
WAI'96: II Workshop on Computer Arithmetic, Interval and 
Symbolic Computation 

WAI'96: BTOpOfI ceM~Hap rio KoMrn~ioTepi-ioli apHdpMeTnxe, 
I4HTepBaAt, I-IBIM H CI4MBOABHBIM BBIrII, ICAeHI, D'IM 

On August 7-8, 1996, the second Workshop on Computer Arithmetic, Interval and Symbolic 
Computation was held in Recife, Brazil. The main purpose of the workshop was to bring 
together researchers interested in scientific computation and related topics and to present and 
discuss recent advances in this branch of computer science and its applications. 

Total about 27 talks and 10 posters were presented. 81 participants fi'om 8 countries 
(Brazil, France, Germany, Mexico, Portugal, Russia, Switzerland and the USA) attended the 
workshop. 

The major topics of interest included but were not limited to: theoretical foundations 
of the computational arithmetic, interval algorithms, interval arithmetic co-processors, interval 
probability, programming languages for scientific co,nputation, tools for scientific computation 
and symbolic computation. 

The workshop was held on the campus of the Federal University of Pernambuco. It was 
a part of the largest annual event in computer science in Brazil, the XVI Meeting of the 
Brazilian Computing Society. The XVI SBC, on August 4-9, 1996, attracted 1500 participants 
and accommodated a wide variety of events in computer science. 

M~RaLIA A. CAMEOS 



Interval'96: International Conference on Interval Methods 
and Computer Aided Proofs in Science and Engineering 

Interval'96: Me:Ka, yHapo~a~ K O R ~ e p e ~  no 
K~rrepBaA~,m,iM MeTOAaM ~ KOMnt, IOTepHbIM 

~,OKa3aTeA~,CTBaM B ~ayKe ~ T e x ~ e  

The meeting organized by the Faculty of Mathematics and Computer Science, Wfirzburg 
University and the Editorial Board of the International Journal Reliable (5om]~uting was held in 
Wiirzburg from September 29 through October 2, 1996. 

91 scientists from 18 countries participated in the conference. Due to the support of DFG, 
GAMM and other firms and institutions 22 researchers mainly from Eastern Europe were able 
to attend. 

In 8 highlighted talks, 56 regular talks and 8 poster presentations various aspects of the 
topic of the conference were considered. 

• Mathematical foundations and generalisations of interval arithmetic, its embedding in 
programming languages and libraries as well as applications in different technical fields. 

• Accurate, reliable calculation of functions, new numerical methods for point and interval 
problems as well as verification of mathematical facts. 

• Functional, formal specification of interval mathematics, complexity issues as well as cou- 
pling of interval procedures with methods from Constraint (Logic) Programming. 

The following highlighted talks were presented: 

• F. Benhamou (Universit6 d'Orl~:ans): A Fixpoint Approximate Sonantics for Coolu~rating Numerical 
Solvers. 

• V. Gehrke (RWTH Aachen): Direct Computation of All Singular Points of Chemnical Engineering 
Models [:sing interval Methods. 

• P. Van Hentenryck (Brown University): Helios: a Modeling Language far Global Optimization 
Using Interval Analysis. 

• E. Hyv6nen (VTT Helsinki): Inter~vd Constraint Satisfactionma New Computational Basis for 
Spreadsheet Computations. 

• M. Mrozek (JagieUonian University, Krakow): Topological Methods in Cmnputem" Assured Proofs 
in Dynamic. 

• M. Nakao (Kyushu University, Fukuoka)i A Computational Approach for the Estimates of Constants 
Related to the Numerical Verifiwation Method for Bounda'r' Value Problems. 
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* J. Rohn (Charles University, Prague): Complexity of Some tJnear Proble~m" urith In~aT~d Data. 

o S. Shary (ICT Novosibirsk): Algebraic Approach in the Outer Problem for lnteTa~tl Linear Equations. 

A selection of the talks will be published as a special issue of the jot~rnat Rdiable Cmnputing. 
The volume of abstracts of the conference can be ordered from the Editorial Board. 

The meedng continued a series of conferences which has been started in 1992 near 
Moscow with Interval'92 (Interval and Stochastic Methods in Science and Engineering) and in 
1994 in &.Petersburg with Interval'94 (Interval and Computer Algebraic Methods in Science 
and Engineering). This series will be continued in 1998 probably in Nanjing, China or Sozopol, 
Bulgaria. A possible topic may be the connection to fuzzy logic. 

