where R _ ]_^X^ denotes any nonsingular preconditioning�matrix, _ is an appr�xim_tion of an arbi€rary element of s and c2_ _! _ is used to�approximate and/or to enclose the errors 2 - _ for _ _ S. Replacing _AI in (1)               -_�by I - R_CJ, __J by R[bJ, and R([bJ - cCJ_), respectively, ends up with (2) and�(3), respectively. Thus these latter iterations _re particular cases of (1).�Assuming' in_nite precision the method (1) w_s extensively studied in the              _-�late sixties and the early seventies where the question of convergence was com-�pletely answered by a well-known theorem of Otto Mayer _5_. It turned out�



________                l_Aloc___tov_nfolle_Isptt*chltrhhrg2Atl___ohol Jols__u_trhrx(_g_lel_oc(e_hn_uwlf_dlt_nm4nohwlhctAdl_Al_ectn2thh]Jhocclt_eowtoacow_ulsNsnnc_teAle1erdc__ot_ul3tofgcnmt_steh()obeutla Tets)rtwete_o(awltlNuvnetxorltpbheNstfg7rhe__)e_rtcn__JeeosttorJtsh_r_2_nl_p_le_cmot_ehee__usc_pec_aoortnotofneestfttvlsNseovvtrtoenlt_ehorvtlhpvgheelNelr_sseqeneefnulN_gs_wncetecbtes_ent_eltloectrollN_eorovrt)dhn_nesoy_nldsurslo_lh_ndttc_u]lelleN_o_ltoqmltnnmlnuebe0srHepy_pm_(lr_p(esm_l_uJtonsr)oeAseyselrd__lt_syItonltopl_)ervsn(___mc<eer_oetdfe4llh_g_l_cl_tgtsa_uwhotell___lef_]enn_tnverocsccdAe_o3folceclntl_tuts3adshoot_sl_+oerl J_dmso Tee__eon*_sebsr_f   _������������������  -                that p(1_A]l) < 1 is necessary and sumcient for the convergence o f ( 1) w here�  AIt :-- (mc__( l_n_,J,lt l-a__,_l )) _ __X_ denotes the absolute value of _A] _nd�  p(l_AJl) :-- m_x ( l_l l _ eigenvalue of I_AJl) is the spectr_l ra d ius o f t he rea l�  __                matrix l_AJl.  Tt is easily seen th_t in this case the limit ___' of (1) satis_es�  s c __J*. Moreover, s c [2I_ c _2I{h+"} c 2{h _t k _ o, 1,...�  if _2J(") C __J(O) is true. In the case p(l_AIl) < 1 this holds, e.g., i f one s tar ts�  with __J(0) = (I- I_AIl)-l<barcode type="unknown" /><barcode type="unknown" />�-1t 1] or with __J ( O ) = (1 - l l t _ A ] l l l_ )- 1 <barcode type="unknown" /><barcode type="unknown" />�- 1, 1 I�  _               where the absolute value l _bJ l of _bJ is de_ned analogous (y to _ _ A I l an d _ here� _ ll_ denotes the row sum norm.� Two questions on (1) remained open up to now: How does t he l im i t __ J�� it approach the interval hull a (S) of S, If, for instancet _AI _ A e I__X_, _b ] =� b _ l__ one gets c2]* _ 2_ = (I - A )- ' bt hence _2 ] _ is hnown an d equa ls 0 ( S)� _                s.  Ift however,  cAJ _  _ c  , O l J  _- ô, ' I _,  cbJ = b _ (-1, 1) _ t ne l im it������� of two coupled systems of linear equations; cf. _3 J. Know ing _ s imp le e lemen t������ of matTices [AJ _nd vectors _bI we even were able to represent [_I_ precisely by� -                means of midpoint and radius of _A] and _bl; cf. _2I.��� algebraic solutions _2J * of the equation�� 2J= cA7__J+ cbI�� with p(l_A]l) = 1 and - as a gener_li2_tion thereof - with p ( t _ A I l) > 1. Assum ing� l _AI l to be irreducible (cf. _9], e.g.) both cases could completely be h_n d le d in _ 4 J�concerning existence, uniqueness and shape of __J_. In the _rst c_se 't he ' Perron��'-                t_AJt associated with the eigenvalue p(l_AIl) plays a crucia l ro le w h i le in t he�second case _2J* necessarily is degenerate. Maybe th_t in t he case p ( l _ A J l) < 1�the _nal structure of [27' can be derived by means of some ideas used in the�_                case p(t[AJt)= 1.�Matrices cAI with p(l_AIl) = 1 and reducible absolute v_lue l_AJl norm_lly�involve the case p(t_AJl) < l by some of their di_gonal blocs _ A I w hen loo k ing a t�-                their reducible normal form as de_ned in _9I. If the shape of _2]_ is hnown for�p(l_AJl) < 1, it can be shown th_t due to our results this shape is also hnown in�the c_e p(l_AIl) >_ 1.�
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____       ___  _               _  __�����������������������-                         Twin Estim_tes for Slopes���HumbeTto Muĵo2 and R. B. Kearfott�'-                           De_artment of Mathematics�University of _ouisiana at _afayette�Box 4-lOlO, Lafayett.e, _A 70504-1010 USA�^                             hnm2294@louisiana.edu�rbh@ louisi ana. edu����1   _ntroduction��_              Interval slopes are useful in the rigorous treatment of non-smooth optimization�problems, as we have outlined in _3, Ch. 6J. There, we developed formulas for�outer estimates for the r_nges of slopes of nan-smooth and discontinuous func-�tions. Slopes of non-smooth functions provide _ simple _lternative, computable�with autom_tic di�erentiation procedures, to concepts such as the generali2ed�gradient _1J, and semigradient _5J.�For various re_sons, it may _lso be useful to compute inner estimates to the�_              range of slopes for non-smooth or for discontinuous functions.  For example,�we c_n develop theory relating slopes to generali2ed gradients; depending on�that theory, inner slope estimates would then be guar_nteed to be elements of�_              the generali2ed gradient. We could then develop general, autom_tic algorithms�b_sed on previous algorithms that utilized generali2ed gradients.�An _ltern_te re_son for developing inner estimates is to obtain bounds on�the overestimation in the outer slopes.�Formulas for inner estimates for slopes are somewh_t trichier than formulas�for outer estimates. In _6J , such formulas for inner slopes for various elementary�functions, such as max and l _ l are presented. The development there is analogous�"              to that of [3, Ch. 6].�Incorpor_tion of the formulas for inner slopes into expressions for obJective�functions, etc. requires an _rithmetic based on inner estimations, rather than�_              standard interval arithmetic. We have used twin ar2thTnetżc as Kreinovich and�Nesterov _4, 7J have proposed. This arithmetic is operation_lly equivalent to�Kaucher arithmetic (ibid.).���2   A _ew Details��._              We term our procedure _utom_tic twin slope comput_tion (ATSC). Inner and                .�outer bounds of the actual slope set are given simultaneously for nonsmooth          _����-                                    121�



___ _p      NJ()  _ __     _      9    _c t ]   N  s     __          _____��������������_          functions such as lJ(,)l, m_x(J(2),g(_)), Jtg: I__ _ I_, and expressions�'                de_ned by i_-then-else branches.��De_nition 1 (Tw2n ar2th1netic (4J and J7JJ. A twin is a pair oJ 2ntervals t =                ' '�(22nn, 2), with assoc2ated relat2ons C_ and _C, such that 2;,, _ ]il_U (ØJ , _ _ I[J_,�and Jor y _ __, y _ t denotes m__ C_ y C_ _, (_, _) 2s a degenerate tw2n, and�y _ (_, _) 1neans that there 2s onl_ an outer est2rnation oJ y, wlz2ch is 2.                    _��Basically, a tw_n estimation of some function J (21 ,... , __) consists of a palr�Of lntervalS, the lnner interval eStlmatiOn, Ji__ (t) and the OUter interval eStlm_-�tion J(_). An inner interval estimation must only contain values that are in the                _-�actual range of J. We denote the twin estimation of J by��Jtw__ (t) = (J___ (t) t J(_)J _��The basic _rithmetic operations with twins given in _7J are identical with�those given in K_ucher arithmetic {2J for the set of proper intervals, i.e., _a, bJ J�where a < b.�ATSC evaluates _unctions speci_ed by _lgorithms or formulas in such a way                _�that all operations are executed according to the rules of a twin slope ar2th7netic�to gu_rantee inner and outer estim_tions for the function and slope values.�Throughout, _ = (_1J22) and _= (_1,_) will represent twins such that 22 _                __�  N��De_nition 2 Let _ an_ _ be real twins and let u: 22 _ J_ be a real _unct2on.�A twin s_ope Jor u over _ and centered at 2 2s de_ned as the twin                       _��S_w;n (u, _, 2) ≡ (S;nn (u, 2, 2) , S(u, _2, _2)),��where S;nn(u, 2, _) and S (u, _, _2), the inner and outer slope estimations, are                _�obta2ned accor_2ng to the rules oJ a twin slope ar2thJnet2c.��Twin slope arithmetic is based on de_ning operations and standard functions�on automatic twin ordered triplets of the form ((ǔ, u, u(') )) t where ŭ, u, and u(')                -�are re_l twins. ŭ is the twin evaluation of u (_) over _, u is the twin evaIuation of�u(_) over 2 and u(') is the twin slope S__;n (u, _t 2). Inner estimates for slopes�are expressed in terms of bounds of intervaIs , considering concavity conditions of�the functions, and executing all intermediate operations with inward rounding.�Outer estimates for slopes are obtained with the _ormulas given in _3] _vith�outward rounding. The following example illustrates the application of ATSC.��Exam le 1 Let  ,  __ _2 _ 4, + 2.  consid,,in  the inte,val  1 7  an_ ;t�_2dpo2nt 4, the actual slope is S#(J, _1,7J,4) = _1,7J, and the actual range is�JW (_1 , 7I) = _-2, 23]. Let _ = (_1 , 7J t _1, 7J) and 2 = (_4 - _, 4 + _J t _4 - _, 4 + _J),�where _ is large enough s,o repeated inward roundżng does not result in the e1npty�set, The ne_t table _resents interm.ed2ate evaluat2ons usżng twjn arith_etżc and�twin slope arith_etic w2th Jorward substitution,  In th2s table, _r, 2, and 2s�denote the range, center and twżn slope evaluations Jor the inter7ned2ate _ariables                -_�respect2vely (rounded out or in as appropr2ate to three _żgitsJ. Also, op żnd2cates�wh2ch inter_ediate operatżon is perJor1ned to co1npute the dżsplayed result.���122�
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__ _____     __      _                         ______��������������������Two Topics in Computer Assisted Proofs for the��Problems in Fluid Dynamics                       _���Mitsuhiro T. Nahao���Faculty of Mathematics�Kyushu University 33�_uhuoha 812-8581, Japan                           _�e-rnail: mtnahao@m_th .hyushu-u. ac .j p����We have been devoted for years to studying the numeric_l veri_cations o_�solutions to elliptic partial di�erenti_l equations. Our appro_ch is b_sed on the�combination of _xed point theorems in functianal spaces and the constractive�error estimations of _nite element (or spectral) method.  In our veri_c_tion�processJ the interv_l method for _nite-dimension_l linear equations plays _n�essenti_l role.�In this t_l_, we _rst brieAy descrîbe the basic idea of our veri_cation method              n�for nonline_r elliptic problems. Next, we _pply t1_e method to two important�problems appeared in _uid dynamics, i.e., Rayleigh-_énard and Kolmogorov�problems.  In both cases, the existence of exact solutions is veri_ed _nd the              _�usefulness of our approach have been shown.���1   The Basic Idea (_4, -5J)                                  _��5uppose that the concerned elliptic problem is reformulated as the following�_xed point proble_ of a nonlinear compact oper_tor F in some appropriate              _�in_nite-dimensional function space X:��u=F(ut.                   (1)��Suppose also that we _nd a nonempty, bounded, convex, _nd closed subset�U C X, which is referred to as a can_idate set of solutionsJ satisfying��F(U) = (F(u) lu e U) c U.              (2)��Then by the Schauder _xed point theorem, an in_nite-dimension_l version of�Brouwer's theorem, there exists an element u _ F(U) such that u = F(u).                _�Let Sh be a _nite-dimensional subspace of X dependent on h (O < h < 1).�Let _h: X _ Sh be the orthogonal projection operator, where the parameter     '����124�



_____                l___nstetrhve_lsectooeumfhfcu__lNnenc_JtttM__sl_o11nr__AsnJ_tl_d_,n_At_hJ_Jeh_l_Jsc_ehte_u_n__cdhl_es_ulJec_M___mo1ne__snttr(u_l_sct_aedsllJNh__nMa__esl___r__ _bc_oalt_m_lHlbo Jl_nl_n<_sal_ah_o)n_w, olNfth(_rJa_)dJM(l____3u)sl   t����������������� h corresponds to the degree of approximation. For example, it means the mes h� si2e in the _nite element methods or the reciproc_l of the term num ber in t he� spectral approximations.  We usually choose _ candidate set U o f t he form�� -'               complement subspace of Sh in X. Then, the veri_catio,n condition (2) c_n be� decomposed into the two p_rts as follows:�� _                                   Ph F ( U)  C  Ul_��� (I-P)_)F(U)  C  U_,�� _                Since the _rst inclusion is in the _nite-dimensional space Sh, it may be ver i _e d� on computer using interval arithmetic. The second inclusion is in the in _n ite-� dimensional space Sh_, and will be veri_ed by constructive error _nalysis of the� __                numerical method in use. Combining veri_c_tions of both inclusions in ( 3) we� may conclude the inclusion (2) is veri_ed.� The set Uh consists of linear combinations of base funct ions in Sh w i t h�� a >_ O. N_mely, we represent Uh _nd U_ by��������� -                respectively, where (_J-)J_,__ is a basis of Sh. Here_ ___AJ_, AJ_I_J' is interepreted����_                whose coemcient of _,_ belongs to the corresponding interval __AJ_,AJ' I for e_c h�S i 5 M,�Then, it can be e_sily seen that PhF(U) is directly computed or enclose d o f�the form�PhF(u) c _c_B,., -B,- J_,_���__                by solving a linear system of equations with interv_l right-h_nd side whic h is�determined fTom Uh _nd U_ using interv_l comput_tions. T hus, t he _rs t con-�dition in (3) is v_lidated as the inclusion relations of corresponding coe mc ient�intervals, th_t is, __BJ_, BJ_J C __AJ-, AJ_I. On the other hand, (I - Ph)F(U) is not�directly computable but can be numerically evaluated by t he e �ect ive use o f�constructive a priorj error estimates of the proJection Ph. Hence, t he secon d�condition can be veri_ed by _ simple comparison of two nonnegative rea l num-�_                bers which correspond to the radii of balls. In the actu_l colnput_tion, we use�some iter_tive methods for both part of PhF(U) and (I - Ph )F (U).�In order to apply the veri_c_tion method to more general problems, __e usu-�_                ally utilize _ version of Newton-li_e method (see e.g., _5J, _6J for det_ils) w hic h�is also considered as _n extension of the interval Newton method (e.g., _1 J) to�



