Reliable Computing 2 (4) (1996), pp. 357—372

Improving the efficiency index in enclosing a
root of an equation

Yixuw Swn

Recently several algorithms have been developed which achieve high efficiency index in endosing a root
of the equation f(x) = 0 in an interval [a,b] over which f{z) is continnous and f(a)f(b} < 0. The
highest efficiency index, 1.6686 . .., was achieved in [4] using the inverse cubic interpolation. This paper
studies the possibility of improving efficiency index by using high order inverse interpolations. A class of
algorithms are presented and the optimal one of the class has achieved the efficiency index 1.7282...
With a user-given accurary € and sarting with the initial interval [ay,b1] = [a,b], these algorithms
guarantee to find in finitely many iterations an enclosing interval [an, by] that contains a root of the
equation and whose length by — an is smaller than €. Numerical experiments indicate that the new
algorithm performs very well in practice.

[loBbrmrenne uraekca 3PeKTUBHOCTH
HAXOXAEHMS OLEHKV KOPHs ypaBHEHL

Viixeyn HIn

B nocnenHee HpeM}! BBUIG P;l3paﬁ()T;lHU HECKONBKO ﬂ"l'()p"'l'.\l()ﬂ. MOIBOZIHOMIHX AOCTHY D BLICOKOTD HH-
Aexca 3¢pPeKTURHOCTH 1P HAXOKAEHHH OUEHKH Kopus ypassewmnst f{z) = 0 8 wurepane [a,d], na
xotopoM dynkuns f(z) nenpepunisua u f(a)f(b) < 0. Hamaywmmi smitere aceheRTiBHOCTI, paBHbil
1.6686. .., 6uau1 nocTurayr B pabote [4] ¢ menoabsosaHuenm ofiparHoit KyGuueckoR uxTepnoasmusust B
HACTOSIIER PaBuTE HCCAEHYETCH BOIMOKHOCTL MAIBHERIErs yaydmenns nunea bexmpHocTn ¢
HCHOABIOBAHMEM OBPATHOR MHTEPHOAAIRH Gojtee BRICOKOTO Hopsika. TIpeacranaen Kaace anropuTMos,
HAHAYSLIHA ApEACTABMTENb KOTOPOTo HocTinaeT weaexca adpexmimmocrn 1.7282 ... Hasas ¢ soxonso-
1o unTepsaia @1, b1) = [a, b], 3TH AArOPHTMBL MPAKTHPOBAHHO HUXONAT 31 KOHEHHOE HHCIO KTEPMTR
BRTOMAIOWINA HHTEPBAA [Gn, bn), conepxanusit xopens ypassesns, uns wmpnua by — Gy He npesunm-
€T JANAHHOM TOMBIGHATENEM BENHHMHHBL NMOIPENHOCTH €. UMCICHHBE IKCHEPHMEHTHL HIOKASLBAKT, YT0
HPOHIBOAMTEABHOCTL JAHHOIO AIFOPHTMA HA UPAKTHYECKMX JUWMAX OCTATOMHD BETHKR.

1. Introduction

Recently several algorithms have been developed in [2—4] which achieve high efficiency index,
in the sense of Ostrowski [9], in enclosing a root z. of the equation

fz)=0 (1)

in an interval [a,b], where f(z) is continuous over [a,b] and f(a)f(b) < 0. Starting with
the initial enclosing interval [a1, b)) = [a,b], these algorithms produce a sequence of intervals
{lan, bn)}32, such that

. € [an+1vbﬂ.+1} g [O.n,bn} .C_ e g {alwbll = Eas b]’
Jixxgo(bn —a,) =0.

© Y. Shi, 1996



358 Y. SHI

Let us first- give the definition of efficiency index referred throughout this paper. The
following definitions are also given in [10], where {€,} is a sequence of positive numbers such
that lim e, = 0.

Definition 1.