I" WOLFF VON GUDENBERG 

Chairman of Interval'96 



Interval Talks at FUZZ-IEEE'96 

HwrepBaa ,m,ie AOKAaAbI FUZZ-IEEE'96 

The annual IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) is one of the 
largest meetings of fuzzy researchers.- This year, FUZZ-IEEE was organized in New Orleans, 
on September 8-11. More than 300 papers from all over the world were presented during the 
conference. 

1. Intervals: general relation to fuzzy, Zadeh's vision 

Many fuzzy researchers use interval arithmetic, for two main reasons: 

• First, a fuzzy property of a real number (like ~young," *big," etc.) can be described by 
different intervals that correspond to different *degrees of belief": e.g., ~hot "~ can be 
described as, say, [40, 100] with degree of belief 1, [35,100] with degree of belief 0.9, etc. 

• Second, the degrees of belief themselves are known only approximately, and in many 
cases, it is more natural to represent them not by a real number, but rather by an interval. 

Due to this connection, most textbooks on fuzzy logic contain chapters on interval methods, 
and most fuzzy conferences have several interval-related papers presented. This conference was 
no exception. 

Intervals were first mentioned in the very first talk, by Lotfi Zadeh, the founder of fuzzy 
logic [14]. In his talk, Zadeh promoted what he called granularity: When we measure or 
estimate a physical quantity, we usually have a very approximate idea of its value: e.g., if we 
measure, we get the value with a very low accuracy; when an expert estimates this quantity, 
he often can tell only whether it is "big" or "small" or "medium." In other words, we have 
a 10w granularity. However, when we represent this knowledge in the computer, we have 
to use the datatype that is currently hardware supported: real numbers. Real numbers are 
perfect to represent high granularity measurements and estimates, but when we use the multi-bit 
real numbers to  represent low granularity, low accuracy data, we waste computer memory on 
storing the unnecessary bits and we waste computer time on processing them. What is needed 
is a methodology of handling low granularity data directly. This methodology, Zadeh thinks, 
will come from combining the existing methods of handling low granularity data, in particular: 

• interval methods developed to handle uncertainty in measurements, and 

• methods from Artificial Intelligence, developed to handle granularity of expert estimates. 
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2. Voice recognition: direct illustration of Zadeh's idea 

395 

Zadeh's talk was more a challenge than a description of methods and results, but there were 
several talks at this conference that made Zadeh's desired "combination" seem promising. The 
most relevant was a paper [8] where interval methods are used to speed up vo/ce recognition. 

The goal of voice recognition is, given the signal that records a human speech (i.e., its 
intensity at different moments of time), to determine what exacdy was said. Voice recognition 
methods traditionally use general pattern recognition ,algorithms. These algorithms start with 

(k) 
a set of test inputs (x 1 . . . .  , x(n~)), i < k < K,  for which the desired output y(k) is known. 
They are usually based on a model of the dependency between xi and y, i.e., on the formula 
y = f ( z x , . , . ,  xn, c l , . . . ,  %) with fixed f and arbitrary parameters cj. For example: 

• we can have a linear model in which p = n + 1 and 

f ( X l  . . . .  , X n ,  C l ,  - * . ,  C.p) = C 1 • X 1 -k- " • • -{- C ~ "  Z n  "at" C ~ + I  

• we can have a more general polynomial model, in which the dependency f is a quadratic 
or a cubic polynomial with coefficients cj; 

• we can have a non-linear model that describes the input-output relation of a neural 
network; in this model, the coefficients cj are called weights. 

Then, we train the model, i.e., determine the values cj of its parameters so that it works well 
on all K test cases. 

Most of the training methods are based on the assumption that the real numbers xl k) 
that form the input (intensities, in case of voice recognition) are precisely known. In these 
methods, we "train" the model (i.e., adjust its parameters) until it precisely predicts the correct 
answer for all test inputs, i.e., until tbr every k from 1 to K, we get the exact equality 

f (x~k) , . . . ,  x(n k), c t , . . . ,  ~ )  = y(k). In reality, since the test data are only approximately known, 
there is not much sense in achieving the exact fit. Moreover, if we do not stop after a 
"reasonable fit," in which the difference between the predicted values and the test data y(k) 
is of the same order as the test data inaccuracy, then not only we waste time on trying to 
adjust to error-caused "details," but we often worsen the fit by "this adjustment: indeed, if, e.g., 
the actual dependency is linear, but we try to fit the noisy data exactly by a higher order 
polynomial, then, for large xi, the higher order terms, that are caused by noise only, will grow 
much larger than the correct linear terms and make predicted values way off  

To avoid that, the authors of [8] designed an interva/-based neural network, in which the 

test inputs and outputs are explicitly given as intervals (x[k) , . . . ,x~) ,y(k)) ,  and adjustment is 

performed until for all input data, the prediction interval f (x~k) , . . . ,x~  k ) , c l , . . . ,  q0)becomes 
consistent with the output y(k), Le., until the corresponding intervals intersect. 

