
Reliable C o m p u t i n g 2 (4) (1996), pp. 3 7 3 - 3 8 1

Some examples using the interval data type
in the relational database model
JOHN W . STARNER

This paper is devoted to the idea of using interval data in relational databases. We show, (m several
simple examples, that interval data can be added to the query language SQL and used with a great
effect in hisiness applications (if rdafional databases.

Since the examples are simple, they do not reqlfire any new inathematk:a] restths or non-trivial
algorithms, only standard fi~nnulas of interval arithmetic.

The intended mtdience includes both interval re.archers and spedali~s in relational datal~,ses.
For researchers who are not well familiar with interval computations, we have induded the detailed
d~scription of interval arithmetic (that can be skipped by odler readers).

HpuMep ,I
Tmia AaHHbIX
AaHHS X
~ . CTAVH~

~CHOAb30BaHH)I ~HTepBaabH0r0
B MOAeA~ peA~EHOHH0fl 6a3 ,i

B p a (~ T e paccMaTp~tI~IeTCR ~3MO~Ht~-r l , llClIOJII)3OI~IHHJ,I lIH'rept)kl'lbHl,lX lla'HHI.4X C p~.q,',HiHOHHbIMH

~a3aMH dlaHHhlX. H a HCCKOdIbKHX llp(K'TLqX II])HMep,*IX]I(}Ka3aHO, KaK |IHTepI'I~IdII, HblM TIIII ltliOJtttTC~.l

B g3blg 3allpoC~)B S Q L 1.I KaKyio llOJlbBy MC)gC, eT n|Jt}lHC{Tl'|I HCIIOdIh31)L*.IIHMe |IHTepBaJIoB B 2te/t¢}BhlX

IIpHMeHeHHHX pe'tmt)~OHHb~X 6a3 I|aHHhtX.

l-lpoCThl¢ ItptsMepza, IIpHBIUtHMble B CTWI'be, He i[o'rl)~t~lOBa/nl HMKaKIdX HI)BhiX MWI'eMaTHtieCKI.IX

c p ~ c ' I ~ HJIH HeTpHBI, faJibHblX aJlropH'rMoil. HCllOJllf3OliiL/|llCb "riidtbKo ¢raH11ap'rHla¢ t.~)pMy,li,i }SlITep-

~131 bHOl,~ apnqbMeTilXlt.
Pa6oTa Morner ~blTb tfltTepeclta KaK IICC,'Ie/IOIt,~4TedIHM, 3aHI~[MaRHIIItMCH t|WrepaiL'lhlIOIZi MaTeMaT}IIKOIT|~

TaK M cllel|ltlbrlHCTaM no p~/IHIIII~IHHIaIM ~a3aM JlaHHbIX. ,~3IH TeX, KTo Cdla(ll) 3H;IKOM C lIHTepll~t.'lbHhl-

Mtf BbI*'IHC'IeHHHMH, rlplltg)Jlli'rot II(lllp{l~Ho~ ltBt~JleH|Ie B IIHTepB;UlhHyll) al.mqbMe'tiigy. KDTO|.Ri¢~ ~lo.71ee

H¢)JII'¢)TOILTICHHbI¢ qI-|TaT¢'IH M¢)r~T n])oltyCrl-lTh.

1Q Introduction: formulation of the problem and the
main idea

1.1. Relational databases: brief introduction
Many decision suppor t systems use relational databases to represent data (see, e.g., [3]):

* A re tadonal database is a collection of tables. (Tables are also called relations; hence the

n a m e of these databases.)

• Each table has several co lumns co r re spond ing to d i f ferent attributes; each table consists of

several records.

(~) J. w. Starner, 1996

374 I.w. Sr^Rr, mv.

• Each record describes an object by describing the values of the corresponding attributes.

Example. We can have a table of tanks with three attributes: tank number, tank location, and
tank contents. Then, a tank number T1 located in location A and containing 60 gallons will
be described by a three-component record (T1, A, 60).

To make this information useful, we must be able to maintain the tables (e.g., add, delete,
and update information if necessary), and to an.~ver quer/es. A typical query asks for all the
objects that have certain values of their attributes. For example, for the above tanks table, if
we want to fill the truck located in city A with 55 gallons of the substance, and we would like
to use one tank only, we will thus be interested in all table in location A that have at least
55 gallons. We may also be interested in more complicated queries, such as the total amount
of the substance in location A.