1. {en} converges with Q-order T > 1 if there are two positive constants m and M such
that me;, < €,+1 S Mgl for all n;

™ o—

2. {€,} converges with R-order 7 > 1 if there are two positive constants m and M and two
sequences {&,} and {n,} that converge to zero with Q-order T such that mé, < €, < M,
for all n;

3. If an algorithm produces a sequence of enclosing intervals {{a,, by]}5%, such that (b, ~a,)
converges to zero with R-order or Q-order T > 1, and if asymptotically k function
evaluations are required in each iteration, then the efficiency index of the algorithm
equals 71/

Obviously, if a sequence converges to zero with Q-order 7 then it also has the. R-order
7. Combining this fact with the above definition, one sees that roughly speaking Q-order
and R-order “equally well” describe the convergence speed of an algorithm. This is why the
efficiency index is universally defined for both Q-order and R-order. The significance of the
effidency index is that it describes the asymptotic average improvement obtained from each
function evaluation. In other words, this is a measure of “gain versus cost”. The purpose of
this paper is to propose new algorithms that achieve higher efficiency index while guarantee
to approximate the root to any given accuracy in finitely many iterations.

Among the algorithms developed in [2—4], the Algorithm 4.2 of [4] has achieved the
highest efficiency index 1.6686... by using the inverse cubic interpolation. Numerical exper-
iments show that these algorithms compare well with the efficient solvers of Dekker [7], Bus
and Dekker [6], Brent [3], and Le [8). The Algorithm 4.2 of [4] has the best behavior in the
experiments. The basic idea of this algorithm, which is described as the Algorithm 1 in this
section, is to repeatedly use the inverse cubic interpolation in Steps 1.3 and 1.5.- In these two
steps, either an inverse cubic interpolation is applied or an approximate quadratic interpolation
in employed. It is proved in [4] that asymptotically the inverse cubic interpolation will always
be applied and thus higher efficiency index is achieved. Steps 1.7 and 1.8 form a double-size
secant step. Together with Steps 1.9-1.11 they guarantee the convergence of the algorithm as
well as a high efficiency index. Please see [4] for details.

Before giving Algorithm 1, let us first list out two subroutines bracket and Newton-Quadratic
that are being called by the algorithm. The inputs a, b, ¢ for the subroutine bracket are such
that ¢ € (a, b), f(z) is continuous on [a. b}, and f{a)f(b) < 0.

Subroutine bracket(a, b, ¢, &, b, d)

compute f(c);

If f(c) =0, then print ¢ and stop;

If fla)f(c)<0,then @=a, b=c, d=1b;

If f(B)f(c) <0, thena=c, b=b, d=a. #

Newton-Quadratic has a, b, d, and k as inputs and 7 as output. f(z) is continuous on {a, b]
and f(a)f(b) < 0. It is also assumed that d & [a,b] and that f(d)f(a) > 0 if d < ¢ and



IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 359

Fld)f(by > 0 if d > b. k is a positive integer and 7 is an approximation of the unique zero z
of the quadratic polynomial

P(z) = P(a,b,d)(z) = fla) + fla,b}{z — a) + fla,b.d](z - a)(z ~ b)

in [a,b] where
fla,b = (£(0) = f(@))/(b~a)
and
fla,b,d] = (f[b,d) - fla,b])/(d - a).
Note that P(a) = f(a) and P(b) = f(b). Hence P(a)P(b) < 0.

Subroutine Newton-Quadratic(a, b, d, T, k)
Set A= fla.b.d], B = fla.b];

If A=0, then r =a— B~ }f(a):

If Af(a)> 0, then 5 = a, else 75 = b;
Fori=12.....k do:

Plria1) _ P(ri-1)
=Tl ™
P’(rl_l) ’ B+ A(2r;_) —a—~b)

T = Fi—y

T =T #

We are now in the position to describe the following Algorithm 1.
Algorithm 1 (Algorithm 4.2 of [4]).
11 seta;=a, by =b ¢ =ay;— flay, b fla);
1.2 call bracket{ay, b1, c1, Gy, b2, d2);

For n=2,3,... do

13 ifn=2orifn>2but Myylfi = f;) = 0 (where fi = f(an). fo = Fbu). fo = F(d).
fa = flen)) then call Newton-Quadratic(an, by, dy, ¢y, 2) and goto Step 14,

Otherwise compute ¢, = IPy(0) where IPi(y) is the polynomial obtained by the inverse
cubic interpolation at the points (an, f(@n)), (b, f(bn)). (dn, f(d,;)), and (e, flen)).
If (cn — an)(cn = bn) = 0, then call Newton-Quadratic(ay,, by, dy, €. 2). Goto Step 14.