For voice recognition, not only this method saves time, but it also leads to better predictions 
(by avoiding the "overlearning'). 

Comment. In addition to such novel ideas, other papers have been presented that describe the 
new sources of interval uncertainty or the use of this uncertainty in data processing and in 
control. 
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3. Additional source of interval uncertainty 

Above, we have described two sources of  interval uncertainty. In [3], a third source of  interval 
uncertainty is analyzed that is caused by the following: in classical (two-valued) logic, every 
propositional formula,  e.g., A ~ B,  can be described in terms of  three basic operations: "and" 
(A), ~or" (V), and ~not" (-~). The re  are two basic ways of representing any propositional 
expression in this form: Disjunctive Normal  Form (DNF) 

A b ^ c) v ( a A  . . . )  V . . .  

and Conjunctive Normal  Form (CNF) 
(av bvc) ^ (av---) A - . -  

both forms are actively used in digital design. Because of  this result, it is sufficient to 
implement  the three basic operations; hence,  many  p rog ramming  languages support  only these 
operations, and s tandard hardware  design blocks are usually also these three (plus their simplest 
combinations soch as ~nand" and "nor"). As a result, in expert  systems, ,also analogues of  these 
three operations are described. However, for multiple-valued logics used in expert  systems, the 
three basic operations are no longer sufficient; CNF and DNF forms are, in general, different, 
and values resulting f rom different (classically equal) representations of  the same propositional 
formula  form an interval of  possible values. 

4. Applications of interval data processing: financial prediction, 
pattern recognition 

In [12], a linear model with interval coefficients is used to predict the prices of hoones and the 
currency exchange rate. 

Another  application, to pattern recognition, is presented in [2]. This application is based on 
the following idea. It is welt known that a function is constant iff  its derivative is equal to 0 
(e.g., a position z does not change iff the velocity v is always zero). A natural discrete analogue 
of this result is: the sequence zi  is constant iff  all its first differences v~ = :r~ - z~-i  are  equal 
to 0. In real life, measurements  are n e v e r  absolutely accurate. Therefore ,  a natural question 
appears: if  the values vi = ah - z i -1 ,  1 < i < n ,are close to 0, how close to a constant the 
values zi  can be? In precise terms, what is the smallest value o f  A for which all the values zl 
are within A--dis tance f rom some constant c (i.e., for  which there exists c such that for  all i 
we have ah E [ e -  A , c +  A])? 

I f  we know the values zl exact/y, then we can estimate the desired "closeness" A as follows: 
From vi = zi - z i -1 ,  we can conclude that  zx = :r0 + vl,  z9 = z l  + v2 = z0 + (v~ + v2), and, 
in general,  that  azl = z0 + si, where so = 0 and si = vt + . . -  + vi for i > 0. T h e  largest of  
these values corresponds to the largest of  si, and the smallest of  them to the smallest of  si. 
So, all the values zi tie in the interval [z0 + rain si, z0 + m a x  &]. It is easy to check that  the 
smallest value of  A is attained when we take as e, the midpoint of  this interval; then A is 
equal to its half-width A = w/2,  where w = moo: si - m ~  sj.  This width can be also expressed 

z 3 
as w = m..a,_x(si - sj) ,  or, equivalendy, as 

1,3 

i<j p----i Xp . 
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This expression is a norm on the set of  all sequences; under  the name of a discrepancy norm it 
was first introduced, in essence, by H. Weyl in 1916 [13], and had several practical applica!ions 
since then: e.g., H. Neunzert and B. Wetton, used discrepancy-norm techniques developed in 
their paper [9] in quality control for fleece. 