In this example, we considered a simplified case in which all the data is stored in a single
table. In reality, different parts of information about the same data can be stored in different
tables. For example, we may have one table in which we store the the tank number and its
location, and another table in which we store the tank number and the tank contents. In this
case, the information about the tank T I is stored in two records from these two tables: (T1, A)
and (T1,60). If the information is stored in two or more tables, then, to pick the objects
with the desired values of attributes, we need to look over several tables. The corresponding
operations are called O,restrict and O-join.

The complete set of possible operations, together with their interpretation, is called a
relational database management system model (RDBMS).

To handle relational databases in a user-friendly manner, several languages have been
proposed. One of the most widely used of these languages is the Structured Query Language,
SQL. In this language, there are three basis types of attribute values: strings, numbers (integer
and real), and Boolean (true or false).

12. It is desirable to add intervals to relational databases

In many real-life situations, we do not know the exact values of some numerical attributes;
instead, we know the interned x = Ix_, ~] of possible values.

Example. If we know the exact contents of tank T1, i.e., if we know that this tank contains
exactly 60 gallons, then we represent this knowledge as a record (T1, A, 60).

In reality, however, we rarely know the exact value. Most frequently, we only know the
lower and upper estimates of this contents. For example, we may not know the exact contents of
the tank T1; we may know only that this tank contains between 50 and 70 gallons, i.e., that
the actual contents belongs to the interval [50, 70]. In this case, the information about the tank
T t is naturally represented by a record (T1, A, [50, 70]).

In other words, we would like to use in tem~ as attribute values. Since SQL and other
relational query languages do not allow that, it is therefore desirable to add intervals to
relational databases.

SOME EXAMPLES USING THE INTERVAL DATA TYPE.,. 375

1.3. It is possible to add intervals to relational databases

T h e question of adding new data types to the relational model was analyzed by Date [2];
according to Date, it is, in principle, possible to add an arbitrary data type that has well-
defined ar/thmeth: operations and comparison operations (similar to <, =, etc.).

Arithmetic operations. How to define ¢rith~netic operations for interval data type in relational
databases? For example, what is the interval analogue of sum? If we know the exact values of.
two quantities x and V, and we are interested in their sum, then the value of this sum is x + V.
If, on the other hand, the only information that we have about the value x is that x belongs
to the interval x = Ix_, ~], and the only information that we have about the value 1/ is that !/
belongs to the interval [~, ~], what can we say about the sum z + 1/ of these two quantities? It
is easy to show that this sum x + 1/can take any values from the interval [a: + 1/, ~ + ~]. Thus,
the sum operation for intervals (that corresponds to adding the unknown actual values) can be
described as follows:

[~_,~] + IV, ~1 = [~ + V,~ + ~].

Similarly, all other arithmetic operations can be defined (see, e.g., [4]):

[~,~]" [_V,~] = [min (x ' _v , -x ' y , x 'E ,x ' v) ,max (-x - 'Y_ , a : 'Y ,x ' _Y ,~ 'Y)] ;

I/[2_,3] = [1 /~ , I / x] (ifOg~[z__,~]);

=

The formulas for multiplication and division can be further simplified in the (frequent) case
when both intervals only contain non-negative nmnbers; in this case,

=
=

For example, if x = [2.0,3.5] and y = [0.2, 0.4}, then x + y = [2.2, 3.9], x - y = [1.6, 3.3],
x . y = [.4, 1.4], and x / y = [5.0, 17.5].

Comparison operations. For intervals, comparison operators are also well known. Actually, for
intervals, the set of possible comparison operators is much richer: If we know the exact values
of the quantities 2: and y, then we have only three possible relations between them: :c < 1/,
a: = 1/, and x > 1/. In a more realistic situation, when we only know intermls x = [:r,, ~] and
Y = It, Y] of possible values, we have more options; for example:

• i f 2: > ~, then x is necessarily greater than y; this is denoted by VT(x > y) ;

• if • > V, then x is poss/bly greater than V; this is denoted by 0 (x > y) ;

• if the intervals x and y have a non-empty intersection (overlap), then x is possible equal to
1/; this is denoted by 0 (x = y).