14 set €, = dy, call bracket(an. by, Cn, Gns by, dfn);

L5 if Tlig;(fi— f3) = 0 (where fi = f(@n), fo= f(by), fs = fdy), and fy = f(&,)) then call
Newton-Quadratic(@n, by, dn, Cn, 3) and goto Step 18.

Otherwise compute &, = I P5(0) where IP(y) is the polynomial obtained by the inverse

cubic interpolation at the points (@s, f(@n)), (bu, F(B0)), (dy. F(dn)), and (&, £(En)).
If (&, = @n){Er — by) = 0, then call Newton-Quadratic(G., b, s &9, 3). Goto Step 1.6.

16 call bracket(a,, b,,, Gy By, bn,dn);
L7 if [f(@a)] < |f(Bn)l, then set up = G, else set t, = by;
18 st & = un — 2f[an, ba) ™! f(un);



360 Y. SHI
19 if |&, = un| > 0.5(by ~ @), then &, = 0.5(bp + @), else &, = &;
1.10 call bracket(Gn, bn, &, Gn, bn, dn);

L1 if by = G < plbn — an), . i
then Un+1 = &m bn+1 = bﬂ.: de-l = dm €n+l = dn»

else .

Enyl = dm

call b"’uCket(&na b'rh 05(&11. + 5‘n)v Qn+1, bn-}-lv dn+1)1
endif. #

The idea used in Algorithm 1 to achieve the higher efficiency index is to employ the
inverse cubic interpolation instead of classical linear or quadratic interpolations whenever pos-
sible. Thus it becomes interesting to study the possibility of improving the efficiency index by
applying higher order inverse interpolations. In this paper, we propose a class of enclosing
algorithms which, in the n-th iteration, uses all the function values computed in the previous
iteration as well as those already computed in the current iteration to form an inverse inter-
polation with the highest possible order. With a user-given accurary € and starting with the
initial interval [ay,b1] = [a,b], these algorithms guarantee to find in finitely many iterations
an enclosing interval [an, by} that contains a root of the equation and whose length b, — a, is
smaller than €. The optimal algorithm of this class has achieved the efficiency index 1.7282...
The algorithms are presented in the next section. In Section 3 the results on efficiency index
are derived. Numerical experiments are reported in Section 4.

2. Algorithm

In this section we present a class of algorithms, universally described as the following Algo-
rithm 2, for enclosing a root z. of (1) in an interval [a, b], where f(z) is continuous over [a, 8]
and f{a)f(b) < 0.

The basic idea used in Algorithm 2 is that in the n-th iteration, the algorithm uses all
the function values computed in the (n — 1)-th iteration as well as those already computed
in the current iteration to form and apply, whenever possible, the corresponding high order
inverse interpolation. When that is not possible, an approximate quadratic interpolation is used
by calling the subroutine Newton-Quadratic described in Section 1. It is proved in Section 3
that asymptotically the inverse interpolation will always be applied and thus a high efficiency
index may be achieved. This idea is implemented in Step 2.3. Each algorithm of this class is
associated with an integer parameter k such that k& > 4. At the n-th iteration when n > k, the
inverse interpolation {or an approximate quadratic interpolation, but asymptotically always the
inverse interpolation) is repeated for k£ — 3 times. A more detailed discussion is provided after
the presentation of Algorithm 2. The algorithm also needs to call the subroutine bracket. There
is another parameter y such that u € (0, 1), usually chosen as . = 0.5. For convenience, let us
give the following definition.