In [2], this norm is applied to the following pattern recognition problem: how to automat- 
ically distinguish between a pixel in a (chaotic) picture, in a halftone (a more or less regular 
pattern of two or more color), at an edge (e.g., a caricature consisting of a few curves), and 
in a homogeneous area (one color only). Looking at the 8 nearest neighbors of a pixel, the 
variance is clearly high for a picture pixel, and (very) low for one in a homogeneous area. 
The  non-trivial problem is to distinguish between edges and halftones (which arc, visually, very 
different but may have the same variance). To  solve this problem, the audmrs of [2] take into 
consideration that an edge pixel typically possesses a connected string of neighboring pixels 
for which the intensity Ii is higher or lower than the average I ,  which is highly unlikely 
for halftones. Thus, an edge pixel typically has much larger values of the discrepancy norm 
w = mi<ajx ] E~=i xv[, where x v = I v - I .  It turned out that, indeed, with the help of this norm 

it was possible to easily tell an edge  from a halftone. 

A similar problem occurs when we do not know the exact values of vi (= xi  - xi-1). In 
particular, we may only know the value A for which, for some constant c, x i  E [ c -  A ,  c +'A] 

for all i. In this situation, we may be interested in the inte~wal of possible values of a linear 
functional L = ~ c/vi. If we substitute the expression for vi in terms of xi ,  we get a formula 

L = x0 ( -~ , )  + z~(~  - ~ )  + . . .  + ~,~_,(~_,  - c , )  + :~.n(<3. 

The  largest value of" L is attained when the values z j  fbr which the coefficient is positive take 
the largest possible value c + A, and the values xj for which the coefficient is negative take 
the smallest possible value c -  A As a result, the largest possible value of L is equal to 

~-(lc~l + Ic2 - c~i + . . -  + Ic,~ - c~-~t + lc, d) 

(and the smallest possible value of L is minus this expression). 

From the mathematical viewpoint, the variation-like expression in parenthesis is a dual 
norm to the discrepancy norm. 

5. H o w  to avoid interval overestimation? General idea and its 

application to interval probability estimates 

If we know intervals X h . . . , X n  of possible values of input data a:l . . . . .  xn, and it" we know 
an algorithm !1 = f ( : c l , . . . ,  z,,~) that relates xl and !/, then we can apply the following "naive 
interval computations" to estimate the interval y of  possible values of !/: on each step of the 
algorithm f ,  we replace the original arithmetic operation by the correspondiug operation of 
interval arithmetic. It is well known that this method often leads to a drastic overestimation 
because it does not take into consideration that, first, the original values may have been related 
by a constraint, and second, that the intermediate values are not independent. 

Traditionally, interval computation designs methods to deal with the second type of 
dependency, dependency of the intermediate data. However, in many real-life situations, the 
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initial dependency is equally important .  Such situations are analyzed, in the general case, in [6]. 
In [10], this general analysis is applied to the situation in which the initial data are the (intervNty 
known) probabilities of  different alternatives, constrained by a relation z l  + . --  + zn = 1. For 
this case, explicit formulas are given, e.g., for the intervals of  possible vah, es of  Bayes-updated 
probabilities y. 

6. How to avoid overestimation? Specific idea: generalized 
intervals and their use in dynamical systems 

I f  we are interested in the static quantity z (that does not change with time), then the interval of  
possible values is, usually, the most adequate description of our knowledge. But in many real-life 
situations, the quantity z that we are interested in is changing with time. Can we represent  
our  knowledge about its values z ( t t ) , . . . ,  z(t , ,)  at  different moments of time tq . . . . .  t,,? 

One possibility is to simply store the values (or intervals) that correspond to different 
moments  of time. However, this takes lots o f  space. We can decrease the required storage 
space if we take into consideration that the dependency of z ( t )  on time is usually smooth. 
Smooth means, in particular, than dur ing a reasonably small time interval, the dependency 
x ( t )  on t can be well described by a linear function x ( t )  ,,~ a + b(t - t~). Hence, a reasonable 
way to compress the data is to store the coefficients a and b of  this linear fimctions instead of  
the values x ( t i )  . . . . .  x ( t , ) .  T h e  physical meaning  of  a and b is usually clear: e.g., if x ( t )  is a 
coordinate of  a particle at a certain point, then a is its initial position, and b is the particle's 
velocity. This physical interpretation can be used to determine a and b from the input data: 

e.g., we can take a = X( t l )  and b = (x ( tn )  - x ( t l ) ) / ( t n  - t l ) .  
These formulas work perfectly well if inaccuracy is negligible: in this case, we can uniquely 