In addition to these (more traditional) comparison operators that compare intervals ,as possible
vadues, we can compare these interval as sets: e.g., we can check whether x is a subset of y , i.e.,
whether x G y.

376 I.W. STARNER

1.4. What we are planning to do

In the following text, we will-show, on several realisti c examples, that adding the interval data
types to relational databases can be really helpful in solving real-life problems.

These examples do not require any new mathematical results or any sophisticated interval
algorithms. In all these example, even the use of the "naive" interval arithmetic turns out to
be benefidal.

2m Application examples
Let us first consider the case in which we have only one table TANK, with three attributes
described above:

Tank# Location Contents (gals.)

TI' A [50, 701
T2 B [65,85]
T3 A [20, 25]
T4 C [150,170]
T5 B [10, 15]
T6 A [30, 40]
T7 C [25, 30]
T8 D [80, 95]

Table 1. TANK

Example 1. The real-life problem is: What size tanks would be needed i f the inventory were
consolidated at each location? In/ntenn/ terms, this means that we must compute the sum of
the TANK.Contents attribute of this table for each possible location.

The corresponding SQL query is:

S~.I.~CT TANK.Location, SUM(TANK.Contents)
FROM TANK
GROUP BY TANK.Location;

The result is shown in Table 2:

Location SUM(Contents)

'A [100, 135]
B Its, ~oo]
c [175, 2oo1
D [80,95]

Table 2.

Comment. Notice that the SQL query closely matches the original statement of the problem.

Example 2. Given that the cost of I gal. of the so/vent is between $I.50 and $I.65, what is
the total va/ue of the inventory of the solvent? In interval terms, the answer is an interval that

SOME EXAMPLES USING THE INTERVAL DATA TYPE... 377

is computed as the interval [1.50, 1.65] times the interval sum of the Contents attributes for all
of the rows in the Table 1.

The corresponding SQL query is:

SI~ff.F.CT [1.50, 1.65] • SUM(TANK.Contents)
FROM TANK;

Here, SUM(TANK.Contents), through a series of interval additions, produces the interval
[430,530]. The value of the inventory is then equal to the interval [1.50, 1.65]. [430,530],
i.e., to [$645.00, $874.50].

Example 3. Find all the tanks which may have more than 55 gallons. In interval terms, the
answer is the list of all tanks for which 55 is possibly smaller than TANK.Contents.

The corresponding SQL query is:

SELECT TANK.T#
FROM TANK
WHERE 0(55 < TANK.Contents);

The result is the Table 3:

Tank #

T1
T2
T3
T4

Table 3.

Let us now consider more complicated examples in which the knowledge is contained in
two tables: PROJECT (Table 4) is a table with attributes P#, Stares and Score, and RATE
(Table 5) is a table with attributes Rate (an interval), and Bonus.

P# Status Score

P1 3 3.56
P2 4 4.02
P3 2 1.87
P4 3 2.65
P5 1 3.97
P6 5 4.78
P7 3 2.53
P8 4 3.16
P9 2 2.17
PIO 1 3.15
P l l 5 3.46
P12 3 4.05

Table 4. PROJECT

378 I. w. S'rARNER

Rate Bonus

[0.0, 0.49] o
[0.5,0.991 5
[1.0, 1.49] 7
[1.5, 1.99] 10
[z0,2.49] 15
[z.5, z99] 25
[3.0,3.491 35
[3.5, 3.99] 40
[4.0,4.49] 45
[4.5, 5.00] 50

Table 5. RATE

Example 4. Enumerate aH projects for which bonus is 45 O.e., for which the score lies in the
interval for which bonus is 45). In SQL, this query takes the following form:

S~I,~CT PROJECT.P#
FROM PROJECT
WHERE PROJECI'.Score C

(SELECT RATE.Rate
FROM RATE
WHERE RATE.Bonus = 45);

and leads to Table 6:

P#

P2
P3

"Fable 6.

Example 5. Find all the projects of status 8 for which the Bonus is 40 or higher. To be more
precise: Find the P#s for those projects whose Status is 3 and whose score is contained in the
range of rates for Bonus _> 40.