Definition 2. Suppose x), T, ..., T; are j distinct values and so are the function values f(z},
f(z32),..., f(z;). Suppose IP(y) is the polynomial of degree j — 1 obtained by the inverse
interpolation at the points (21, f(z1)), (z2, f(Z2)),- .., (x5, flz;)). We say that Z is obtained
by the inverse interpolation at x1, Z3,..., T; if

z = IP(0). (2)



IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 361

We also need to introduce some notations used in Algorithm 2. In the following Algo-
rithm 2, the current enclosing interval at the begining of a general iteration, say n-th iteration
with n > k, is denoted by [@n, bs]. After Step 2.3 an intermediate interval @y, bs) is obtained.

Then at Step 2.7 we get [an,b,]. From that we obtain [@ni1,bns1] at Step 2.8. They satisfy
that

[an+11 b’n+1} g {&m Z;n} g {C—i‘m En] g [am bn]

More notations such as a{, b{¥), d¥¥) are used in Steps 23 and 29. Here a{) and b satisfy
that

[Gn, Ba] = [al2,552) C - C [, 6] = [an, bu]

while d{ are generated in the procedure for use in the next iteration as explaned after the
presentation of the algorithm.

Algorithm 2,

21 setay=a,by=b ¢ =a;— flar)/fla, b
2.2 call bracket(ay, by, ¢1, as, by, d);
For n = 2,3,... execute Step 2.3 through to Step 2.9:
2.3 execute the computations below:
231if n =2 then
call Newton-Quadratic(az, b, d(ll) , temp, 2);
call bracket{as, by, temp, B, b, dgl)};
goto Step 2.4;
232if n =23 then
if flas), fbs), F(dY), f(d?) are distinct and if Z obtained by the inverse inter-
polation at as, b3, d&”, d?) satisfies Z € (as, b3), then temp = Z. Otherwise cail
Newton-Quadratic(as, bs, df), temp, 2);
call bracket{ag, bs, temp, G, Bs, d;(,l} Y
goto Step 2.4;
233iF 3 <n<k—1 then set asf) = Gy, bﬁf) = b, and dﬁ,o) = df:f_—lz),
Fori=1,2,...,n—2 do
if faf), FOD), F(dD) (= F(dTT)), FED),..., FE), fdh), f(d‘“‘”)
are distinct and if £ obtained by the inverse interpolation at a(‘), N ), dg")(
dmDy, d . gD gAY satisfies that E € (o, b)), then temp = .
Otherwise call Newton-Quadratic(a?, b, d=, temp, 2);
call bracket(al®), b, temp, ali+D), pi+D, gD,
end do;
&n = a7, b, = bV, goto Step 24;
234if n >k then set al) = a,, b) = by, and d© = d¥72.

Fori=1,2,...k—3 do:
it F(a®), FOE), F(dO) (= FED)), FD),..., FEE), FdR), ..., FESSY)



362 Y. SHI

are distinct and if Z obtained by the inverse interpolation at a{¥, b)), d(® (=
d* M, d, ., dé-v, dl,, ..., d¥ satisfies that & € (a),b9), then temp = .
Otherwise call Newton—andmtic(aﬁf), bﬁf), dﬁf"l), temp, 2);
call bracket (al), b, temp, ali+1), pU+Y | D),
end do;

an = a§{°“2>, b, = bﬁf”z), goto Step 24;

o
S

i 1) < 17 (Ba)l, then set i =, else st 1 =B

set & = Un — 2f[Gn, gn]qlf(un)?

if & = tn] > 0.5(bp — @n), then &, = 0.5(by + Gn), else &, = &p;
call bracket(Gin, b, én, Gn, bn. dn);

if by — @ < by — an),
then Gai1 = Gn, bpy1 = by,
else.
call bmcket(&m bn, OS(&,—,, + bn), Apals b,H.}, dﬂ),
endif;
29 ifn=2 set d? =dy,
if3<n<k—1,set dr=D=d,

if >k, set dt? =d,. #

PP b ko
oo -1 Oy Wt

We see that Step 2.8 guarantees that

brti — Gn+1 P'l(bn - an) (3)

with p; = max{y, 0.5} < 1. Hence, either a root of (1) is found in a finite number of iterations,
or there is a root Z. of (1) in [a, 8] such that