reconstruct x ( t )  f rom a and b. At first glance, a similar idea can be used if the inaccuracy 
is no longer negligible, i.e., if  we do not know the actual values x( t i ) ,  but instead, know that 
these values belong to the known inter~ds x i .  In this case, we have the interval a -- x1 of  
possible initial positions xl ,  and we can use the above h)rmula h)r b to estimate the interval o f  
possible values of  velocity 

i ( x ( t ~ ) -  x ( t i ) ) .  b = t .  _ t-"---~ 

T h e  problem is that this compression loses intbrmation:  if" we reconstruct the interval for  a:(t,~) 
as a + b - ( t , ~ - t l ) ,  we get a much wider interval than the original x~. One can easily see that  this 
increase indeed happens on the simplest possible example  of  n = 2 and X(tl) = x(t2) = [ - 1 ,  1]. 

T o  avoid this increase, the authors of  ['5] propose the following idea: we want to describe 
the dependency on the interval x = [z_,~] on time. Mathematically, an interval is nothing 
else but two numbers. So, let us describe, separately, the dependency of z_(t) on time, and 
the dependency of  • on time, as, con'espondingly, z_(t) : a + b .  t and ~( t )  : g + b .  t for 
some _a, g, b, b. If  we formally combine these two descriptions, we get the representation 
x( t )  = [a, g] + [h, hi" t, which is very similar to what we tried betbre, except that the 5nterval"  
[b, b] may now have a lower bound greater  than the upper  bound, i.e., it may be a generalized 
interval. In [5], such generalized intervals are successfully used to describe dynamical processes. 
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7. Multi-dimensi0nal analogues of intervals: applications in pattern 
recognition 

In one-dimensional case, intervals are a natural description of uncertainty. In the multi- 
dimensional case, the actual areas of uncertainty may be very complicated, so, it is necessary to 
use some approximating finite-parametric families of sets. 

Different families have been proposed for this purpose: ellipsoids, boxes, more complicated 
polyhedra, etc. Each family has its advantages and drawbacks: e.g., boxes are easier to process 
computadonalty (e.g., intersection of two boxes is a box), but their boundaries are not smooth 
and therefore, they are less natural in approximating regions with smooth boundaries than, 
say, ellipsoids. Similarly, if we are solving a differential equation, for which we know the initial 
interval uncertainty, then boxes are easier to compute but the errors computed by using boxes 
grow faster than errors computed by using ellipsoids. 

If we use boxes (as opposed to ellipsoids) to describe regions with smooth boundaries in 
real-life pattern recognition problems, then: 

• on one hand, we need more boxes than ellipsoids to describe each region; 

• but, on the other hand, we need f~wer computation time to process each box than to 
process each ellipsoid. 

So, if we choose, e.g., computation time until a certain approximation accuracy as a criterion 
for choosing a family of sets, then these tw~ factors work in opposite directions, and it is 
difficult to predict which family of sets will be better. 

The authors of [1] experimentally compared different fmnities of" sets on different real-life 
examples, including the iris data (de f~to standard benchmark of pattern recognition problems) 
and biomedical data on blood cells. Surprisingly, in all real-life examples, ellipsoids turned out 
to be consistently better. 

8. Multi-dimensional analogues of intervals: applications in control 
(in brief) 

Another application of multidimensional analogues of" intervals is to control. This is done in 
two papers that use different types of domains: 

• Conic, spherical, planar, and other types of uncertainty are analyzed in [7]; 

• polyhedral uncertainty is analyzed in [4]. 

These two papers provide criteria under which dymanical systems are stable for all possible 
values of parameters from the given multi-dimensional domains. 

9. City and conference 

New Orleans is known as "the Big Easy," or "a city that care forgot." It is most famous for 
its annual Mardi Gras carnival, for its invention of jazz, for its unusual cuisine, and for its 
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sleepless French Quarter, where jazz still rules. The city's last attempt at more %erious" fa,ne 
was in 1815, when the future US President Andrew Jackson successfully defeated the British 
fleet. Ironically, it happened after the peace treaty was officially signed: communication was 
slow then. 

Like many parts of Holland or" St. Petersburg, several areas of New Orleans are built on 
the land conquered from the sea. Cemeteries are built abcwe the land, and when you walk 
along one of the many below-sea-level streets, the site of ships passing by way above your head 
makes the world around feel very un-real. 

Our banquet was at the Aquarium of the Americas, one of the world largest aquariums, 
where we could not only watch the exotic sea creatures, but also pat them (including a 
dangerous and teethy baby shark?), an'd.., try how they taste. 
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