The corresponding SQL query is:

SELECT PROJECT.P#
FROM PROJECT, RATE
WHERE PROJECT.Score C_ RATE.Rate

AND PROJECT.Status = 3
AND RATE.Bonus > 40;

Since this query uses both tables, SQL wilt use a g-join between the tables, joining the records
for which PROJECT.Score C RATE.Rate, and then selecting records (rows) for which Status = 3
and Bonus > 40. The result is given in Table 7.

SOME EXAMPLES USING THE INTERVAL .DATA TYPE.., 379

P#
P1

P12

Table 7.

In the last two examples, we will use another pair of tables: PRICE_LIST ('Fable 8)
with attributes Part#, Part_name and Price (where Price is an interval of possible prices) and
TARIFF_LIST (Table 9), where the Tariff is determined by a range of prices.

P# P_name Price

i001 [0.04,0.071
1002 bolt [0.23, 0.24]
1003 screw [0.21, 0.30]
1004 nut [0.03, 0.10]
1005 washer [0.27, 0.31]
1006 cam [0.85, 1.10]
1007 gear [2.13, 2.45]
1008 axle [1.75, 1.95]
1009 wheel [2.56, 2.85]

"Fable 8. PRICE_LIST

Price Tariff

[0.00, 0.15] A
[o.16,o.251 B
[0.26, 0.50] C
[o51,1.ool D
[1.01, 1.10] E
[1.11, 1.50] F
[1.51, 2.00] G
[2.01, 3.00] H
[3.00,9.99] I

"Fable 9. TARIFF_LIST

Example 6. Which parts may be subject to Tariff A? In other words, for which parts, the
parts may belong to the price range for Tariff A?

In interval terms, the corresponding relation ",nay belong" between the two intervals
x = Ix, 5] and y = [y, ~] can be described as 0(x E y), which is equivalent to x f l y # O, or,
to max(x, y) _< min(~, ~).

The corresponding SQL query is:

380

SELECT Price_list.P#, PriceAist.P_name
FROM PriceAist, Tariff_List
WHERE 0(Price_List.Price E Tariff_List.Price)

AND Tariff_List.Tariff = 'A';

The resulting table is Table 10:

I. w . STARNER

P# P_name

1001 nail
1004 nut

Table 10.

Example 7. If the price Changes for next year are between -2% and 3%. which parts are
guaranteed to have tariff groups less than 'G' next year?

In interval terms: which P#, P-name pairs will have the range for their prices next year
that is less than or equal to the range of prices for Tariff G?

The corresponding SQL query is:

SELECT PriceAist.P#, priceAist.P_name
FROM Price_List, Tariff_List
WHERE

D(Price_~st.Price * (1. + [-.02, .03]) _< TariffAist.Price)
AND Tariff_List.Tariff = 'G';

The resulting table is "Fable 11:

P# P_name

1001 nail
1002 bolt
1003 screw
1004 nut
1005 washer
1006 cam
1008 axle

Table 11.

3. Conclusion
For cases where it is natural to think of a data item as having a range of values, the data type
interval can be naturally used. Using interval arithmetic, it is possible to do calculations and
comparisons of interval data items and produce interval results without having to be concerned
with the details of how to handle the end-points of the intervals.

SOME EXAMPLES USING THE INTERVAL DATA TYPE...

References
381

[1] Chang, T. H. and Sciore, E. A universal relation data model with semantic abstractions. IEEE
Transactions on Knowledge and Data Engineering 4 (1) (1992), pp. 28-33.

[2] Date, C. J. A proposal for adding date and time support to SQL. ACM SIGMOD Record 17 (2)
(1988).

[3] Korth, H. F. and Silberschatz, A. Database system concepts. McGraw-Hill Co., N.Y., 1986.

[4] Moore, R. E. lntem~/, ana/ys/s. Prentice Hall, Englewood Cliffs, 1966.

[5] Parasaye, K., Chignell, M., Khoshafian, S., and Wong, H. Intelligent Databrues. J. Wiley and
Sons, N.Y., 1989.

Received: May 14, 1995
Revised version: November 22, 1996

Intbrmation and Decision Sciences Department
The University of Texas at El Paso

E1 Paso, Texas 79968
USA