Zu € [Gn41,bns1] © [@n, 0n) € -+ C [01, 53] = [a,})] (4)
and
bn - an — 0 (5)

with at least linear convergence. In this case, for any user-given accuracy &, the algorithm
obtains in finitely many iterations an enclosing interval [a,, bn] such that b, — a, <.

At the end of the n-th iteration when 3 < n < k~1, n+ 1 points (an+1, f(Gnr1))s
(Bns1, F(bns1))y (@D, F(dI), ..., (@Y, f(d*V)) are available for the use in the next
iteration. They satisfy that

{a")‘hbﬂ-} g {a"n-'l—lvbn“i-lldsll)'l-"1d$1n_1)}1 (6)
{an-i-l, bn+1: d-ggl)1 vy d&n—l)} g {am bn} (7)

and

A9 & [ans1, bosa], Vi=1,2,..,n-1 ®



IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 363

Therefore at the begining of k-th iteration, k points (ag, f(ax)), (bk, f(by)), (dml,f(d(l)]))
(@2 £(d*=P)) are available, for which-(6)—(8) hold with n = k — 1.

Starting with k-th iteration, Algorithm 2 computes only k — 3 points at Step 2.3 in each
iteration. Therefore at the end of the n-th iteration when n > k, k points (@n+1, f(@n+1)),
(Brs1s F(Bni1)), (dD, F(dD)), ..., (dF=2, F(d¥~P)) are ready to be used in the next iteration.

(6)—(8) remain true if we replace d®~V by d{*=?. To sum it up, in the n-th iteration when
n >k,

(0 k points (an, F(@n), (ba, F(B)), (dS2y, FL)), -, (557, F(AUS)) are carried over
from the previous iteration;

(I) k — 3 new points are computed in Step 2.3, each is obtained, whenever possible, by using
the inverse interpolation at the k carried-over points as well as the points already computed
in Step 2.3 of the current iteration;

(I1I) One new point is computed in Steps 2.7-2.9. This point may cost an additional function
evaluation at Step 2.8. However, in next section we will show that when 7 is big enough,

b = Gn < lbn — an)

always holds. Therefore, asymptotically Algorithm 2 requires only k—2 function evaluations
per iteration;

(IV) The points (an, f(an)), (bn, f(bn)), plus the k — 2 points computed in the n-th iteration,
form the group of k points:

(an-i—h f(an+1)>) (bn+11 f(bn+1))1 (détl)v (d;n)L ey (d%k—‘l)’ f(ds'zk—z)))

for the use in (n + 1)-th iteration.

3. Efficiency index of Algorithm 2

In this section we show that under certain smoothness assumptions the asymtotic efficiency
index of Algorithm 2 is

o= [(b-9)k-2/4+1/2+ \/(k——3)(k-2)+((k_3)(k_2)/4+1/2)2}&5 o

for each integer k > 4. We will also show that Iy < I5 for all £ 2 4. Hence k =5 yields
the optimal procedure of this class, achieving the efficiency index 5 = 1.7282... In this case
at most four and asymptotically only three funcnon evaluations are needed in each iteration.
The total number of function evaluations thus will be bounded by four times of that needed
by the bisection method.

In the rest of this section, the following assumptions (A), (B), and (C) are assumed to be
true.

(A) f(z) is continuously differentiable in [a,b] and f(a)f(b) < 0.
(B) z. is a simple zero of f(z) in [a,b].



364 Y. SHI

(C) Algorithm 2 does not terminate after a finite number of iterations. (4) and (5), plus
assumptions (A) and (B), then imply that f'(z) # 0 in [a,b,] when n is big enough.
Therefore without loss of generality we assume that f'(z) # 0 in [a,b].