___ ____                     (4)               __ _��������������� '         the in_nite-dimensional cases. We also note th_t, in our veri_cation, we esti-� mate rigorously not only the rounding erroT of Roating point comput_tions, but     ,� also the trunc_tion error due to the approximation of the in_nite-dimensional               _� operator. Therefore, our method c_n also be _pplied to the gu_ranteed a poste-� rjori error _nalysis for the various hinds of approximation methods for elliptic� problems.��� 2   Heat  Convection Problems Governed by the� Navier- __ohes Equation                                   _-�� The two-dimensional (x-z)  Oberbech-Boussinesque approximations for the� Rayleigh-Bénard convection are described as follows _7]:��u_ + uu, + wu,  =  p, + __u,�w_ + uw, + wwz  =  p, - __0 + __w,�u,+w,  =  O,                                   _�0_+w+u0,+w0,  =  _0,��where (u, w), p _nd 0 denote the velocity _eld, pressure _nd temper_ture from a�linear pro_le while _ and _ denote Prandtl and Rayleigh numbers, respectively.�We consider the steady-state solution branches of (4).  _y using the stream�function _ for the velocity and setting 0 -_ _0, we h_ve the following�system of equations on the domain (-oo < _ < _, O < 2 < _).                       _-��__2_  _  __, - _,__, + _,__,��-__  =  -__, + _,_, - _,_,             (5)              _��_=O  ,   _,,=O,  0=O   onz=O,_��We suppose the periodic boundary condition in _ and the stress free boundary              _�condition on z = O and z = _. We have numeric_lly veri_ed several solution�branches from the trivi_l solution of (5) by using the spectr_l approximations�_nd the constructive error estimates. Several new results which would be dim-              n�cult to derive by theoretical appro_ches are obtained.���3   _olmogorov's  Problem  of  Viscous  Incom-              __�pressible ,Fluid��This is a non-self_dJoint eigenvalue problem of the linearli2ed stationary Navier-              _�Stohes equ_tion in tw� dimensio_ of the following form _37 :�



_________          _     ccc      _          _T_a _   y     t_   _                 ()������������������_               that���__2_-siny(_+I)-a,  ≡  ___,    (_,y)_T,�������-               where R is the Reynolds number, Ta _ [-_/a,_/aJ x _-_;_I (a: aspect ratio).�The _nal purpose of the computer assisted proof is the validation of a sta-�bility condition of the Aow. This can be carried out by showing that a certain�_.                ine_uality holds for the numerically veri_ed eigenp_ir (_, _). Using the Fourier-�Galerhin method with explicit error estimates as in the previous probIem, we�have _ctually succeeded to veTify stability results related to the aspect ratio�a.  _roving this result would also be very dimcult by any hind of theoretical�analysis up to now.�In the presentation, we will show some numerical examples of the _bove�topics. In both examples we use the spectral method. Note that it is also pos-�sible to use the _nite element approximation with constructive error estim_tes�in stead of the spectral method.���References��[1l G. Alefeld, "On the convergence of some interv_l-arithmetic modi_cations�''_                  of Newton's method'' , SIAM J. Nurner, Anal. , 1984, Vol. 21 t pp. 363-372.��2I V. Girault and P. A. Raviart, Fżnite element rnethods Jor Navier-Stokes�_         .         e_uatjons, Springer-Verlagt Berlin, Heidelberg, 1986.��{3] K. Nagatou, A computer assjsted prDoJ on the stabiljty in KolJnogorov 's prob-�le7n oJ vżscous incoTnpressżble _użd on 2-D _at tori, preprint.��[4_ M, T. N__o, ''A numerical approach to the proof of existence of solutions�for elliptic problems'', Japan Journal oJ Applied Mathernat2cs, 1988t Vol. 5,�pp_ 313-332_��5J M. T. Nahao and N. Y_mamoto, "Numerical veri_cation of soluXions for non-�linear elliptic problems using L_ residual method'', Journal of M_thematical�An_lysis and Applic_tions 1998, Vol. 217, pp. 246_262.��_6J M. T. N__o, "Numerical veri_cation methods for solutions of ordinary and�partial di�erential equations'', NuTnerjcal Functżonal Analysżs and OptjTni5a-�_                  t�on, 2001, Vol. 22, No. 3/4, pp. 321-356.��7_ Y. Watanabe, M. T. Na_o, N. Yamamoto, and T. Nishida, "A numerical�veri_c_tion of nontrivi_l solutions for heat convection problems'', Journal oJ�"--                  Mathen2at2cal Flu2d Mechanżchs, 2002 (to appear).                               '�



_____              l   pN s_ v_ N__tar__J_ l and J_ Jt B_rve2                          __________������������������Generation of Bode and Nyquist Plots for�Nonr_tion_l Tr_nsfer Functions to irescribed�Accuracy������Associa_e _rofessor and 2Research Scholar�Systems and Control Engineering�Indian Institute of Technology�Bombay, Mumbai 400 076, India                          _�(nataraJ ,JJ barve) @ee. iitb. ac. in����Abstract�We present interval analysis based procedures for construction of the�well-known Bode and Nyquist frequency response plots for nonrational�transfer functions. T_e proposed procedures can be used to construct the�plots reliably and to a prescribed accuracy over a user-specined frequency�range.  The procedures overcome the limitations of the only available�method for nonrational transfer functions that is based on arbitrary grid-                  _ _�dinġ of the given frequency range.  5everal important examples drawn�from various branches of engineering are used to demonstrate the merits�of the propose_ procedures.�Keywords: Frequency Response, Interval Analysis, Bode plots, Nyquist plots,�Nonrational Transfer Functions.���1   Introduction��For over _ve decades, the Bode and Nyquist frequency response plots h_ve been�of greaX use in frequency dom_in analysis and synthesis of linear systems, see,�for instance, _1, 6, 11].  For transfer functions (TFs) having a rational form,�an automatic frequency grid selection procedure is _vailable in the MATLAB�toolbox _4] to generate the frequency response plots. However, this procedure              -�has several limitations: _��1. it does _ot gu_rantee that the gener_ted plots _re of a user-speci_ed ac-�



_____           _                    _      t   _   _    _      tpractl_c_l l_mportao_nmrce_eoe_N1����������������__                  2_ it uses an unreliable phase unwrapping pro�suitably nne frequency grid is not chosen in the fre quenc y re gi o n h�sharp phase changes, and��--                 3_ it is not applicable to the large and important class of nonra €i o n _ _ €, a n s f e�functions.��The class of nonr_tional transfer _unctions is of great�-''                especially in chemical process control _here virtually every process nas s; gnif_�iC_nt time-delays (_ time delay is modeled _s a e-Tds term, where T, is the�amount of time del_y, and this le_ds to a nonrational transfer function). s�_                of the application areas where nonrati'on_l transfer functions can be found��l. pressure �uctuations in a lon g �exible hose-tub e c o n n e c t i n g s e r v o_ v a l v e €�_ctuator in hydraulic servo system _3 J,��2. feedbach system with me_surement time dela ys _lo J��3_ he_ting of a one dimension metal rod alon g its len gth b y a ste a m c h e s t�--                   r12J,��4. he_t-exchanger systems _12 J��'-_                 5. multi-modal reactor systems jn nuclear reactors [2 J , and��6. _exible or smart structures.��_--                  At the present time, the only method for generatin g the Bode and N y quist�frequency response plots for such nonr_tional transfer functions is thro u g h a r-�bitrary r_stering or gridding of the frequency ran ge of interest. However, as is�well-hnown, this so-c_lled gridding method has si gni_cant limitations: (a) the�number of grid points required to obtain a speci_ed accurac y is unhnown, and�(b) for a given frequency response plot, the amount of error present is unhnown,�i.e., no error estimates _re av_ilable.  These limitations show u p particul _rl y�_'                severely when the frequency responses exhibit single or multi ple sh_r p peaks or�dips (this h_ppens for the application systems we mentioned above ). Des pite�the severe limitations of the griddin g method, sur prisin gl y _ittle e�or t h a s b e e n�made in the literature to overcome them.�In this worh, we propose a procedure each to generate the Bode and N y quist�frequency response plots for nonrational transfer funciions.  Since our proce-�  dures are b_sed on a Vector - Adaptive subdivision and evaluation strate g y, we�__ll _h_m n_ __ _rn_____ Fa,__  V_ _rn____1r___ ar_ gl1_ran_e__ to automatical1_�generate the plots rel2_6l_ and to a _reSCribe_ _CCUraCy, thrOUghOUt a _lVen�frequency ran6e. The vA procedures are applicable to a very gener_l ClaSS Of�t,ansfer functions in the continuous _S well aS in the diSCrete-time dOmalnSN�_ansfer functions involving a composition of time-delay _nd tranSCendental�te,m, c_n be handled equally easily in the VA _rocedures, withOUt the need�fo, any approximations. Moreovert error estimates are readily av_ilable frOm all          ,      '�"                plots that have been generated bY the VA ProCedUreS_���129�



__3__tsuedtecsru0erclrute_tnlntglferesqpuency, p_subl   g     p   p _   g g q q  y y  ntear__s               _________������������'          2   A Procedure for Bode Plot Generatîon��We present the proposed VA procedure for Bode plot generation.  A similar�procedure can be given for the Nyquist plot generation.�The Vector-Adaptive Procedure (VA) for Bode Plot Construction�_ Inputs: An expression for the transfer function _(s), the frequency interval                __�_ of interest, and the speci_ed m_ximum width e of each magnitude and�phase rectangle in the gener_ted Bode plot. In general, e can be di�erent�for magnitude and. phase plots.�_ Output: A collection of magnitude _nd phase rectangles, each of width _t�most E, and enclosing the actual Bode magnitude and phase plot.��BEGIN Procedure�1. From the transfer function expression g(s), obtain the magnitude and�phaSe expreSSionS Jmag(W) and _phase(W), where W iS the freqUenCy Varl-                __�able.�2. Construct natural interval extensions Fmag(_),Fphase(_) for Jmag(w),�Jpha5e (W), reSpeCtiVely_                                              __�_nterval as n and set the solutlNon l__st Lsol�empty.�4. (Adaptive subdivision and vectori2ed evaluation)�(a) Subdivide all current frequency subintervals, and discard the original�subintervals.                                                 -n�(b) Using vectori2ed operations, perform vectorized e_aluat2on of Fma, (_)�over the frequency subintervals obtained in above substep.�(c) Deposit all magnitude rectangles whose widths are less th_n _ in the               _�_on l__st Lsol and d_Nscard the corres ond__n  fre uenc  subl_�vals f,om furtne,  ,ocessin  l. Kee  the remainin  fre ue,c  subin_�terv_ls in the current frequency list for further processing.�(d) If there are no more frequency subintervals left for processing, go to�the following step.  Else, go b.ach to the beginning of this step (of�adaptive subdivision and vectorized evalu_tion), and repeat.�5. Out_ut the generated Bode magnitude plot as the collection of all magni-�, resent l_n the solut_Non ll_st Lsol�6_ Repeat the abOVe three StepS bUt fOr ?p_ase(_).  OUtpUt the _enerated                _�Bode phase plot as the collection of all phase rectangles present in the�_on ll_st Lsol�END Procedure.                                                     -_�lThe corres ond_n  fre uenc  subi�sm_ll enough m_gnitude rect_ngles which h_ve been just stored.��13O�



_______                lboppNnuetnletcr(ehvx_malmtalfptohlreastltlhlNrrteewseuadlstl_s_foaeug_en_ndlNnttsghtr_tl_htdesgrpol_ldfostlo_oof2b,_t1oao4l_n3gterd_l_dnudspl_onll_gon4t_sgvwrel_erdyrepdooefln_tnestens_grreFul_qdurolNtrfhe5derxt t_1_node5t                   __����������������� 3   Results and Discussion�� We test the performance of the proposed VA procedures on several real-life� nonration_l transfer function examples. We _lso test them on some c__allenging� '                r_tion_l tr_ns_er function examples. The ex_mples are chosen from the applica-� tion problems listed above.� We program the VA procedures using the interval _n_lysis toolbox INT-� _                LAB _14] in the MATLAB environment. We carry out _ll computations on a� PC/Pentium-III 550 MH2 machine. In all the examples, we set the prescTibed� accuracy as _m_g = 1 decibel (dB) and epn_se = 1 deg. This means that mag-� nitude (resp. phase) side of each box in the plot is to have a width at most of� 1 dB (resp. 1 deg.).� We compare the frequency response plots generated using the VA procedures� with those obtained using conventional rastering or gridding of the frequency���� grid points.�_                  The results of the examples show that the gridding method yields large errors�in the plots, if the frequency grid size is not carefully chosen. For instance, in��in some extreme casest even grids of 105 grid points were inadequate to obtain�the same accuracy. Furthert the accuracy of t1_e obt_ined frequency response�lots is unknown unless _nd until these are benchmarked _g_inst the "exact'�lots (hopefully obtained using very dense grids). Without a good estim_te of�__                the grid points to be used and of the error present in the generated plots, there�is every danger t1Jat one may be lead to erroneous analysis and synthesis results.�The proposed procedures relieve the user of the dimculties _ssociated with grid�_                point selection and lach of error estimates.�The Table containing the comparative an_lysis of errorst and the plots of�frequency responsest are not given here due to space constr_ints but will be�given in the full paper).���References��[17 H. W. Bode, Network Analysżs and Feed_ach Designt Van Nostr_nd, New�Yor_, 1945.                       '��_                 [2J Y. L. Chen and K. W. Han, ''Stability analysis of a nonlinear re_ctor control�system'', I___ Transactżons on Nuclear Science, 1971, Vol. NS-18t pp. 18_���_                 _3] E. O. Doebelin, Control systen2 principles and design, John Wiley and sons,�New Yorkt 1985.��[4_ A. Grace, A. J. Laub, J. N. Little, and C. M. Thompson, Control systen2                .�tool_o_Jor use with MAT_AB; User gujde, The MathWorks Inc., MA, 1992.          ,�
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_________                         l  p_ s t v_ 2NDaetpaarrat_t_l eanntdoKtt __ TKotechar 2������������������������ _                   A New Super-Convergent Inclusion Function�� Form _nd its Use in Glob_l Optimi2ation������� Systems and Contiol Engineering Group� EE Department, IIT Bombay 400076, India� Email: nat_raJ _ee .iitb. ernet .in��� GH Patel College of Engineering and Technology� Vallabh Vidyanagar, 388l20, GuJarat, India�_                                Email: hh@gcet. ac. in����Abstract�Recently, Lin and Rohne [10J introduced the so-called Taylor-Bernstein�farm as an inclusian function form for multidimensional functions. This�form was theoretically shown to have the super-convergence property.�-_                   Here, we present an improvement of Lin and Rohne's Taylor-Bernstein�form to mahe it more e�ective in pTactice.  We test an d compaTe t he�super-convergence behavior of the proposed form with that of Lin and�_okne's TayloT-_erns_ein form and also with that of the TayloT model of�_                   Ber2 et al. _3I. We obtain super-convergence of orders up to 9 with the�proposed form. Moreover, with the proposed form we quite easily obtain�such high orders of super-convergence for up to 5 - dim problems.�We also investigate the use of higher order inclusion functions in the�Moore-Shelboe (MS) algorithm of interval analysis (IA) _or unconstrained�global optimization. We use the improved TB form as an inclusion func-�tion in a prototype MS algorithm and _lso modify the cut-o� test and�'"                   termination condition in the algorithm. We test and compaTe on several�examples the peTformances of the proposed algorithm, the MS algorithm,�and the MS algorithm with the Taylor model of Ber2 et al. _3] as inclu-�sion function. The results of the5e (preliminary) tests indicate that the�_                   proposed aIgorithm with the improved TB form as inclusion function is�quite e_ective for law to medium diInension problems studied.���'_                1   _ntroduction��An import_nt problem in interval an_lysis is the construction of inclusion func-�__                tions having the property of so-called super-con11ergence (i.e., h_ving a con-�vergence order that is greater than quadratic) for multidimension_l functions.�



_____  ______����������������Such inclusion functions have applications in the solutions of equations, opti-�mi2_tion, qu_drature, _nd others. The _rst paper in the literature concerning�super-convergence is that of _err,berger [6J , who shows that super-convergence                -�can be obtained for a cert_in class of intervals. However, his requirement on the�function is unrealistically strong. Cornelius and Lohner _4I propose the inter-�polation _nd remainder forms for multidimensional functions that enable _ny                __�convergence order to be obtained in theory. However, in practice, convergence�order of at most 4 or 5 is recommended even for unidimensional functions, see�[4_ and _15, pg. 9J. The same holds for the improved version of these forms for�unidimensional functions, as proposed by Neumaier in _14, sec.  2.4J.  Alefeld�and Lohner _1] propose centered forms with super-convergence for unżd21nen-�sżonal functions.  However, because of the stTong condition on the functional�representation, these higher order centered forms h_ve limited practical value                _�[1, pg.  8J. Lin and Rohne _10J propose super-convergent forms that combine�Taylor and Bernstein (or B-spline) forms for multidimensional functions. How-�ever, for small domains these forms become comput_tionally very dem_nding,�even for unidimensional functions, see [10, pg.  108I.  _er2 et al,  [3, 127 pro-�pose the so-called Taylor models for multidimensional functions. Although the�accuracy of the so-called remainder interval part of the Taylor model increases�in a super-convergent fashion, the Taylor model itself is hnown to exhibit only                '-�quadratic convergence see Kearfott and Arazyan _9J.�We propose in this worh a new inclusion function form having the super-�convergence property for multidimensional functions. The proposed inclusion               _�function form uses Bernstein polynomials for bounding the range of the polyno-�mial obtained from the Taylor form of the function J. The Bernstein algorithm is�combined with the T_ylor form to obtain the resulting so-called Taylor-Bernstein�form as an inclusion function form of J. The proposed Taylor-Bernstein form�has some impoTtant diAerences (in the practical w_y it is constructed) from the�Taylor-_ernstein form of Lin and Rohne [10J.               '�We numerically investigate the super-convergence property of the above in-               n�clusion function forms on some benchmarh examples. The selected ex_mples are�of low to medium dimensions. _or all our computations, we use a PC/Pentium�IIT 800 MH2 256 MB RAM machine with a FORTRAN 90 compiler, _nd version               _�8.1 of the COSY-INFINITY pac_ge of Ber2 et al. [2, 7J. We also investigate�the performance of the Taylor model as an inclusion function form in these�examples. With the proposed form, we quite easily obtain super-convergence�(of orders up to 9) for low to medium dimensional problems.  To our hnowl-�edge, it is perhaps for the. _rst time that super-convergence of such high orders�has actually been demonstrated on multidimensional problems. Moreover, the�new super-convergent form can be constructed on a computer with the fully                _�automated algorithm p_esented, without any need for hand comput_tions.�We next use the new super-convergent form to solve the foIlo_ving optimi2_-�tion problem. Let _ be tne set of reals, x c __ be a rignt paral_elepiped par_llel�to the axes (also c_lled _s a box) J and J: X t _ be a _ + 1 times di�erentiable�function for some positive integer rn.  Let _ (X) denote the set of all values�of J on X. We seeh global optimization algorithms that are able to emciently�



______              ggorlNthm_TgMs l_s the m_ost e_ectltve one_ The best overall cho)ltcet ltn terms oyf������������������ -              determine arbitrarily good lower bounds for the minimum of J (X).� Many algorithms b_sed on interval _n_lysis (IA) are av_ilable to solve this� global optîmi2ation problemJ see for example, _5l, [8], [16I and the re ferences� cited therein. A basic branch and bound algorithm of IA is the so-c_lIed Moore-� Shelboe (MS) algorithm _16J. Although the MS algorithm is reliable, it is some-� wh_t slow to converge in 'dimcult' problems, when inclusion functions o f _rst� _nd sometimes even second orders are used. Faster convergence could possi b l� ^              be obt_ined with hi6her order inclusion functions, and it' is of interest in this� worh to investigate their e�ectiveness in some such 'dimcult' pro b lems.� Our proposed algorithm for global optimi2ation uses the new super-convergen t� _              form having high order convergence, _nd we therefore expect to obt_in faster� convergence with this form. The new form also allows us to ma he t he cu t-o �� test and termination condition more e�ectiveJ and we incorporate t hese rno d-� i_cations in the proposed algorithm. Since this glob_l optimization _ lgor it hm� involves using the new T_ylor - Bernstein form in Moore-Shelboe a lgor it hm,� we call it as Algorithm TBMS.� We can _lso have the Taylor model of Ber2 et _l. as an inc lusion funct ion� ^              form in the MS algorithm as done, fo_ instance, in the prelimin_ry wor k in _ _ J.� We call such an algorithm as Algorithm TMS.� We test and compare the performance of the proposed _lgorithm w it h t hat� -              of Algorithms TMS and MS on six 'dimcult' ex_mples. These preliminary tests� indicate that Algarithms TMS and TBMS are quite e Aective compared to A l-� orithm MS, for lower accuracy problems. For higher accur_cy problemst A l-��the number of iterations, space-complexity, _nd speed seems to be A lgorit hm�T_MS with a medium T_ylor order Tn = 4.���2   Numerical Results for super convergence��We numerically investig_te the super-convergence property of the above inc lu-�sion function forms on some benchmarh ex_mples.�In each example, we compute the intervals�FTM (X) - using Taylor model of Ber2 et _l. _l1 7 J compute d w it h t he C O S Y-�-               INFINITY package.�FL_ (X) - usiI_g Taylor-Bernstein form of Lin and R_ hne, compute d w i t h�Algorithm __.                       '�FTB (X) - using the proposed T_ylor-Bernstein form, compute d w it h A lgo-�rithm TB.�_;,,e, (X) - using inner estim_tes of the range computed with the well-�hnown Moore-Shelboe optimi2ation algorithm of interval analysis (see, for in-�stance, [1G]).�Let X = _a,bJ ,Y = _ctq be any two intervals. Then, following _4 I, as a�measure of the overestim_tion we use the Hausdor� metric��M (X,Y) = l[aJb_, _c,_]l =m_(la- cl , lb-_l�



_The_____dTomM_(l_nxl_(s__x4(t_t)____ )c(___x__N_7__(5z___+l_)2tT_xM__t (__c___)()xl t__(__z_t)4J)J_4____w____(_x(____(l)J)_)(x_ m(_t)+_)_t FTM (x_ (2_)))                   _____��������������'           Consider a sequence of nested intervals ( X (')). We wish to _nd and compare�for each form, the reduction in overestim_tion with decrease in the domain�interval widths. Consider _rst the form FrM. Let                               _��xrM (x ( i- ')) :-- _ (J -(x _ i- ' ,),FTM (x ( i- ')))        (1)��As _ me_sure of the reduction in overestim_tion obt_ined with form FTM over               __�successive nested intervals X(i-l) _nd X(i), we use the ratio��z._,, x_,.,  .  _rM (x(i-_))   x (J-(x(i-'}),FrM (x(i-1}))���De_ne���w (X(2)��If FTM is an inclusion function form h_ving convergence order _ + 1, then��_T, (x (2-'_ ,x ( i)) _ __ (x { i- _ },x _ i))          (2)               _��(where the tending is from _bove) for ''sm_ll'' enough w (X('-')) ,w (X(')).�In practicet the exact range J is generally dimcult to computet so the over-               -�eStim_tiOn Can be generally foUnd relative Only tO SOme ir2_er eStlmate F;__er�of the range. I_oweverJ we can easily show th_t if the (1n + 1)- th convergence�order property holds relative to _i,,,,, then it implies that the same holds rel_-�tive to the ex_ct range J- That is, it is sumcient if we can show the (Tn + l)- th�convergence order property with _;,,,, used in place of J in above de_nitions.�To avoid introducing more notation, in the sequel we use the quantities given�in (1) through (2), with F;,,,, replacing J throughout.                            _�Simil_rly, we c_n de_ne _LR, _TB,_L_,_TB for the forms FLi and FT_.�For brevity of notation, we drop the arguments X(i- _) , X(2) of all _ and 1Z.�Example 1. Trigonometric function _13, problem 2G3. The 4 - dim function is               N���J(_) = _J;(_)2,J;(_) = 4- _ cos2J_ + ż(1 - cos_;) - sin_;�i--1            i=1                                    --���For T_ylor order Tn = 2:�����_T_J   4_+2  9_+1  2_+1  5_+O�_L_   3_+2, 3_+1  3_+O    _�_T_   3_+2  3_+1  3_+O  3_-1�__     -     8     8     8�_TM     -     4.9    4.5    4.2                               _�L_     -    10_5    9_5     -�_TB     -    10.5    9.5    8.8�
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_______________51_1__2J5 t__512__512___512  u_  _               _____�������������-           _____�MT__  1_+O  3_-1  7_-2  2_-2                   _M� L_   _    _    _    _�X ,T_D  3_,,-g 9  3__,-g11  7_,,-g12  7__,-g��__rM   4_1   _N1   4_O   4NO�__I2   -    -    -    -�_Tg   140.5   99.2   3.6    1_O�For T_ylor order Tn ≡ 8:��_____                   _�_TM  4_+2  __+1  2_+1  5_+O�X__  5_-1  6_-5   _    _�X_r_  5_-l  6_-5  8_-8  1_-10�__    -   512   512   512�1ZrM   -   4_9   4_4   4_2�'         _L_   -   828_6   -    -�__rB   -   828.6  734.6  623.2                    -�_____��__'M  1_+O  3_-1  7_-2  2_-2_� L_    _    _    _    _�XTB  8_ - 12  7_ - 12  7_ - l2  7_ - 12��_rM   4N1   4_1   4NO   4_OJz� LR    -    -    -    -�T_   17_2   1_1    1_O   O__                   _��3  Numerical Tests for Global Optimi2ation��We test _nd comp_re the perform_nces of Algorithms TBMS_ TMS, _nd MS on�v_rious examples. Here we present one 3_dim ex_mple.�Example 2. B_rd function {13, problem 87. The three dimension_l function is          _���J(_) = _ J_(_)2,  J_(_) = y2 - __ + _'   ,�. 1            _i_2 +W2_3                _��_u; = ż, v; = 16 - j , w; = min(u;, v;)�where,                                     _�



__________             __00_246g2486___0011l111111110oooooooooo___________o555    33334511_11111o9_26G5_222eo25714532 _Ms >l13369817728625o9e67213tNN_t_t_6o89211_N_68o43oo0323o51o   +8g887733332111448g88_g288_    777747722_777752222��������8�8�8�We tahe the initial dom_in as (_-0.25, O.25] _ _O.01, 2.5J , _O.Ol, 2.5]) .The per-    ,�_ormances of the v_rious Al6orithms _re _s under.�TBMs�Order, rn _Accuracy _Iter_tions _Time, s __Final LL��1o-5    2o2    _o.65    38     1��"                    1o-5    159'   92.o3    38     1�TMs�__             _Order, _ _Accur_cy _Iter_tions _Time, s __Fin_l LL�10-5     _    >3600   _     _�10-05    _    >3600   _     _���lO-5     _    >36_0   _     _��Accuracy _Iterations _T_me, s _ Final LL�1o-0    6122   466.56   1643    1622�-_'                 10-05    _    >3600   _     _�The global minima found using each of the algorithms is 8.21487.. .,_ - 03.�4  Summary�_           We proposed a new super-convergent inclusion form for multidimensional func-�tions form and quite easily obtained super-convergence (of order up to 9) for�low to medium dimensional problems. We also tested and found the new form�_           to be quite e_ective in all six global optimization problems that were selected            '�for the tested, in terms of number of iterations, space-complexity and speed.�
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ca       p1  l__     _p   __() _     _ _() t   __ _  _J    y y                ___n__�������������������Veri_ed Estimation of Taylor Coemcients _nd��Taylor Remainder Series of Analytic Functions               _���Markus Neher�Institut _ür Angewandte Mathematik, Universität Karlsruhe                -�D-76l28 Karlsruhe, Germany�marhus. neher@math. uni-harlsruhe .de����1   _ntroduction��Let y = __,__o bJ'zJ be the analytic solution of a problem F(y) = O that depends�on analytic functions J1 ,..., J_ and th_t can be solved by recurrent computa-�tiOn Of the TaylOr COemCientS bJ' Of y. Only a _nite nUmber Of the bJ' Can be�lculated in  ractic_l com utations Then a _nite sum  P  b .zi onl  ields              "�'            J=O�an approximation to y(_).�In some cases, however, it is possible to determine a geometric series (or�some derivative of _ geometric series) th_t serves as a bound for the remainder              _�series of y , provided that the remainder series of the functions J_,..., J_ can�also be estimated by geometric series (or derivatives ofgeometric series). In _4J,�such an error _nalysis was used for the validated solution of linear ODEs.�A prerequisite of this general method is the comput_tion of bounds for the�Taylor coemcients of arbitrary order of a ġiven analytic function J. The subJect�of this talh is the validated solution of the latter problem.���2   Estimates for Taylor Coemcients��In the following, let J(z) = __,_o _,_zJ be analytic in B and bounded on C,�where B is the complex disc (z: tzl < r) and C the circle (z: lzl = rJ, for�some r > O. A well hnown bound for th'e Taylor coemcients of J is Cauchy's�estim_te M(r):                                                n��,  M(r)�aj  < __  ,  M7 :--maX J2  t  J_No_�-  rJ  .      I_t_r                      _��Un_ortunately, Cauchy's estimate is sometimes very pessimistic. To obtain�better bounds, two modi_cations of C_uchy's estimate were proposed in _5J.�The _rst uses a Taylor polynomial to approximate J:                            _�������l42�



_______                of _ll _ t1  <_   (      t)_p( )/_ o0__ >u_ _(_r_+_ _) r(_ _ (  _)_ ()  ) l t _  ( )  _J ( )o(t n)N_ _n�����������������Theorem 1 Let J be analyt2c żn B and bounded on C. Further7nore, let T_ (Z)�'                denote the Taylor polynoTnżal o_ order l to J. T_en��N(r,l)     .�aj  <  _,    OrJ >lt  Where  N7t  :--maX   2 -Tl Z  .�_                       -   rJ                      1zl_r��Cauchy's estimate can also be improved using the derivatives of J:��_                Theorem 2 _et _ be analJtic 2n B and let _(m) (the m-th der2_atżve o_ JJ be�bounded on C.  Furtherrnore, let P(j, m) :-- (j + 1).. _ (j + m) , P(j, O) :-- 1�Jor __N,j _No. T_en��_-                        U (r,m )rm            h    U           (m)�aJ_    _.   OrJ  m,  W ere    r,7n :-- m_X     z  _�'           -  Pj-_,mrJ      -                lzl=_���'                3   Estirnates f_r Taylor Re_ainder Series��The estimation of the remainder series Rp :-- __._p+, aJ_zJ is obtained by ad-�_                dition of the above estimates of the _aylor coemcients. Using Theorem 1, at�some point z with Izl = w_, w _ (0, 1), for arbitrary p > l we have��p+1�_                          lRp(z)l  _<  _ N(r,lJwJ = N(r,l)__   ,�-W�j--p+l��whereas for p > 7n - 1 we have��U(r,_)rm  ,_�Z   S     _W�    _P J-m,m�J=P��by Theorem 2. For p = m - 1 the latter sum is derived by repeated integration�_, _ For _ >> _ the Tesul_ing formula su�ers _rom severe cancel_atí�this case, the estimate��m   wp+l�Rp <�-  P(p+1-Tn,m)1-w��is better suited for practical calculations.         .�In the situation th_t was mentioned in the introduction, it is usually not        .�hnown in advance which order p of the Taylor polynomial Tp is required for�sumcient accuracy of the approximation of the unhnown solution y.  Because�it is very expensive to recalculate the bounds N or U for di�erent values of�l or Tn, respectively, it is better to guess sumciently l_rge values for l or Tn a�_                priori and to calculate N or U only once.  Only if p = l or p = 7n are not�sumcient for a good approxim_tion of y, then p is augmented iteratively, but R�is still calculated for the same values of l or m (note that Rp _ O for p _ _�_ _                independently of l or Tn).                                           ,����1_3�



_ _______��������������4   Imple_entation��Using interval arithmetic [1I on the computer, the validated computation o_ the�above estimates is possible for analytic compositions of rational functions and                _�of those complex st_nd_rd functions that are available on the computer (lihe�eZ, sin_, Log z,.. .). The real and imaginary parts of many st_ndard functions�can be expressed as compositions of re_1 standard functions. Such compositions               __�have been utili2ed in [2J for the construction of complex interv_l standard func-�tions that enclose the respective ranges over complex intervals. These inclusion�functions and well hnow.n methods for rigorous global optimi__tion _37 are used�in the pr_ctical calculation of the estimates M(r), N(r, l), or U(r,Tn).���5   ACETAF Software                                          _��The above algorithms for the computation of guaranteed upper bounds for the�Taylor coemcients and remainder series of analytic functions have been imple-�mented in a C_XSC program called ACETAF. The program also contains rou-�tines for the validaXed _utomatic comput_tion of derivatives of complex _nalytic�functions _nd for the chech of analyticity of user-de_ned functions in circles in�the complexplane.                                                    _�ACETAF is distributed under the terms of the GNU Gener_l _ublic License�and is _vailable _t the following site:��http: //www. uni-karlsruhe. de/~Markus. MeherJacetaf. html���References��_1] G. Alefeld and J. Herzberger, Intro_uct2on to 2nterval cornputations, Aca-�demic Press, New Yorh, 1983.��_2J K. Braune and W. Kr_mer, "High-accuracy standard functions for real�and complex intervals'', In: E. Kaucher, U. Kulisch, and Ch, Ullrich (eds),�Computerarżthn2etic; Scżent2_c computatjon an_ prDgramming languages,�TeubnerJ Stuttgart, 1987, pp. 81-11_.��_3] R. B. Ke_rfott, Rigorows glob_l search: Continuous problerns, Kluwer, Dor-�drecht, 1996.                                                     __��[4] M. Neher, "Geo,metric series bounds for the local errors of Taylor meth-�ods for line_r n-th order ODEs'', In: G. Alefeld, J. Rohn, S. Rump, and�T. Y_mamoto (eds), SyJnbolic Algebraic Metho_s an_ Veri_cation Metho_s,                _�Springer, Wien, 2O_1, pp. 183-193.��_5J M. Neher, ''Validated bounds for Taylor coemcients of analytic functions'' ,�Reliable Comput2n9, 2001, Vol. 7, pp. 307-319.                                _�



_____                                _/                      _�����������������������-                Interval Methods for Accelerated ,Glob_l Se_rch��in the Mjcrosoft Excel Solver���Ivo P. Nenov and Daniel H. Fylstra�_rontline _Systems Inc.����This paper describes advanced interval methods for _nding a veri_ed global�_               optimum _nd _nding all solutions of a system of nonlinear equations, as imple-�mented in the Premium Solver Platform, an extension of the Solver bundled�with Microsoft Excel. It also describes the underlying tools that allow Excel�spreadsheets to be evaluated over reals and intervals, with fast computation�_               of real gradients and interval gradients.  The _dvanced interval methods de-�scribed include mean value (MV) and generali_ed interval (GI) representations�for functions, constraint propagation for both the MV and GI forms, and a�_-               linear programming test for the GI form, in the context of an overall interval�branch and bound algorithm. Numerical results _or a set of sample problems�demonstrate a signi_c_nt spee4 adv_ntage for the GI techniques, compared to�alternative methods.���1   _ntroduction��The 5olver bundled with Microsoft Excel, developed by _ontline Systems for�Microsoft, is among the most widely used tools for optim_2ation and equation�solving. It is capable of solving small-scale linear programming (LP), smooth�nonlinear programming (NLP) , and mixed integer programming (MIP) prob-�lems. Included in nearly 100 million copies of Microsoft Excel, it o�ers Excel�spreadsheet users an easy introduction to classical methods of optimiz_tion. An�- -               upgraded Premium Solver for Educ_tion, now bundled with more th_n _ do2en�textboohs, is used in a wide range of MBA and engineering courses.�The Premium Solver Platform is a compatible upgrade that extends the func-�__               tionality, capacity and speed of the Microsoft Excel Solver to handle industrial-�scale problems, including LP problems of over 100,OOO variables and constraints;�NLP problems with tens of thousands of variables and constraints; challenging�mixed-integer problems; global optimi2ation problems using multi-start or clus-�tering methods; and non-smooth problems using methods based on genetic and�evolutionary algorithms and tabu search.�In the past two ye_rs, we have sought to greatly extend the capabilities of����1_5�



__                               _______�����������������'                the Premium Solver Platform for veri_ed global optimization _nd solution of�systems of equations, using interval methods. Since Microsoft Excel is designed               _''�to ev_luate spreadsheet models only over real numbers, we built _ new parser�and interpreter for Excel formulas that can evaluate models over several domains�including intervals, as outlined below. We then implemented and tested a variety     '          -  '�of interval-based techniques for glob_l optimization and solution of systems of�equations, including techniques implemented in other interval solvers and some�new techniques implemented for the _rst time, to our hnowledge, in the Premium�Solver Plat_orm.  Numerical results suggest that these new techniques o�er�signi_cant speed advantages over previously described methods.���2   Parser/Interpreter and Autornatic Dî�erenti-�ation��Our parser and interpreter for Excel formulas tahe the place of the standard fa-�cility in Microsoft Excel for function evaluation or "recalculation.'' These tools�can be used to evaluate' Excel formul_s over real and interval numbers; real gra-�dients and interv_l gradients, using the techniques of automatic di�erentiation;               _-�and a special ''diagnostic number type'' that identi_es sp_rsity in models to save�memory, and classi_es models, functions, and individual variable occurrences as�linear, smooth nonlinear, or non-smooth.                                      _-�Since Microsoft Excel supports a wide r_nge of arithmetic (and non-arithmetic)�operators and several hundred built-in functions, and we wished to evaluate all�of thes_e functions over several domains, we brohe down the tash by (i) de_n-�ing a small number of basic functions, and implementing all other functions�in terms of these, and (ii) mahing extensive use of operator overloadin6 in the�C++ programming l_nguage. Operator overloading allows us to de_ne compos-�ite functions that can be evaluated over reals and intervals, real and interval               _�gradients, G-intervals, and the ''diagnostic number type.''�We have implemented both forward and reverse mode automatic di�erentia-�tion for both real gradients and interval gradients, using certain memory emcient               _�techniques.���3   Interval Methods for Global Optirni_ation and                __�Equation ,Solving��We describe a frameworh for _nding the global optimum of a constrained opti-                -�mi2ation problem, and nnding all solutions of a system of equations. We begin�with the b_sic interval branch and bound _lgorithm, which processes a list of�boxes'' and seelcs to reduce t1_eir si_e, s_litting t1_em as necassa__y, until a list                _�of sumciently small boxes enclosing the solution(s) is obtained.����146�



____��������������������We represent the Junct2on to be minimized and the equality and inequality�constraints using the natural interval extension form, the mean value (MV) form�(a qu_dratic outer _pproximation), and the generalized interval (GI) or linear�-                enclosure form. The MV and GI forms are e�ectively _rst-order methods that�require more computation than the natural interval ex_ension, but they permit�more rapid reduction of box sizes and elimination of boxes in the overall branch�_                and bound algorithm.                      '�-            We then describe constrajnt propagat_on techni_ues as _ way of speeding up�the process of box si2e reduction.  These techniques can be applied to single�equations (or equality constraints) at a time, and hence require less memory�and computation than the general MV and GI box reduction techniques.�Finally, we describe a lżnear prograTn7ning test that c_n be applied to the�GI form to rapidly eliminate a box where the (dual) Simplex method nnds no�_                feasible solutions for the linear enclosures of the equality constraints.���4   Numerical Results and Conclusions��We present numerical results for a few test problems, including an electronic�circuit analysis problem and a problem used by van Hentenrych to illustrate�-                performance of the Numerica system.  We report CPU time and the number�of function evaluations, gradient evaluations, and box splits for three interval�method implement_tions: using MV form techniques, using GI form techniques,�_                _nd adding a LP test to the second method. The GI form techniques including�the LP test dramatically outperform the natural interval extension and the MV�form techniques in all reported cases, with several-fold reductions in CPU time,�function evaluations, and gradient evaluations.�__                  We conclude that the interval methods presented for global optimi2ation and�equation solving show promise for practical problems, especially where _ verined�r_ther th_n an approxim_te or merely "good enough'' solution is desired, and�-                that the availability of these methods in an easy-to-use, highly accessible form�in Microsoft Excel should result in more widespread use and appreciation for�the power of these methods.�



_   ___/           r            _t  ________�����������Solving Re_l-Life Robotics Problems with�Int erv_l Techni ques                           --�Arnold Neumaier and Je_n-Pierre Merlet��The design, validation, and real-time use of robots poses a number of ch_l-�lenging global constraint satis__ction _nd/or optimiz_tion problems in dimen-              '�sions ranging from _ few to several hundreds, with quadr_tic, polynomi_l, or�transcendent_l constraints. The talh will discuss b_ckground, formul_tion, _nd�solution for some of these problems.                                     _������������������������1_8                                  -�



____                                    _�������������������������-                    Detecting and Locating Curved Crachs��in Thin Pl_tes by L_mb W_ve _e_ection:��V_lid_ted Geometric Appro_ch���_                       Roberto Osegueda and Vladih Kreinovjch�FAST Center for StTuctural Integrity of Aerospace Structures�University of Texas, El Paso, TX 79968, vladih@cs.utep.edu����The practical problem. In many practical situations, it is extremely impor-�_               tant to be able to detect hidden crachs (and other possible faults) in aerospace�and other structures. One way of testing the structural integrity of such struc-�tures is by using ultrasonic waves. For thin plates, Lamb waves (which direct�the energy along the plate) are especially useful. To use these waves, we set�''               up _ transmitter T and (one or sever_l) receivers R, and try to extr_ct, from�the signals measured by the receivers, the information about the possible cr_chs�and other faults.�__                 This extraction is not easy.�Lamb waves are dimcult to control. In many practical problems - e.g., in�radar detection - we detect obJects by sending waves and processing the signals�_               measured by receivers. In most such situations, waves travel by air, so we can�easily control them: we can use an _ntenna to reAect the generated waves and�thus, to focus the waves in the desired direction; similarly, we can use an antenna�to 6ather waves coming from di_erent directions into _ singIe _oint _nd thus,�amplify the received signal.�In contrast, L_mb w_ves travel inside the plate. There is no easy w_y to�reAect them without placing reAectors inside the plate - i.e., without introducing�- '               addit ion al f_ult s.�Reconstructing the fault location and shape from the Lamb wave�measurements is a computationally dimcult problem. Prop_gation of�_               Lamb waves is described by hnown PDEs. In general, there exist emcient com-�putational techniques for solving PDEs. However, these techniques cannot be�e_sily applied to the problem of fault Iocation: Indeed, these techniques usu-�_               ally _ssume that we hnow the boundary conditions, but in the fault location�problem, the location of the boundary is exactly the problem.�As a result, reconstructing the location and the shape of a crack from the�measurement results is a very dimcult tash. Even for simple faults lihe edge�



__      __  __   _  ___  _     __          ____  _�����������������cr_chs near the rivet holes, the corresponding methods have been developed only�recently _1I. The existing methods en_ble us, at best, to predict, for a given si2e�and orientation of the crach, what the sign_l will be. Since the corresponding�formulas are very complex, the only way to detect the location and si2e from�the measurement results is to compare these results with theoretical predictions                _-�corresponding to di�erent crach si2es and locations. This is not practical. We�need a method which will transform the hnown signal into the information about�the location and si2e of the crach, and the complexity of the existing formulas                _�prevents us from doing it.�Geometric approach. One w_y to avoid this complexity problem is to use a�geo1netric approach, when instead of trying to fully capture the complex physics�of L_mb waves, we only use general geometry-relat,ed properties of wave prop-�agation.�What was known before: detection of linear cracks. In _2I, the geometric�appro_ch has been successfully used to detect line_r crachs. Detection of such                _�crachs is based on the following idea.  In an ideal (faultless) plate, a Lamb�wave goes directly from the transmitter to the receiver. The signal emitted by�the tr_nsmitter at time t re_ches the receiver at time t + to, where to = do/_,                _�do = TR is the distance between the transmitter T and the receiver R, _d _�is the w_ve speed. The signal detected by the receiver h_s the same shape as�the signal sent by the transmitter, but shifted in time by to. In particular, if�the tr_nsmitter emitted a short pulse train, the signal registered by the receiver�will consist of the same short pulse train - occurring at a later moment of time.�What happens when the plate contains a crach_ A crach reAects the wave.�As a result, if a transmitter sends a pulse train at a certain moment of time                _�t, this pulse train _rst reaches the receiver directly, at the n_oment t + to, and�then another copy of this pulse train reaches the receiver indirectly, _fter _rst�hitting the crach and then being re�ected by the crach. So, if the plate contains                -�a craclc, the receiver will receive the signal consisting of two pulse trains: the�earlier pulse train at time t + to which comes directly from the transmitter, and�a l_ter pulse tr_in coming at a time t + tl = t + __/v, where _l = TP + PR�is the total p_th of the re_ected signal (P is the point on the crach where the�signal was re_ected). By measuring the time t_ between the emitted pulse train�and the second detected pulse train, we can thus determine the total path D of�the re_ected signal as _1 ≡ v _ t_.                                            ---�This information can be used to locate the crach. Indeed, for the (unhnown)�re_ection point P, we,hnow the sum TP + PR of the distances from two hnown�points: T and R. It is a hnown geometrical _act that for any given two points                _�T and R, the set of all points P with _ given sum TP + PR is an ellipse. Due�to Snell's law describing wave reRection, the angle between the incoming wave�and the crach must be the same as between the crach and tl1e outcoming wave.�Due to the properties of an ellipse, we can conclude that the crach is tangent to�this ellipse at the reAection point P. The paper _2I shows how we can use this����15O�



________  _     _            __  _  _p_ \  p_J               ____          _0_J������������������ -                fact to compute the coordinates of the straight line cTack.������������������������Our main results. In practice, crachs are not exactly straight, they are curved.�There is no hnown way to describe a shape of a realistic (curved) crach by a�_nite-parametric formul_ :-( We therefore need techniques for detecting and�loc_ting generic crachs. Such geometric techniques are proposed in this paper.�We also provide guaranteed bounds for the crach location. The inaccuracy�_                of the fault location is caused by the inaccuracy of measuring the arrival time.�The main component of the time measurement error is the discretization eTror.�For this error, we hnow its upper bound _t. Thus, when the measured time�value is t = h _ _t, the only inf0rmation about the actual time t is that t must�belong to the interval [t - _t, t + _tJ.�The exact v_lues of t would lead to the exact location of the point in a fault.�Since the input d_t_ has interval uncertainty, we cannot get the exact location;�-                instead, we use interval computations to describe the _rea that is guaranteed to�contain a point from the fault.�PreliminaTy results show that this method indeed works well on actual data.���Acknowledgments. This worh was supported by AFOSR grant F49620-OO-�l-0365. We _re than_ful to AJit M_l and to the anonymous referees for useful�_                discussions.�References.��_1_ 2, Chang and A. Mal, ''Scattering of Lamb waves from a rivet hole with�-                   edge cracks'', Mechan2cs oJMaterials, 1999, Vol, 31, pp. l97-204.��_2J F. De Villa, E. Rold_n, R. Mares, S. Y_2aTian, and R. Osegueda, ''De_ect�_                   detection in this plates using So Lamb wave scanning'', Proc. SPI_ Con/.�on ND_/or Health Monitor2ng & Di0gnostżcs, Newport Beach, CA, March�



_t_hlctnstsbts_l_hlyNoyamuhoeeoressslcmnegttuatdeDhteed_elutenlemmdelye_nrDstsocmJ_l__NceucosnoA__rnrmHa1oonl_l__ltn_EoblpnrtnobotrrTe_spgwgheaottrr(ehrn Tlheltt_ronot1laNvhlNdel_ospcnestevemfucreeprhepp_arlmda1orDaartln_dsfdol_rsetoDerEeJ_lbehtoar)ybsbhl Alaml__seeempno_tyErmetrewdeshne_fosttsdosteefbeeaehuorlnvramlan_norsceednrslt_tdmdsr_petgdl_l_yttroshel_DshcltlNdcnlnssv_oLeyrcowEvlsttmlhs_aftle_fbehatbyn_opdsse_necltytlrevrdsclhsslw_aeoseahogyl_atl_tnrtncnue__soeelNergvttrtrvmtpesae_deleNhfl_snqnomtgedsneslus_greeteodssedfl__o2saoemnlr_0spuenonnelerscvrvesgn_lsdl__otetedtlD_dsohtnlb_lNd_lNJvolt__fAtpelvonlpw_elbr_l_tplvNlENtslm_mntyeltNrslt_eytttlNohnehsn_cafpfyuln_Dospgasoa Tl_sntamnptArl_tdttnld_aodrehvpa_Etaolafmel_luapelmtahmeyrttslst_cxbgeletseo_hwepvpos_lednftsept_weuelh_twwssrrro_nmocgleoNel_fl_l_dmadtll_npe Tlhv_anl_Dsws_treeeehrl_bnal_Arya_alaetlentlrtlEycnhnascyeedtppdoleg_t__srssnellN_nbnoodcnyo_ocdelaFtpd_edsetuelmNtlseJotwNtwteltoerl__alsegoomlaml__la_nennnnnnnrrdadtse_gteNase_    ________________�����  Adaptive Numeric_l Methods for Sensitivity                 -�  Analysis of DiRerenti_l-Algebr_ic Equations and�  \                       P_rtial Di�erenti_l Equations� p et2old @engineeT ing. ucs b. e du� .           Sensitivity analysis of di�erenti_l-a lge bra ic equa t ion ( D A E) sys tem s g e n e r-� _tes essenti_l information for design optim izat ion, parame ter es t im_ t i o n, o p-��� some issues which are critical to the implementat ion.� for the adJoint p_rti_l di�erent_al equation ( P D E) sys tem. T here fore our g o _ l f o r� in which generation and solution a f t he sens it iv ity sys tem are tT_nsp_r en t t o�



______________  t     _         sosalf_dxpn Feuamucfcymseqontoosncl_lpt__eoeuls_ht(mdmAlchgt Texls _tteAttdnhdnneln_mrp Fn)GlahNbssofoln_mdulxceutlf_p__on(dtgJoleoetax_neolN_(nhaostlNvtraxnnn)c(chlr(_ry_meldyJat)ttaJl2lgNeercTttsll___o2fwdrlrtochhottt_fhleotu__fnf_umehhabf_/helr_le__esrmaeecaage2sl_elrJ_nrormgr__tlN2trp_eevun(_bhoet_eJlN_urte_pgnm__sflym__dx)loJfslMnl_htv_p_ttuduvDbehtetthtelc_l__vxeeocp(h_tle_aocJen2eahrmltletrlDet_mdacsldNll)tclm_ll_(oncutg)aesov__le_toeprsagenssteftxaaetl1ptpauto_snota_tt_spu TrtltNpeta__nrvahtonto_s0htrher__ Glp_elet Tnodlfeoxtf2s_ertep_ltlcrtssmo_ttltar(tylt__ssJmechewlpxltNesL+lcol_oa_vabN_ro_bc)trlsNle_onbtoae_oytlslun__tsJ_e__l_hslfst__lno)gurc_lrsutec__toctolfttT+_tahwlhcdafha^Jto_tnst0€acl_tethl_n_hsm)eoh_ngyh_l_nJl_ye Btclf_odldNfe_xsde_ossonpootn_ttbrllt Tctra_Mawrlftfmghoo+nbeseyu_odll_pt_t__anll_gudt_np_ohl_hmndartJtot5noesteubceoahelltNtsmrorrp3__ta__lcNatttclhle_l_slffNrhtT_tel7ateneomut_sl_lerfoNxhtllrNtsplooant_JeonnlsNvmyale_spme_aoMon6srdecn(setdrlnn_n_at_dmhotet_ueasetgdlas_al1tveonsoTlootpuob_ue_rtralsdmgdl_nf__benhye__lrlcelto_mNntNxuadlt_eesvssmeaeehnrd_deaavofevlcto__me _tsdtyel_o_Al_tcnanf_btuenophgrlulh_pdrpudac_u_c<_rpomhneae)roto_e_al__dl_noreNebnmtlttdu_tcywrnt_lh_yl_ghlltaJltdotn__ptetaleh_oh_asnlahngu_mtrTfclepemotetoambboa Trhoce_fGJnn_eommnuereu_ddaaasbde_nJsseJtstceelv(lelnvtclhur_aoxxltdevtce2tmtaudyepmbapo)ra_l_plocamolsplturln_tel__lt_ap_otrecnelNrwndesll_t_eonlc_rsnenlbtstnamdtutonssm_segu€ltNotlJ_scra_cr_olo_slnt_aee_oonvalltn_d0__ydntsotf_nJt_ldsese_l���  Ev_lu_tion of Functions, Gr_dients _n d J_co b i_ns���� for simplicity of not_tion.� R_ to _ point in R, it will be viewe d as _ tr_ns form_ t i on i n R ^ o f t h e f o r m� or the equiv_lent equation G (x) -= x - F (x) = 0. T hese f o r m u l a t i o n s g i v e t h e� -                of the computed result.� their v_lidatiun by interval inc lus ion.�



_\     _                 _)J                             _   _t____n_____� for J(2) has to be di�erentiated.  In this sense, di�erentiation and inversion               _� commute because of linearity.�



______  _  _   _         l_s ensu_red u2nder t/hle asNsu_m_ptel_voon_ltlhaa€nd_3Fu _<_lo, u_l_hllel_reer_2 l_s the dltmensl_on of they���������������������� Motivations for _n Arbitrary Precision Interval�� Arithmetic _nd the MPFI Library������� Lab. ANO, UniveTsity of Lille and� -                       and CNRS/ENSL/INRIA ProJect Arenaire� LTP, Ecole Normale Supérieure de Lyon, France� ProJect Spaces, LORIA/INRIA/LIP 6, France���� 1   Motivations for Changing Arith_etic�� Nowadays, computations involve more and more operations and consequent ly� errors. The limits of applicability of some numerical algorithms are now reac he d:� _               for instance the theoretical stability of a dense matTix factori2at ion ( L U or Q R)��matrix and u = 1+ - 1, with 1+ the smallest Aoating-point larger than 1; t h is�means that n must be less than 200,OOO, which is almost reached by mo dern         _�-"               simul_tions.  The numerical quality of solvers is now an issue, an d not on ly�theiT mathematical quality. Let us cite studies performed by the C E A ( Frenc h�Nuclear Agency) on the simulation of nuclear plant accidents and also so ftwares�-               controlling and possibly correcting numerical programs, such as Cadna [10 ] or�Cena _20I.�Another appro_ch consists in computing with certi_ed enclosures, name l�inteTval arithmetic [21, 2, 18I.  The fundamental principle of this arithmetic�consists in replacing every number by an interval enclosing it.  For instance,�_ cannot be exactly represented u5ing a binary or decimal arithmetic, but it�is certi_ed that _ belongs to _3.14l59, 3.l4160I.  The advantages o f interva l�_               arithmetic are numerous. On the one hand, it exhibits the property of va li _ate _�or certi_e_ computing. On the other hand, computer implementations are based�on outward roundings and thus computed results tahe into account roun ding�_                errors and constitute a way to estimate these errors. A last and very important�advantage, even if it is often less hnown, is th_t this arithmetic provides globa l�information: for instance, it provides the range of a function oq_er a w ho le set S,�which is crucial for global optimi2ation; furthermore, if this range is a (str ict)�subset of S, then Brouwer's theorem states that this function has a (unique)�_xed-point and this can be used by Newton's algorithm for instance.  Such�roperties cannot be reached without set computing, and interval arit hmet ic�-'                computes with sets and is easily available.�



_pp(cfor ltnstancet wl_th 3 decl_m_l dlNgl_ts, the roundl_ng towards __ of __9__o_5 gltveygs    ___________����������������� However, in spite of the improvements in interval an_lysis_ the problem o f� overestimation, i.e. of enclosures which are far too large and thus inaccurate,                _� seems to be the destiny of interval comput_tion when it is implemented usin� _xed-precision Ao_ting-point arithmetic. Using a multiple precision postpones� the occurrence of numeric_l problems, however the number of correct _gures� remains unhnown, Computing with intervals provides guaranteed results, but� the bounds can be far apart even when the input data are provided wit h t he� machine precision; a remedy foT this phenomenon consists in comput ing w i t h a� \              higher precision. This pToposal is the core of the MPFI library (Multiple Preci-� sion Floating-point Interval ar2thTnetic library), a libraTy implementing ar b itrar� Tecision interval arithmetic which is described in this paper.� This quest for extra accuracy can be found in other worhs such as those� by _9J where polynomial expressions are symbolically rewritten be fore be in� evaluated, so as to reduce the overestimation due to dependency, or by _5 J� where high-order Taylor expansions are used.  In this latter worh, the time� .         overhead is about 1500 for a single evaluation, however it is compens_te d by� the reduction in the numbeT of steps performed by the algorithm. Rea l-wor l d� applic_tions where extra accuracy is requiTed are to be foun d in automa t ics (we� have been ashed to integr_te linear systems with high accuracy) or c hem istry:               _� determining a molecular conformation entails the minimization o f an energy� function and requires accurate evaluations of this energy function.� Several multiple precision interval pac_ges are available. Let us quote for� instance intpah _11J and intpahX _137 for Maple or a similar pac_ge for Mat he-� matica _17I. Due to unveri_ed assumptions on the roundings ofelementary _unc-� tions (O.6 ulp for intpah in Maple, 1 ulp for Mathematica), to bugge d roun d ings��1 instead of O.999 in Maple v6 and v7), and to several undue assumptions, t hese�ac_ges cannot be considered as reliable.  Earlier worhs include the ''range�arithmetic'' _1I, a multiple precision library which aims at indicating t he num-               _�ber of correct digits rather than at performing interval arithmetic, and IntLa b�27l which primarily implements emciently interval algorithms using MatLab,�and, besides, mainly provides a type foT arbitrary precision computat ions bu t�implements few related functionalities. Such an arithmetic was also mentione d�as an easy-to-implement extension to Brent's multiple precision pachage MP as�early as 1981 _7J. Anyway, none of the aforementioned pachages imp lements a�complete and really reliable arbitrary precision interval arithmetic and t his le d               _�us to implement our own library.���2   Theoretica_ Bachground��The theoretical result underlying this idea can be found in _23 ]: let us denote�by X an interval, by J a function and by _ an interval extension of J, w here               n�F is _ven by a Lipschit2 expression, let e correspond to the current comput ing�precision p: e = 2-P, then F(X) overestimates J(X) and the overestimation is�



__  _              l_pf the _n_l _ccuracy l_s not sumclNentt then the _hole computatl_on lts rest_Ttegdgg�����������������boundedby�--                               q ( _ ( X), F ( X)) S clw ( X) + c2f             ( 1)�where q is the H_usdorR distance, w(X) is the width of X and t he constants c1�and c2 depend on F. This means that the computing precision can become a�limiting factor and that being _ble to increase it can be an issue.�Furthermore, _ classical procedure in interval anaIysis is the bisect ion one:�if the output width is too large, then the inputs _re split in tvo (or more) parts�_-                and the computation is repeated on each part. Bisection is a way to escape t he�wrapping e�ect by providing a paving of the sought set, and also t he depen-�dency problem, even if' in that respect, nothing supersedes the use o f a goo d�formulation. Bisection is often the last resort to get more accuracy, by re duc in�in formula (1) the quantity w(X). Tn cases where w(X) = u (which happene d�in our expeTiments on global optimization), only an increase in t he compu t ing�accuracy, by ''adding new Aoating-point numbers'' between the endpoints o f X ,�_"                would have yielded a solution.�'           It can be noticed that the rule of thumb ''to get more digżts, one has to�jncrease the computżng precision by roughly the s_me number oJ dżgżts ' ' can fa i l,�_                for instance vhen computing a square root or more generally a 1 /n-th power�close to O. However, the rule of thumb becomes in such cases ' 'to get a more�djgits, one has to żncrease the coTnputżng prec2sżon by roughly na _żgżts ' '.  In�other words, in most cases an increase in the computing precision yie l ds an�^_                improved _ccuracy on the results.�This is also the starting point of Müller's worh on an e�ective s imu lat ion o f a�Real RAM _22], following the theoretic_l results by Bratt_ and Hert l ing _ 6 _ on�_                the feasibility of a Real RAM. In Müller's worh, a computation is per forme d an d'��with an increased precision; this is reiter_ted until the outputs are accurate�enough.���3   The MPFI Library��In order to implement an arbitrary precision interval arithmetic, a mu lt ip le pre-�cision library was needed. By multiple precisionJ it is meant that the comput in�recision is not limited to the single or double precision of machine Ao_ting-point�_                numbers; on the contraTy, arbitrary precisions should be av_ilable. Furt hermore,�this computing precision must be dynamically adJustable to ful_ll the accuracy�needs. A moTe precise requirement for interval arithmetic is t he outw_r d roun d-�_                ing facility: this ensures that for each opeTation, the interva l compute d us in�Aoating-point arithmetic contains the interval obtained if exact real arithmetic�were used. Even more desirable is e_0ct directed rounding to avoi d los ing accu-�racy, i.e, the interval computed using _oating-point arithmetic is the sma l lest�one (for inclusion); however, it is rarely ful_lled for elementary functions. To�sum up, compliance with the TEEE 75_ standard for _oating-point _rit hmet ic,�extended to elementary functions, is welcome.�



___   ________����������������� The Arithmos proJect of the CANT team, U. Antwerpen, Belgium _8], or the� MPFR library (Multżple Precżsion Float2ng-point Relżable library) , developed by                __� the Spaces team, INRIA Lorraine, France _12], aTe such libraries. For portabil-� ity and emciency reasons (MPFR is based on GMP and emciency is a motto� for its developers) and also because of the _vailability of the source code, we� chose MPFR. The corresponding library, named MPFI _25] , is a portable library�written in G for arbitrary precision interval arithmetic. It is based on the GNU�__P library and on the MPFR library and is part of the latter.  The largest�_              achievable computing precision is provided by MPFR and depends in practice                __�on the computer memory on which it runs.  The only theoretical limitation,�which may be removed soon, is that the exponent must _t in an integer. Let�us just say that it is possible to compute with numbers of several millions of�binary digits if needed.�Intervals are implemented using their endpoints, which are MPFR reliable�_oating-point numbers: this is not visible for the user but ensures that the�.         swelling of intervals' widths is less important than with the midpoint-radius rep-�resent_tion such as implemented by Rump in IntLab _27, 287. Indeed, switching�the rounding modes incurs no penalty with multiple precision arithmetic and the�motivation for this choice in IntLab does not hold for MPFI: every multiple pre-                _�cision operation is a softw_re one. The arithmetic oper_tions aTe implemented�and the elementary functions available up to now are exp, log, sine and cosine;�all functions provided by MPFR will shortly be included as well (trigonometric�and hyperbolic trigonometric functions and their reciprocals).�The planned functionalities, th_t will be added in a near future, include a�C++ interface _ la Pro_l/BIAS _19] for ease of use, basic tools for linear algebra�(vector and matrix data types, additions and multiplications) and automatic                _�di�erentiation (forward di�erenti_tion by overloading operators and functions).���_   Applications                                                _��The MPFI library is already in use. Rouillier and Zimmermann _26] have de-�veloped a hybrid algoTithm (symbolic/interval) for isolating real roots of poly-                _�nomials, Revol _24] has implemented interval _'ewton algorithm _15] adapted�to multiple precision computations. A m_in _dvantage of using MPFI is that�one is no more limited by the computing precision: for instance one can impose�arbitr_ry accuracy on both the root and the residual in Newton's algorithm�_4].  Furthermore, the aforementioned implementations man_ge to adapt dy-�namically the precision to the computing needs without rest_rting the whole�program. This desirable feature will be sought after for future implementations                _�of other algorithms,�
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___________  \              q_uenc_es_             _A__c_2A2 __ Ac_l_b_  _��������������������Line_r Interv_l Equ_tions:  The Role of�Preconditioning��Jiri Rohn�Charles University and Academy of Science�-                               Prague, C2ech Republic�rohn@cs .cas .cz����.         It is well known that the exact interval hull [_2,-_] of the solution set of a system�of linear interval equations�A2 =b                   (1)�is Nl P-hard to compute _1_. On the other h_nd, the interval hull [___,J for the�preconditioned syst em���(where A, is the midpoint of A) can be computed in polynomial time with only�two matrices to be inverted [2, 3J. Since [__,_] C_ [_2,_, we obtain an enclosure�_               [__, _ of the solution set of (l) whenever the procedure is applicable (_vhich is�known to be the case if and only if A is strongly regular).�Nevertheless, the main question has remained unanswered so far: how __ell�does [__, m approximate the exact hull [_2, 2I of (1)_ In this talh we shall present�explicit formulae for nonnegative vectors _d and d computable in polynomial time�such that�_S_S_-+-d,�_-__<_2_<z�hold. The formul_e for _d and d, obtained in a rather sophistic_ted way, _side�-               from their comput_tional value also allow to draw several theoretic_l conse-����-               References��_1J J. Rohn and V. Kreinovich, ''Computing exact componentwise bounds on�_                 solutions of linear systems with interval data is NP-hard'', SIAM Journal�on Matri_ Analys2s and Appljcatżons, 1995, Vol. l6, pp. 415-420.�
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_______     _           oc n Lt_hnetetMhdl_l_sst_ta_nRlche_qvxbe_etqeavvx+netdeeMnnqdzt_h€>theRl_son_,ulNNdm(eTzearh>_lNteconaol)tJthshoeel(ucqlatl_nl+_soeen_M_rah2nce)od Trmeztphty__hleeemoelNNxenanpctut_trsl_do€ylaut_pt_lNroolNntbsleoelfmf t(ahll_rs)ee��������������� Veri_cation Methods for the Linear� Complementarity Problem with Interval Data�� -  \                                Uwe Schäfer� Institut für Angewandte Mathematih� Universit ät Karlsruhe� - -                            D-76128 Karlsruhe, German���� -         de_ned as follows: Determine (or conclude that there is no) z _ R _ w it h��� (Here, matrix inequalities _re understood componentwise, _2 I.) Linear comp le-� mentarity problems model many important mathem_tical pro b lems. T he ar t ic le� 3J gave an extensive documentation of complementarity pro b lems in eng ineer ing� and equilibrium modeling.� Mean_hile, veri_c_tion methods h_ve been found to give guarantee d boun ds�� -"                linear complementarity problem (see e.g. _1_).�� not kno__n exactly but can only be enclosed in inteTvals. T h is s ituat ion ar ises�_                for example from the following application.�Let J: [O, _) x R x R t R be _ function and yo > O.  T hen t he free�boundary problem is de_ned as follows:�Find c _ R  _nd  y(_): _O, oo) t R w it h�y''(_) = _(_,y(_),y'(2))     if _ e _O,c I,�__                                y (2) > O     i f_ _ _ OJc ),            ( 2)�                                           y (_) -- O     i f2 _ _c,OO ),�y'(c) = O,     y(O) = yo.��Theorem 1. (_4I) T_e _ree boun_ary problem (_J 2s cons2_ere_. It is assume_�__                that (_J has a unigue solution  c, ŷ(_)  an_ it is assuTne_ that an a _ R w i t h�ĉ <_ a is hnown.  n + 2 points are _eterrnine_ by _o :-- O, h :-- a / (n + 1 ),�_;+_ :-- 2_ + h, i = O, ..., n. Let J _ul_ll the /o_lowing con _itions;�_                  _ J(_J s, t): _O, _) x R x R t R is continuous ly _i _erent ża b le.�



__     _            _     McgJ_____ __21 __1oo____l____c___tt_Jt_ty_lt____l__lNtt__ ____oo_2____  _l_________NNN2__t_ __DDool___21_ttDD_JJ _y_o__x___                        ________������������ _ There e_ists an żnterval _FJ = [_F, FJ with� (_ _ R: _ = J(_,ŷ(_),y'(2)), _ _ _OtaJ) C_ _FJ an__F > O.                        __-� _ There e_żsts D _ R with� IJ,(2,y(z),ŷ'(_)) + J,(_,ŷ(_)tŷ'(2))y'(_) + __(_,y(_),ý'(z))ŷ''(2)_ S D,� _ _ _O, cJ,                                                   __� Then there e_jsts a vector q _ R^ contained 2n the żnterval _ector� J _ n2rFJ + 1n3c_D DJ _� 1 1 h2cFJ + 1h3c_���1 _ h2cF_ + 1n3c_�and the vector               y ( _�    1)                                  -��ŷ(__)�is the unique solution oJ the lżnear complementar2ty problern de_ned by that q�and���������The proof uses Taylor's formula with remainder where one has to t_h_ into�account that it is not necessary that y(_): _O, _) _ R is twice di�erentiable�at _ = c. In addition, we want to emphasi2e that it is not possible to prove�Theorem 1 with M _ R^X_ and _gJ = g e R^ (even if J _ 1).                        n�In order to verify that a given interval vector [z7 includes y of Theorem 1 we�have to consider a family of linear complement_rity problems. The presented�veri_cation methods _re b_sed on the following equivalence                          ___�(1) _ H(z) :-- min(z, g + Mz) = O�and the hnowledge of a slope matrix C(_, y) satisfying�-                    H(_) - H(y) = C(2,y)(_ - y)  for all 2,y e _z J.�For the matrix M and the interval vector [gI of TheoTem 1 we de_ne H (2; _g J)�componentwise by                                                 __�z;      if  z; < g; + (Mz);,�(Y(z;[gI));=    _g;I+(Mz);   if  z;>_;+(_Iz);,   ż=J,..,n,�_g_.+(Mz);,z;J  if  z;e_q;I+(Mz);,                         _�



____     __  _         c                         (           )�������� and we present an algorithm that calculates an interval matrix C(2, [z], _qJ) with� arbitr_ry 2 _ {2I satisfying� C(_, y) e C(_, {zI, _gJ) for all y _ _z] and for all q e [gI.� Then we de_ne the operator� N(2, _zI, _q]) :-- _ - ICA(C(_, _zJ, _g]), H(2; _q]))� '             (IGA means interval Gaussian algorithm) and the operator�L(_, A, [zJ , _qJ) :-- _ - A. H(2; [__) +  I - A _ C(_, [zJ, [gJ) ([zI - _)�with _rbitrary _ _ [zJ and an arbitrary nonsingular m_trix A. Using the Brouwer�_xed point theorem we include y of Theorem 1. We present some examples.�References�1l G. Alefeld, X. Chen, and F. Potr_, ''Numerical validation of solutions of�linear complementarity problems", Nu1ner. Math., 1999, Vol. 83, pp. 1-23.�[2I R. W. Cottle, J. S. Pang, and R. E. Stone, The l2near cornp_e_entarity�probleTnJ Academic Press, 1992.�[3I M. C. Ferris and J. S. Pang, ''Engineering and economic applications of�_                  complementarity problems'', SIAM Rev,, 1997, Vol. 39, Yo. 4, pp. 669-713.�[4J U. Sch_fer, ''An enclosure method for free boundary problems based on a�linear complementarity problem with interval data'', Nu1ner2cal Functjonal�_                  Analysjs an_ OptżTnization, 2001, Vol. 22, No. 7-8J pp. 991-1011.�



__     _         pp                                                           __________���������������������� Bounding the Composite Value _t Rish for�� Ener_ Service Company Operation with DEnv,�� an Interv_l-Based Algorithm��� Gerald B. Sheblé and Daniel BeTleant� Department of Electrical and Computer Engineering� Iowa State University� Ames, IA 5001l����1   Summary��Deregulation in the power industry drives competition.  It also increases the               _�rish of doing business. TherefoTe it is important to manage and assess the ris k.�Value at risk (VaR) analysis has been used in _nanci_l institutions to evaluate�ortfolios of assets for some time, but the application of the approach in the�ower industry has not been established. The VaR of serving customer demand�using the energy purchased on the auction marhet is our focus. In this paper,�the rishs of the energy service company (ESCO) are identi_ed and the contract�speci_cations and the VaR reviewed. In describing the di�eTence in the business�environments between the power and _nancial industries, the VaR an_lysis that�has been used in the _nancial industry has been remodeled to b_st describe the�assumed deregul_ted power environment. The pros and cons of the VaR levels               _�are presented. As a consequence of the the interval-based computational core of�DEnv (Distribution Envelope Determin_tion), results are validated with respect�to two sou_'ces of potential error.��1. Given the cumulative distributions of random variables, a derived random�variable which is an arithmetic combination of the given r_ndom v_riables�will have a single de_ned cumulative distribution only if the Joint distri-               _�bution of the given distributions is fully de_ned. If the joint distribution�is not de_ned, a veri_ed characteri2ation of the result will be envelopes�bounding the space of cumulative distribution curves that correspond to�the members of the set of all the possible joint distributions. Distribution�Envelope Determination (DEnv) _1] provides those envelopes, so that un-�certainty in results due to uncert_inty about dependencies among model�variables is bounded.                                            _��2. The distributions of input random variables can be discretized in DEnv in�in order to _void the problem of _nding envelopes for arbitrary input distri-�



___        _����������������butions analytically. Discretization typically involves approximation, but�DEnv can avoid this by bounding each input distribution with envelopes�such that the discreti2ed form of an input is a pair of en__elopes enclosing�it.  (While the input distribution is l_hely to be a continuous curve, the�envelopes are staircase-shaped.) This representation _or the input curves�propagates into wider envelopes around the space of possible result curves,�because those envelopes bound the space of results not only with respect�to di�erent dependency relationships between the inputs (as described in�_                  the previous item), but also with respect to the space of curves consistent�with the envelopes around an input.��Results are valuable because insumcient data are typically present to specify�the relevant dependencies accurately.���2   Introduction��Calls for competition in the power industry, from the wholesale level to the�retail level, have made deregulation an attractive option around the world. Yew�market structures have been studied to search for a good one that can ultimately�satisfy regulatoTy bodies, customers, and suppliers. One approach that has been�tried is the brokerage system. To accomplish it, the vertically integrated utilities�are converted into a horizontal structure. The frameworh of the energy market�is shown in Sheblé [11]. Since the emphasis of this p_per is on the value at risk�(VaR) of serving customer demand, the energy service company (ESCO), which�serves customers, is discussed while leaving the rest to reference _117.�The ESCO collects its revenue from the customers of the energy and ancillary�services it provides. It can also act as a wholesaler, reselling electric energy to�other ESCOs, generating companies, etc. To obtain the desired electric energy�_                to serve its purposes, the ESCO may purchase it through the auction marhet, or�utilize the reserves that it has accumulated through load management programs�or ownership of generation units.�In the deregulated environment, customers are free to choose among ESCOs.�In addition, energy purchased by ESCOs from the auction marhet bears the�risk of market price Auctuation. These, from the demand factors to the supply�factors, are risks that the ESCO has to tahe in the new marhet structure. Since�_                 deregulation will render governmental _nancial protection largely obsolete, rish�management and assessment tools should be considered and applied.�Ng and Sheblé <barcode type="unknown" /><barcode type="unknown" />� <barcode type="unknown" /><barcode type="unknown" />� introduce the di�erent rish management and as-�_                sessment tools available to assist an ESCO. This paper emphasi_es Value at�Risk (VaR) analysis.���_                3   VaR Analysis Review��VaR is the maximum amount of money that may be lost on a portfolio over a�given period of time, with a given level of con_dence (Best 1998 _2]). Figure�



_t              __x_mr_n___m________?______ _;_x__nmrmxm_____m______nf;_?__n___x____wmM__w__xcym_____m_n____mMm_?________w______m___n______m___r_____?m____w_____________NM_w________m_mm__v____m___m______?_wNmmm_m____m%w__n_m___%r______%_n_____n_mv_____?v__wm_______ymm______ xt__4___4__ yy              __________����������������� 1 shows the graphical representation of VaR. VaR calculations are important� because exceeding an appropri_tely de_ned maximum loss would be a maJor               __� or even irrecoverable blow to the comp_ny.  Thus business decisions nee d to� be made with the obJective of heeping the probability of such a loss be low _� relatively low level of probability deemed acceptable. Consequently determining� the prob_bility of such a catastrophic loss should be done carefully an d, for� dependability, should be v_lidated with respect to lach of knowledge about t he� dependencies among the variables factoring into the calculation.���������� __                __    ___� ?__               _____ _ __ ____� -          X             _ _%_____  ____  ___%____w___ .w���� ___ _ ___w_M m__ _ M __ _ _ __ _ ___ _ m __ _�������     _M _�������Figure 1: VaR at a _ven example con_dence level.                      _���There are currently three techniques th_t can be used to evaluate VaR o f an�ESCO. The _rst technique is historical simulation, which applies historical data              _�to evaluate the V_R. The second technique is the covariance technique. To app l�the covariance technique, the correlation matrixJ C, of the uncertain factors is�assumed available. The third technique is Monte Carlo simulation. Monte C_r lo�simulation involves arti_cially generating a very large set of events, from which�VaR is derived _2J.�The covariance technique is the easiest and fastest technique among t he�three. However, the technique assumes that the uncertain factors are norma l l�distributed.  Since normal distributions do not necessarily apply to all situa-�tions, the technique is consequently limited. Historical simulation _nd Monte�Carlo simulation can supplement the covariance technique in such cases. Since              _�historical simulation uses historical data to evaluate the VaR, there is no need�to assume the form of the probabilistic distribution function of the uncertain�factors. However, when historical data is limited, solving the V_R using the�



_______       _         eotl_sv_shTvyfl___oespo_p Bltl_uraecer Tlettm_ulcv_tsl_steslo_ath_lc_tflnnAuoau(gaumllta_b_l_s9cut_tysreveth9rortuNlNe8edctt_tdlsNeh__vatgccee2l5_te9__lmNou_esn_v)nld_paoetapdnrnow_taledfhlNtls_e(ttelNcsor_h0hrruf_nenel__cbt Fdmhfaphe_l_rarsegtl_aelNhrlucsu9Ehtetrehre_esaeetdcmoct2hep_ve_olaoasrl_tn_vhudl_cc_egnnodNe_rvewtolNT_tst_r?lstbo_heol_ufbls_tsu_nlc_huletlsn_tto_l_eluylont__lt_ttrgndnohltt_ssgflENaruhmoebesnmsfearln_cten_onccetomolNor_______tD____0D___eh_tgomgnesyedt_upsmtcese_aoossr_erenecvvnnert Teaestl_nr_ubptttl_denaehhrsn_ddnlcNeecoel_ectefrbrrecltglttyovusc_ymnhshaDBlNt€n_a_otonetnotfmsuragtac_lt_e Aeox_shrsneb Fettocte_hl_rftrtrrel__lNl_hstnstrctohehhegttfe����  tors (often that they are normal, but uncerta in factoTs t ha t aTe no t norm_ l l�  option contracts (whose prices aTe not norm_lly distri buXe d), t he op t ion sens i-�  the resulting VaR is _ble to consider option contracts _2 I.� _              diversity of the portfolio (the number of assets wit h corre late d pr ice c hanges),� and the holding position of the portfolio (the amount o f mone__ inves te d in a� particul_r asset). This evaluation process is su mcient in a _n_nc ia l ins t i tu t ion� where the rish is primarily _ result of price changes. To an E S C O, however,� sumcient energy. For example, energy delivery c_n be prevente d by transm iss ion� contracts, puTchased ancillary services, etc.) for an E 5 C O.�� --^                  _'4________,_' ____ _x__ _!    ___ _____ _ __4_ _ ? __ _ _  ;,n   _ _ _ _ _ _ 5 _ __ _ _ '_ i e _, _ _ _ _ _ _ _ _�Figure 2: Factors in determining VaR o f _n E S C O.�4   Price Fluctuation VaR�_                 Auctuation is evaluated using (1).�va_=_ _                 ( 1 )�



_\          _c_t_t __ _2       _ t   __J_ __ __              f JN     _____����������������P is the proportion or position of the assets in monetary value. _ represents�the degree of volatility and determines the con_dence level. For instance, when                __._�_ = 1, the con_dence level is 95%o _2J. The covariance matrix, C, is determined�using (2). N_ otation _ in (2) denotes ''expected value of'':C��  ll  N__  C1_                                  ' 'C�   =  ___  C2J  N__  ,               ( 2)C�  n1  _N_  Cnn��where��__(P_ - _R_) (P_ - _Pż)J.  c   __(P_ - _P_) (PJ - _PJ)J for _.   .�_,p,.                  _i_>_i,-                             _��Reference 11 shows the steps in evaluating VaR due to market price Auctuation.�In our presentation and full paper we vill describe the remaining two maJor�.         components of the ESCO value at risk, which are energy not served and contract                ' ''�violation. Background information on the the electric power industry will also�be provided, emphasizing the ESCO as needed to support the discussion. Com-�bining the three VaR components in a validated way that bounds uncertainty                _�in results due to unspeci_ed dependencies _mong the distributions describing�the values of the three components, will be accomplished through Distribution�Envelope Determination (DEnv) _1].  This is needed because the dependency�rel_tionships among the probability distributions for the three V_R components�are not __ell understood. The output of DEnv will be used to bound the value�at risk given a desired con_dence level, or to bound the con_dence level given a�value at rish.                                                        _���References��_1] D. Berleant and C. Goodman-Strauss, ''Bounding the results of arithmetic�operations on random variables of unhnown dependency using intervals'' ,�Relżable Computing, l998, Vol. 4, No. 2, pp. 147_165.                            _��_2] P. Best, IJnplement2ng Value at Rish, Chichester, New YoTh, 1998.��_3I S. Dehraj_ngpetch, Auctżon development /or the price-based electric power                 _�industryJ Ph.D. dissertation, Iova State University, Ames, December 1999.��_4I J. C. Hull, Optjons, Futures, and Other Deri_atj_es, Prentice Hall, Upper�Saddle River, New Jersey, 1997.                                         -_��_5J _. F. Marshall, Futures and Opt2on Contracting:  Theory and Practice,�South-Western Publishing Co., Cincinnati, Illinois, 1989.��_6] K. H. Ng, Re_orTnulat2ng Load Management un_er Deregulation, Master's�thesis, Iowa State University, Ames, May 1997.�



_____      _c   1999_                                          _�����������������_7l K. H. Ng, Operational Plannżng Jor _ner9y Ser_ice Company, Ph.D. Pre-�liminary ReportJ Iowa State UniversityJ Ames, July 1999.��_8] _. H. Yg and G. B. ShebléJ ''Direct Load Control - A Pro_t-Based _oad�Man_gement using Linear Programming'' , I___ Trans. Power Systems,�1998, Vol. 13, No. 2.��[9l K. H. Ng and G. B. Sheblé, The _conom2cs and Model2ng oJ Schedul-�jng _o0d Management, 26th Annual Report, Electric Power Research Cen-�\                ter/Power Amliate Research Program, Iowa State University, Ames, April���[10J _. H. Ng and G. B. Sheblé, ''Risk Management Tools for an ESCO Opera-�tion'', Proc. 6th Internatżonal Con_erence on PrDbab2list2c Methods Applże_�to Power Systems, September 2000.��11J G. B. Sheblé, Computational Auct2on Mechanisms Jor Restructured Power�'           Industry Operatżon, Kluwer Academic Publishers, Boston, 1999.��[12I G. L. Thompson and S. Thore, Computatżonal _conom2cs: _conom2c Mod-�elżng wżth Optimizatjon SoXware, The Scienti_c Press, San Francisco, Cal-�ifornia, 1992.��_               _13J A. J. _ood and B. F. Wollenberg, Power GeneraX2on, Operation, and Con-�trol, John Wiley & Sons, Ye__ York, 1996.��_l 4J www .nymex. com .�



_                                                                        _________����������������������Reli_ble Modeling Using Interv_l An_lysis:��Chemic_l Engineering Applic_tions���MarhA. Stadtherr                               ___�Department of Chemical Engineering�University of Notre Dame�182 Fit2patrick Hall                               __�Notre Dame, IN 46556 USA����'          Chemical engineers often deal with nonlinear models of complex physical�phenomena, on scales ranging from the macroscopic to the molecular.  Fre-�quently these nonlinear models occur in process engineering problems requiring�nonlinear equation solving and/or optimi2ation. The reliability with which these�problems c_n be solved is often an important issue. For ex_mple, in process op-�timization a consistent issue concerning reli_bility is whether or not a global, as�opposed to local, optimum has been achieved. In process modeling, especially               _�with the use of highly nonlinear models, the issue of whetheT a solution is unique�is of concern, and if no solution is found, of whether there actually exists a so-�lution to the posed probIem. For some problems, the model may have multiple�solutions and all must be found, with no a pr2or2 hnowledge of the number of�solutions that exist. Methods based on interval analysis provide the power to�solve these problems reli_bly, in fact with mathematical cert_inty.�In recent years, interval-Newton-based methods have begun to be used for�the reliable solution of chemical engineering pToblems such as:��(1) phase stability analysis using excess Gibbs energy models (Stadtherr et�ol,, 1995; McKinnon et al., l996; Tessier et al., <barcode type="unknown" /><barcode type="unknown" />� and cubic equ_tion�of state models (Hua et al., 1996, l998),��(2) computation of homogeneous azeotropes (Maier et al. , 1998) and reactive               __�_eotTopes (Maier et al., 2<barcode type="unknown" /><barcode type="unknown" />�,��(3) computation of mixture critical points (5tradi et al., 2001),��(4) computation of solid-Auid equilibrium (Xu et _l., 2<barcode type="unknown" /><barcode type="unknown" />� and��(5) parameter estim_tion in vapor-liquid equilibrium model5 (Gau et al., 2<barcode type="unknown" /><barcode type="unknown" />�.��In each case, the interval methodology is used to de_l rigorously with issues�of multiple (or no) roots in nonlinear equation solving problems or issu, es of�multiple local extrema in optimization problems.�



______         __����������������In this presentation, the focus will be on some new applications of interval�methods to solve nonlinear modeling and optimization problems in chemical�engineering. Of particular interest are (1) some relatively large dimension prob-�lems (largest with 264 variables) arising from parameter estimation using the�erTor-in-variables approach and (2) some molecular-scale problems arising in�density functional theory and in statistical associating Auid theory. Improve-�ments in the methodology used to solve these problems will also be discussed.���'              References��_1J C.-Y. Gau, J. F. Brenneche, and M. A. Stadtherr, ''Reliable parameter esti-�mation in VLE modeling'', Flujd Phase _gużlżb., 2000, Vol. l68, p. l.��_2J J.-Z. Hua, J. F. Brenneche, and M. A. Stadtherr, ''Reliable prediction of�phase stability using an interval-Newton method", Fluid Phase _guilżb,,�.           1996, Vol. 116, p. 52.��_3] J. Z. _ua, J. T. Brennecke, and M. A. Stadtherr, ''Enhanced interval analysis�-                   for phase stability: cubic equation of state models'' , Ind, _ng. C_em. Res.,�1998, Vol. 37, p. 1519.��[4] R. W. Maier, J. F. Brenneche, and M. A. Stadtherr, ''Reliable computation�-                   ofhomogeneous azeotropes"7 AICh_ _., 1988, Vol. 44, p. 17_5.��[5J R. W. Maier, J. F. Brenneche, and M. A. Stadtherr, ''Reliable computation�of reactive a2eotropes'', CoTnput. Chern. _ng,, 2000, Vol. 24, l85l.��_6I K. I.-M. McKinnon, C. G. Millar, and M. Mongeau, ''Global optimization�for the chemical and phase equilibTium problem using interval analysis'', In:�__                   C. A. Floudas and p. M. Pardalos (eds.), State oJ the A_ in _lobal Opti-�mż2atżon: CoTnputational Methods and Appl2cat2ons, eds. Kluwer Ac_demic�Publishers, Dordrecht, The Netherlands, 1996.��-                [7] M. A. Stadtherr, C. A. Schnepper, and J. F. Brenneche, ''Robust phase�stability analysis using interval methods'' , AICh_ Symp, Ser. , 1995, Vol. 91,�No. 304_ p. 356.��_                 [8] B. A. Stradi, J. F. Brenneche, J. p. Kohn, and M. A. Stadtherr, ''Reliable�computation of mixture critical points'', AICh_ _, 2001, Vol. 47, p. 212.��_9] S. R. Tessier, J. F. Brenneche, and M. A. Stadtherr, ''Reliable phase stability�analysis for excess Gibbs energy models'', CheTn. _ng. Sc2., 2000. Vol. 55,�p_ 1785,��__                 [10] G. Xu, A. M. Scurto, M. Castier, J. F. Brenneche, and M. A. Stadtherr,�Reliable computation of high pressure solid-_uid equilibrium'', In_. _ng.�CheTn. Res., 2000, Vol. 39, p. 1624.�



__         _   ___________������������������������Methods of Proving Ch_os in Dynamic_l Systems               _��via Tr_nsfer Maps���Ralf ToenJes, Jens Hoe_ens, Martin Ber2, and Kyoho Mahino����The determination of regularity versus chaoticity of motion around _xed�points is one of the important questions in the theory of dynamical systems.�We de_ne chaoticity as motion in which closeby points in phase space exhibit�an exponential growth of separation over a sumciently large time.  The goal               _-�-        of this paper is to determine whether the region around a _xed point of the�motion exhibits chaoticity or not, and to study at what values of parameters of�the system a transition between the two phenomena develops and the system               _�shows bifurcation. We develop methods that allow a rigorous determination of�dom_ins of chaoticity around a _xed point of the motion. Also, in cases where�the _xed point is a stable attractor, we will be able to prove this stability. To�this end, we begin by determining the Aow of the motion and its dependence�on parameters as a Taylor model using the veri_ed integrator VI, a so-called�transfer map. This Taylor model describes the dependence of _nal coordinates�on initial coordinates and parameters via a Taylor polynomial, and provides a               _�rigorous erTor of this appro_mation. We then use methods of veri_ed inversion�to determine the _xed paint of the motion and its dependence on the parameter.�Next, a coordinate shift to this parameter dependent _xed point is performed,�and as a result, we have a Taylor model describing the dynamics as a function�of parameters that is origin preserving-�In addition to the Taylor model of the _ow, we also determine the Taylor�model of the Jacobian of the Aow as a function of both position and parameter               n�by integrating the respective di�erential equations with the veri_ed integrator.�Then the Eigenvalues of the Jacobian _re determined using Taylor rnodel arith-�metic, where the ability to suppress the dependency problem of Taylor models               _�proves useful in the linear algebra involved in this step.  Finally, the moduli�of the Eigenvalues are bounded, and regions are determined in wbich they ar_�bounded below and above by 1, corresponding to the sought regions of chaoticity�and stability, respectively.�The method is illustrated with various examples, including the Henon map�and the study of dynamics around Lagrangian points in the Earth-Sun system.�



______  _     _            p            _    Abstract                 g��������������������� The Loren_ Attractor Exists -�� An Auto-Validated _roof��� WarwichTucher� Dept. of Math., Ma1ott Hall� CoTnell U niversity� Ithaca, NY, l4853-4201, USA� warwich@math. cornell. edu������ We pre5ent an algoTit__ for comput i_g T igorous so lu t ions to a laTge� class of oTdinary diAerential equations. The _ain algorith_ is base d on� a partitioning pTocess and the use of interval aTit__etic wit h d irecte d�rounding. As an application, we prove that t_e Lorenz equations support�a strange attTactor, as conJectured by Edward Loren_ in 1963. This con-�_                  Jecture w_ recently listed by Steven S_ale as one of seveTal cha l leng in�roble_s for the 21st century. We also prove that t he attractor is To-�bust, i.e., it peTsists under small perturbations of the coe mc ients in t _e�underlying di�erential equatio_s. Further_ore, the _ow of the equations�-"                   ad_its a unique SRB _easure, whose support coincides with the attrac-�tor.  The proof is based on a cambination of normal form theory and�rigorous co_putatio_s.���1   Bachground to the Problem��-_               The following non-linear system of di�erential equations,_��  _  =  - _ __ + _ 2 2_�  2  =  Q21-_2-___3               ( 1)_�  3  =  - ß 23 + 21 _2,��w_s introduced in 1963 by Edward Lorenz, see _5l.  As a crude model of at-�_-                mospheric dynamics, these equations led Loren2 to the discovery of sensitive�dependence of initial conditions - _n essential factor of unpredictability in man�systems. Numeric_l simulations for an open neighbourhood of the classical p_-�_                rameter values _ = 10' ß = 8/3 and Q = 28 suggest that _lmost all points in�phase space tend to a strange attractor - the Lorenz attractor.�For _ > 1' there are three _xed points: the origin and the two ''twin points ' '��__                           C_ = (_ _p(g - 1), _ _ß(g - 1), g - 1) .�



__   _        __to1_5oos%___rll,1rr_ (_t_rt/__J____rl___/_____t_r__1_/_s__r_________________n____\___t_t_rq__\t_____\__\\t__\_\_1\_o_\_\\\\/_\t_______\______________n___\____ __ox__t______t_____/__5__r__//_/___/_/_/_4/o?__r/__/__/_/_____/_____/_______/_______\__/_t__________\__/_\5___t_t_tt__tr\t__lr__lJ_____rx_J_    __     a___0                           ___t_____����������������� Numerical experiments indicate the existence a forward invariant open set�� _ denote the Aow of (1), we can form the maximal invariant set�� A___(U,e).��� Due to the Aow being dissipative, the attracting set _ must have zero volume.� It must also contain the unstable manifold of the origin WU (O), which seems to�_               spiral around Ct in a very complicated, non-periodic fashion, see Figure l(a).                 __�In particular, A contains the origin itself, and therefore the Aow on A can not�have a hyperbolic structure. The reason is that _xed points of the vectoT _eld�generate discontinuities for the return maps, and as a consequence, the hyper-�bolic splitting is not continuous. Apart from this, the attracting set appears to�h_ve a strong h_perbolic structure as described below.�As it was very dimcult to extract rigorous information about the attracting�set A from the di�erential equations themselves, a geometrżc mo_el of the Lorenz�Aow was introduced by _ohn Guchenheimer in the late sixties, see [2I.  This�model has been extensively studied, and it is well understood today, see e.g.�_3], [14], _12J, [8l, _9I, [lOI.  Oddly enough, the original equations introduced                 _�by Lorenz have remained a puz2le. A few computer-assisted proofs, however,�have quite recently been announced, see [1JJ _4I, and [6].  These articles deal�with subsets of A which are not attractingJ and therefore only concern a set�of traJectories having measure zero.  Despite this, it has always been widely�believed that the Aow of the Loren_ equations has the same qualitative behaviour�as its geometric model. We prove that the geometric model does indeed ġive an�accurate description of the dynamics of (1).                                        _-_������_ ''_.. ĵ;';_.,'_,'!,!;.;;,!_,'/,r_:____.__-,____\^___,;\\\  //_,_,,^____,4/__,___.___-__, ,____n_,!;,i,,_;,',,,!;" /,:'w ;�   L ' 5 '; _' ' "'_ ___ ì ;:. _: !_ t : _ .; __. _ _ ' :; _ _' ; _ ; ~__c > __ __ ? __ _s _ /_ _ __ _ _' ß_ _ _q_, _, _ __ _ _ _ -__\ _ _, ,'! _,_ J, _' _,n _'. _ ; '__,_ _ : :; J_' '' ' ' ,,_ '�,,  i_,_ '_':__"_t'_.___, _>,__,___^,'_n'\\__, aooo! _/_J? ______ 5 _ __'_M_J___:::_;''_'___ !           n '!�_. ''_::\'.:\'_\\_\,__,___,__C_,//,,_;''_''_'_'\':_,"._\_ _.O 00 __, :,,;___M__,,'_.7:!,!,__.____x_,n_,_c_'__,r,__,JJJ_,:_?_' _                _�_   ''\._:_c_______M___\,___-_____--___?_'___'_N,,_'\_____._-:-:_-_"______:'/'__ ,/              r  _  '�15    \\ ' __ _ _ _\ _\_ ; ___ _- _ ____/ _,,_ !, _.,; _ i\\\ __ _-_ _ __ _ _ _/, / _ / _ ' /�\ __\\_______-;-_=-_-_, /;;,_;;!' _;_,,_;' _.._;;;-_-;;__,;_/_//������Figure l: (a) A part of the unstable manifold of the origin. (b) The return map                 _�acting on_.��By the use of a Poincaré sectionJ the _ow of (l) can be reduced to a _rst�return map R acting on the section _ C (23 = _-1) , as schematically illustrated                _�in Figure 1(b).�Note that R is not de_ned on the line r = _ n W' (O): these points tend to�the origin, and never return to _. Due to the _xed point at the ori_n, the return                __�



_______                                                    __�����������������times are not bounded. This constitutes a serious obstruction to any numerical�approach. This is overcome by introducing a local change of coordinates, and�we prove the following properties of the return map R:��_ There exists a compact set N C _ such that N \ _ is Jorward jn_ariant�-                   under R, i.e., R(N \ r) C int(N).  This ensures that the _ow has an�attracting set A with a large basin of attraction.  We can then form a�cross-section of the attracting set: A _ _ = n__-_oR_(N) ≡ _.��-   '               _ On NJ there exists a cone _eld _ which is mapped strictly into itself by�DR, i.e., for all 2 _ N, DR(2) _ _(_) C _(R(_)).  The cones of _ are�centered along two curves which approximate _, and each cone has an�_                   opening of at least 50.��_ The tangent vectors in _ are eventually expanded under the action of DR:�there exists C > O and _ > 1 such that for all v _ _(2), 2 _ N, we have�'"       .            lDR^(_)vl >_ C__lvl, n >_ O. In fact, the expansion is strong enough to�ensure that R is topolo_calIy transitive on JL-��The proofcan be brohen down into two main sections: one global p_rt, which�involves _nding enclosures to solutions of ODEs, and one local part, which is�based on normal form theory. Both parts require the use of interval arithmeticJ�as described in _7I.���2   The Main Result��"                In a recent issue of the Mathe7nat2cal Intelligencer the Fields medalist Steven�Smale presented a list of challenging problems for the 21th century, see _11J.�Problem number 14 reads as follows:��Is the _ynam2cs oJ the or_2nary _j_erential equations oJ Lorenz that�oJ the geometrżc _orenz attractor oJ Wjlliarns, Guckenheimer, an_�Yorke?��By proving the three abovementioned properties of R, we provide an amr-�m_tive answer to Smale's question:��'^                Main Theorem For the classical parameter _alues, the Lorenz eguat2ons sup-�port a robust strange attractor A. Furthermore, the _ow a_Tnits a uni_ue SRB�n2eaSUre __ wzth SUpp(x_) = A.��In fact, we prove th_t the attr_cting set is a singular hyperbolic attractor.�Almost all nearby points separate exponenti_lly fast until they end up on op_o-�site sides of the attractor. This means that a tiny blob of initial values rapidly�-                smears out over the entire _ttractor, as observed in numerical experiments. The�complete proof has been published in _l3] .�
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______        _          Tam_ as vlnho1 t Jean__ou2lLs aLba_gLou_ManAelle _ and Tlbor csen_des          _����������������������Kite:  A New Inclusion Function for Optimi2_tion�������-  _                            1 universi_y of s2eged�Institute of Informatics, Szeged, Hungary�emails ( tvinko, csendes) @inf. u-szeged. hu���Institut de Recherche en Informatique de Toulouse�France, email lagouane@iTit.fT����Interval global optimization algorithms based on branch-and-bound methods�_               provide guaranteed and reliable solutions for the problem��minJ (2 ),�2_X��where the objective function J: D C_ __ t I_ is continuously di�erentiable�and X C_ D is the search box representing bound constraints for _. The aim of�this worh is to improve the emciency by a tighter interval inclusion function, in�'               particular we deal with lower boun_s of J, because the guar_nteed upper bound�of the global minimum values can be obtained by a single function evaluation.�The quality of an enclosure method is important in the implementation of the�_               interval global optimization algorithms, because n_rrower enclosure of J may�provide faster convergence.�In this paper the hite inclusion function is presented for branch-and-bound�type interval global optimi2ation using at least gradient information. In the one�dimensional case _3I the basic idea comes from the simultaneous usage of the�centered forms and the linear boundary value forms _2]. Figure 1 shows that�the graph of J is within the convex inclusion cone determined by the points�_               (a, J(a)), S and (b, J(b)) and outside the concave exclusion cone MPN. In this�_gure the lines L and U mean the lower and the upper bound of the derivative�.            of J(_) , while the lower bounds for the function J(2) given by the centered form ,�_               the linear boundary value form and the hite are _F F, _FLBvF and min(yi , yT),�respectively.�This leads to the _ssertion that the simultaneous usage provides a not worse�enclosure of the obJective function. The best choice for the center of the hite�-"               (the point (c, P) in Figure 1) correspond to the case y_ = yT. The existence�and uniqueness of this case can be shown in two ways: in a geometrical and in�a constructive way. The isotonicity and at least quadratical convergence hold�



__            ___M_F__l_Fg_ycFF _ _ _ _ _ _ _ _ _ _ _ _ _ _c_____t____________________ _ _ _ _ _ _ s u    bN __              _____nM__������������������_(x)r a _��        L        ; :'.            _m J����������������_��_        Figure l: Simultaneous usage of the centered form (based on the middle point�of the current interval) and the linear boundary value form.���and there is a pruning e�ect of the hite which is derived from the construction             .�of the inclusion, thus more function evaluation is not needed to use it.�The new method can easily be implemented in a branch-and-bound type�interval global optimi2ation algorithm. For a single inclusion larger computation�eRort is needed by the hite algorithm, because we use the function values not�only at the optimal center but at the extremal points of the ex_mined interval.�Numerical investigations on 40 standard multiextremal test functions have              _�been done to show the performance.  For the one dimensional problems our�results are summari2ed in Table l, where the performance of the hite with and�without its pruning e�ect (h+pr and h-pr, respectively) is compared to the              _�centered form. The columns contain the number of function, derivative, and�Hessian evaluation, number of bisection and the necessary list length.  The�percent values give the _verage values for the complete test set for the _rst and�the second order algorithms.���F-eval ,   _D-eval.   _H-eval.   _bisection    list length�h+pr.  h-pr _h+pr  k-pr _h+pr  h-pr _k+pr  h-pr  h+pr  h-pr�66To   74%o  39To   57To    -    -  60To  87_o   56_o   63%o�79%o   84To   64_o   69To  ll1To  120To   76To  83_o   78To   78To��Table 1: Yumeric_l results.                           _�����In the multi dimensional case the hite inclusion function can be based on the�centered forms _nd the method of the supporting hyperplanes _1]. Another idea�is the application of the componentwise approach, where the multidimensional              __�
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__     _        ____         ___________t���������������������Moore's Single-Use-Expression Theorem on��.                         Extended Rea1 Interv_ls_���G. William _'alster                               _�'              Sun Microsystems����Moore _1J proved that conditions exist when a computed interval's value�is the expression's exact range.  The conditions are: the expression is valid�(no division by zero), rational, and real (not extended real); and each interval�variable occurs no more than once in the expression. Un_ortunately, in the set�o_ extended real numbers, denoted i_' = I_ U (-_, +oo), Moore's single-use-�expression theorem is not always true. Division asymmetry in the __ number�system is the root cause of the problem.                                     __�This paper further extends the _' number system to remove the asymmetry�from extended real division so that Moore's single-use-expression result holds.�The new system is denoted i_''. The new system is also applied to the complex               _�plane to show that closed complex interval systems can be based on sets in�the i_'' _ I['' system. Interval implementations are easily developed within the�IEEE 754 Roating point standard.���Re_erences��_17 R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cli_s, N.J., 1966.����������������������_ 2001 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun�Logo, _nd Fo_e _re tr_dem_rks or registered trademarhs of Sun Microsystems, Inc. in the�United St_tes _nd other countries.                                           _�
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__     _                                     __                              _______����������������������Enclosures of Higher Order Derivative Tensors on��the Basis of Univariate Taylor Expansions���Andrea Walther and Jan Riehme                          __�Institute of Scienti_c Computing�Technical University Dresden, Germany����This contribution considers the problem of evalu_ting all pure and mixed�partial derivatives of some vector function��y  =  f(_)  withf:_c___I_m,��de_ned by a computer program.  In order to provide the required derivative               _�in_orm_tion Automatic Di�erentiation (AD) can be applied.�Even though the reverse mode of AD may be more emcient when the number�of dependent variables is small compared to the number of independents, only�the forward mode will be considered here. The mechanics of this direct applica-               _�tion of the chain rule are completely independent of the number _ of dependent�variables so that it is possible to restrict the analysis to a scalar-valued function��y = J(_)  with  J:_CI___I_.��This greatly simpli_es the notation, and the full tensors can then easily be�obtained by an outer loop over the component index.                             - '�The natural approach to evaluate derivative tensors seems to be their recur-�sive calculation using the usual forward mode of AD. This technique has been�implemented by Ber2 _1I, Neidinger [3], and others. The only complication using               _�this multi-variant approach is the need to utili2e the symmetry in the higher�derivative tensors, which leads to fairly complex addressing schemes.�Much simpler dat_ access patterns and similar or lower comput_tional counts�can be achieved through propag_ting a family of univariate Taylor series of an�arbitrary degree. At the end, their values are used to compute the desired tensor�coemcients _2_.�Using exact _rithmetic, both approaches yield the s_me derivative informa-               _�tion.  Obviously, the situation changes if the computations are performed in�Ao_ting point or interval arithmetic. We analy2e the e�ects of using interval�arithmetic for both methods to evaluate derivatives. Furthermore the quality               _�of the enclosures achieved are compared and discussed.�
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