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1. Paul Erd6s 
Paul Erdts died on September 20, 1996, at the age of" 83. Erdts was the most prolific of all 
mathematicians; he has published more mathematical papers than anyone else: more than 1200 
papers with more than 300 co-authors. This phenomenon gave rise to the so-called ~Erdts 
number': Erdts himself had Erdts number 0, his co-authors get Erdts number 1, co-authors 
of his co-authors are assigned number 2, etc. It is sometimes daimed that most mathematicians 
have Erd/Ss number smaller than 10. 

Born in Budapest, Paul Erdts spent all his life as a wandering scholar, constantly in travel. 
He died in Warsaw, where he was attending a minisemester for Combinatorics; after that, he 
was planning to go to Vilnius for the Kubitius Conference. 

Erdts's main interest was in combinatorics, including combinatorics of graphs, number 
theory, set theory, geometry, and mathematical analysis. His papers are widely cited and 
used. Among many other ideas that Erdts has pioneered is the use of probabitistic methods 
in combinatorics: in many cases, it is difficult to explicitly construct an object with a given 
property, but it is much easier to prove that the probability of an random object to have this 
property is positive. 

Erd~s impressive productivity and tirelessness in promoting mathematics made him one 
of the most famous mathematicians in the world: suffice it to say that his obituary was placed 
on the front page of the New York Times, an honor reserved only for super-celebrities. 

Erdts usually formulated his results as pure mathematical theorems, without emphasizing 
their possible applications; however, many Of his results founds important applications in various 
areas ranging from voting procedures in social sciences to experiment design in bMogy m 
complexity of computer ,algorithms. 

In particular, several of his papers are related to (generalized) intelwal computations. Two 
examples: 

1 ErdOs's results related to (generalized)interval 
computations: first example 

Measurements are never absolutely precise; expert estimates also never lead to precise values. 
As a result, after each measurement or estimate, we do not get an exact value of the desired 
quantity x; we get the set X of possible values. In the case when we simply measure this 
quantity and we know the upper bound A on the accuracy of the measuring instrument, then 
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this set X is an interval [ ~ - A ,  ~ + A ] ,  where ~: is the measurement result. In more complicated 
cases, we may have more complicated sets: e.g., if we know that x 2 belongs to the interval 
[1, 4], then the set of possible values of x is a union of two intervals [ -2 ,  -1]  U [1, 2]. 

ff  we knew the exact values of several quantities x l , . . . , x , , ,  then we would be able to 
tell which of these values are equal and which are not, i.e., for each i and j ,  we would know 
whether xi = xj  or xi ~ xj. As a result, in this hypothetic case, we could divide n quantities 
into equivalence classes. We can describe these equivalence classes graphically if we draw n 
points corresponding to n quantities, and connect the points that correspond to equal quantities 
by edges. Then, we will get a graph that it is a union of disconnected complete subgraphs 
representing equivalence classes of equal quantities. 

In real life, we do not know the exact values, we only know the sets X I , . . . ,  Xn of possible 
values. In this case, for each i and j ,  we cannot tell Whether the values of xi and xj are 
equal or not; we can only distinguish between the cases when it is hnpossible for x~ and xj 
to be equal (i.e., when Xi N XS = 0), and when it is possible for them to be equal (i.e., when 
Xi N Xj yt 0). We can also describe these condusions graphically if we take n points and 
connect points coresponding to the quantities xi and xj by an edge iff these quantities xi and 
xj can have equal values. 

Graphs obtained in this manner tbr the situations when all sets Xi are intervals are called 
interval graphs. Not every graph can be thus represented by intervals. There is a rich literature 
on algorithms for checking whether the given graph is an interval graph, and for designing 
simple sequences of intervals X1, . . . ,X,~ that lead to a given interval graph; interval graphs 
have many useful applications (see, e.g., [5]). 

If we allow sets X~ that are not necessarily intervals, then, as one can easily see, every 
finite graph G = (V, E)  with set of vertices V and set of edges E can be represented in this 
manner: e.g., we can associate with every vertex v a set X~ consisting of all the edges that 
contain v; then, X,, f3 X,, ~ 0 iff v and w are connected by an edge. This result is known 
since 1945 [6]. 

In this proof, we need as many elements in all the sets Xv as there are edges in the 
graph; as a result, to represent a graph with n vertices, we need, in the worst case, n ( n +  1)/2 
elements. A natural question is: do we necessarily need that many elements to represent a 

given graph? 
In [3], ErdSs has shown that we can use only half of this number; namely: 

• we can always find a representation with [n~/4J elements (in X1 U . . .  U Xn), and 

• for every integer n > O, there exists a graph for which no representation with fewer thm~ 
[n2/4J elements is possible. 

31 Erd6s's results related to (generalized) interval 
computations: second example 

Another result of ErdSs is related to a similar problem: 

• In the first example, we analyzed the following question: qf  the measurement result is 
~, what are the possible actual values of the measured quantity?". We assumed that for 
every :~, we know the set X of possible actual values of the measured quantity. 
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* Due to uncertainty, if we measure the same quandty twice, we may get different results. 
It is therefore natural to ask a different question: if we know the resuh 5: of a certain 
measurement, what other values can we get if we measure the same quantity once again? 
Let us denote this set of  values by P(~'). 

In this second example, we will assume that we know, for each possible measurement result ~: 
(i.e., for each real number), this set P(a~). It is natural to assume that this set P(Y:) is bounded 
(otherwise, if the error  can be as large as possible, what good are the measurements?). 

We want to ask the same question as in the first example: if we have different measure- 
ment results, when can we conclude that these results come from measuring different actual 
values? If we have two measurement results ~ and ~1, and we know that £,t was measured af ter  
~, then the definition of the set P(~:) leads to the fbllowing simple answer to this question: 

• if ~:' E P(~) ,  then ~ and ~: can be the results of measuring the same quantity; 

• if ~t ~ P(~) ,  then :~ and ~ come from measuring different quantities. 

If we do not know in what order  the measurements were made, then in order  to guarantee 
that ~ and :~ come from measuring different quantities we have to assume that both ~:~ ¢ (P(~)  
and 2 ~ P(07:1). 

If the set P(:~) is simply an interval [5~ - A, ~ + A], then, of course, the conditions 
if: E P(5/)  and 5: I e P(ff:) mean the same thing: that ] ~ -  xt < A. However, this is not 
necessarily always so: In real life, it is possible that the properties of a measuring instrument 
change with time (e.g., there may be a minor drift  of  its characteristics), and therefore, the 
relation 5:' E P(:r) may be asymmetric. 

For this situation, Erdhs formulated, in [1, 4], the following problem: 

• If the relation ~' E P (~)  is symmetric, and if all sets P(5:) are bounded, then one can 
easily prove that for every n, there exist n real numbers (membership results) 5:1, . . . ,  :~  
that represent n different actual values, i.e., for which ff:i ~ P(£cj) for all i # j .  

• However, for asymmetrics relation 5: ~ E P(5~), this is not necessarily true. 

When is it true? The  answer provided in [1, 4] is: If" the (Lebesgue) meem~re of all sets P(:~) 
is bounded by a constant M,  then for every n, it is possible to have n measurement results 
x l , - . . , :~n  that imply that no two actual values are equal. 

4. There are probably many more 

Erd6s's legacy is huge, and probably there are more examples of interval-related results; even 
papers that are not directly related to verified computing may have influenced (or will influence) 
other papers that are of importance to us. 
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