We first prove the following Lemma 1.

Lemma 1. Under assumptions (A), (B), (C), also assume that f(z) is j times continuously
differentiable in [a,b]. Suppose {zi,...,z;} C [a,b] and also suppose that I is obtained by
the inverse interpolation at x1,...,x;, then there is a constant number M;, independent of
Zi,.... %, such that

|12 - z.| < M| ()] .. - |f(z5)l. (10)

Proof. Since we assume that f'(z) # 0 in [a, 8], the inverse function f~}(y) exists for y € f([a, b])
where f([a,b]) stands for the image of [a,b] under the function f(z). It is clear that for all

y = f(z) € f([a,B]),

Ul = e
) = 5
e /"(z)
)" = Ty
For [ < j, suppose
O

(f'(z))#-
where P(z) is a polynomial of f'(z), f'(x),-.., fO(z). Then

fe)Pi(z) - @L-1)f"@)P(z) _ Pl
(f'(x})z”l (f:(z))z(l-e-l)—l

with Py;1(z) being a polynomial of f/(z), f'(z),..., f**}(x). Hence by induction we see that
for any y = f(z) € f([a,d]), [f " (y)]") exists and
Py(z)

10 = 23E)
7wl = e (1)

where P;(z) is a polynomial of f'(z), f"(z),...,f9(z). Since f(zx) is j times continuously
differentiable, above arguments indicate that f~(y) is also j times continuous in f([a,b]). The
facts that z. = f~}(0) and Z = IP(0) (where I P(y) is the inverse interpolation polynomial at
Z1,...,Z;) imply that

[fH )t =

1Z — z.| < Mj|f(z)]. . .| f(z5)]
with
;= (e [(£70)19]) /).
(10) is therefore proved. ]

Lemma 2. Under assumptions (A), (B), (C), also assume that f(z) is 2k — 4 times continuously
differentiable in {a,b]. Then there is an v > 0 and an integer N > k such that the high order



IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 365

inverse interpolations are always used at Step 2.3 of n-th iteration when n > N, and that the
U, obtained at Step 2.4 satisfies that

}f(un)! S T(bn - an)a(bn—l - an—l)ﬁv Vn 2 N (12)
with o = E3E=D 11 and B = (k - 3)(k - 2).

Proof. Consider n >k and i € {1,2,...,k — 3}. Since we assume that f'(z) # 0 in [a, 8], f(z)
is monotone and thus all the function values involved in Step 2.3 are distinct. Therefore we
only need to prove that when n is big enough

Z e (@0), Vvi=12.. .,k-3 (13)
where Z; is obtained by the inverse interpolation at a{), b{), 40 (= d= 2, dh, L, deY,

df’l.l—)-h *y dnk_ls)
By Lemma 1 we see that
B =2 € Misinl F@@) OO /(D) 1£(dD)]....|F(dSD)
x | F2)] 1 F () |
= M f@FEDNF (@] 1 F(d )

1 FEARD] - FEE £ (D)
A4§+i-lnmk+t l(bn "'am)z+1(,n—l‘— an—l)k«Z (14)

IA

where m = rx(xa,égbl f'(z)|. Since z. € (a,b) and b, — an converges to zero, (14) implies that
a<z<

there is an Ny > & such that when n > Ny, % € (a,b) for all ¢ = 1,2,...,k — 3. It then
follows that

[f(@)] = 1£(&) - flz.)] S miZ; - z.].

Therefore, when n > Ny, forall i =1,2,...,k~ 3 we have

1F(Z3)] € Micriam* ™7 (b = an) (b1 — an-1)" 71 f ()] (15)
and
(@] € Miaioam* 7 (ba = @a) (bnr = an-2)* 2 F (B (16)
From (13) and (16) we see that there is an N > Np such that when n > N
|f(#)] < min{|f (@), FON}, Vi=12,....k-3. (17)

(13) follows immediately because f(z) is monotone on {a, b].

We now show that (12) holds when n > N. Let us consider Step 2.3 of the n-th iteration
for n > N and apply induction on 1.

For 1 =1, (14) indicates that
I:E}. - I'.‘! S Mkmk(bn - an)z(bn—l - a'n—l)k‘—z‘
Therefore

Mm** by = an)*(ba-1 = Gn-1)* 72
T (bn - an)z(b -1 an—l)k“z (18)

=
51
IA

i



366 Y. SHI

where 71 = Mym**t! > 0.

Similarly,
[f(Z2)] < miZs -2
< 1\/[k+1m"+1(bn - Um)z(bn-l - an—l)k“z‘f(il)l
< 1a(bn = an)*(bno1 — py)**7Y (19)

where 13 = 1My mFl > 0.
Suppose for 2 <! < k — 3 we have that

!f(jl)l S Tl(bn _ an)(2-+»2+3-{--~+£)(bn_1 _ an__l)t(lc*Z) (20)
for some 7; > 0, then
[fE)] £ miTe ~
< mMeul f@E) | FEEDNFED)]. A FED A2 F )]
< Mium® by = an) (bner — an-) ¥ f(2))]
< Tl+1(bn - an)(2+2+3+~~+£+(t+x))(bn_1 - an_l)(£+1}(k~2) (21)
with 114y = r My m** > 0. Here we notice that Z; € {al*V, oD g, .. 4B},

Therefore, by induction we see that there is an 7 > 0 such that when n > N

FEa)l S (b= an) B2 Iy — g )
= T(bn - an)"‘(bn__l - an-l)ﬂ (22)

where o = [(k — 3)(k—~2)]/2+ 1 and 3 = (k - 3)(k - 2).
From Step 2.3 of Algorithm 2 we see that Z4_3 € {@n,b,} when n > N. From Step 2.4
we see that |f(ua)| = min{|f(@n)], |f(ba)|} for all n. Therefore |f(u,)| < |f(Zk-3)| forn > N
and (22) thus implies (12). 0
The following Lemma 3 is adopted from Alefeld and Potra [2], and the same proof in [2]
applies.

Lemma 3 (see Alefeld and Potra [2]). Under assumptions (A), (B), (C), there is an n, such that
for all n> ny, &, and u, in Step 2.5 satisfy that
f(@n) f(un) < 0. (23)

We are now ready to prove the assymptotic convergence property of Algorithm 2.

Theorem 1. Under the assumptions of Lemma 2, the sequence of diameters {(b, — an)}pe, of
the enclosing intervals produced by Algorithm 2 converges to zero, and there is an L > 0 such
that

brsr — ns1 < Loy = 0p)%(bp-1 — @n1)?, ¥R =2,3,... (24)

where a. = [(k — 3)(k - 2)]/2+1 and § = (k — 3)(k — 2). Moreover, there is an ny such that
for all n > ny

Py

Gn+1 = Gn and  bpiy = by

Hence when n > ng, Algorithm 2 requires only k — 2 function evaluations per iteration.



IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 367

Proof. Let us recall that in this section we assume without loss of generality that f'(z) # 0 for
all z € [a,b]. Thus we may assume that

my = mig |f(z) > 0.
Consider the integers N of Lemma 2 and n; of Lemma 3. Let np > max{N,n;}. Then by
Lemma 3, (23) holds when n > nz. From Steps 2.5—2.7 of Algorithm 2 and the fact that
U, Cn, € By, bp] we see that
b= o < [En —unl, Y0 > g (25)
From Step 2.5 we also see that
|En = tnl = 12 (@0, b 7 ()] S 1 ()] (26)
25), (26), and (12) now imply that
A e (27)
Since {{bn — a.)}; converges to zero, if ny is large enough then
bp — Gn < plbn — as), V0> mny.
This shows that for all n > n»
Ope1 = 8y and  bpyy = An‘

Finally (24) follows by using (27) and taking

2r (bps1 = Gny1) }
L > max { —, sn=2,3,...,ny}.
- {ml (bn - an)a(bn—l - an—l)'6 :
The proof is therefore completed. g

Corollary. Under the assumptions of Theorem 1, {(bn — a.)}%, converges to zero with an
R-order at least /2 + /B + o*/4 where

a=[k-3)(k=-2)/2+1

and
B =(k-3)(k-2).
Since asymptotically Algorithm 2 requires k — 2 function evaluations per iteration, its efficiency
index is
1
L = (a/2+yB+ a2/4) F-3

1

[(k —3)(k-2)/4+1/2+ (k- 3)(k-2) + (k—3)(k— 2)/4+ 1/2)2}m. (28)

b

Proof. By Theorem 1, {£,}52, converges to zero and for all n=2,3,...
Eni1 & Lsﬁeﬁ_l.
The result follows by invoking Theorem 2.1 of [10]. a

The next theorem indicates that the optimal procedure of this class of algorithms repre-
sented by Algorithm 2 is obtained when k = 5. In this case, at most four and asymptotically
only three function evaluations are needed in each iteration, and the efficiency index is

Is =1.7282. ..



368

Theorem 2. Let Ij; be as given in (28). Then Iy < Iy for all k > 4.

Proof. For x > 4, consider

Liz) = (z-2)(z—-3)/4+1/2
b(z) = y(z-2)e-3)+L(=)?
hiz) = hiz)+liz)
and 1
9(z) = —In(h(z)).

Y. SHI

Then I, = exp(g(k)) for all kK > 4. It is easy to see that h{z) > 1 for all z > 4 and

In{(h(z}) > 5/2 for all £ > 8. Hence when z > 8,

v _ (z=2(z-3) (z-2)% (x-2)(2z-5)  (z-2)(2z-5)li(z)
(z -2k () = 4 T T T 4l (z) 1
< (z-20(z-3) (r—-2)? 2z-2)(2zx-5) (z-2)(2z~-5)
= 2 T @-2)(z-3) 1
= (x——2)(a:—3)+x;2+4+x33
1 9
S E-2E-3+ o Y o T o)
< He-2e-3)
< 511(1‘)
5
< '2'}1(:8)
< h(z)In(h(z)).
Therefore
g(z) = (z - 2)}2;(;? ;)thiz)ln(h(x)) <0, vVz>8 (29)
(29) implies that I <'Ig for all k£ > 8. Direct calculation shows that
Is = max{Iy; k =4,5,6,7,8}.
The theorem is thus proved. ]

4, Preliminary numerical experiments

The numerical results reported in [4] show that Algorithin 1 has the best behavior in comparison
with several widely used equation solvers such as the algorithms of Dekker [7], Brent [5], Bus
and Dekker [6], and Le [8]. In this section we present some._preliminary numerical experiments
comparing Algorithms 1 and 2 with k = 5. The parameter 4 was chosen as 0.5. The machine



IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION

369

# function f(z) {a,b] parameter
1 sinz-z/2 [/2,7)
2 -2T(2 -5 (e - ) [an, bu]
a, =n?+107°
by = (n+1)2=10"° n=1(1)10
3 aze” {-9,31] a=-40,b= -1
a=-100,b= -2
a=-200b=-3
4 z"-—a [0, 5] a=021n=4(2)12
[~0.95, 4.05] a=1n=8(2)d
5 sinz-0.5 [0,1.5]
6 2re™™ -2+ 1 0,1 n = 1(1)5,20(20)100
7 14 (1-n)z-(1-nz) 0,1] n=5,10,20
8 z*-~(l1-z) {0,1] n=2,5,10,15,20
9 [1+(1-n)lz~-(1-nz) [0,1] n=1,2458,1520
10 e"e(z- 1)+ 0.1 n=1,5,10,15,20
11 (nz-1)/{(n-1)z) {0.01,1] n=2,51520
12 g% —n* 1, 100] n = 2(1)6,7(2)33
13 { o fz=0 (~1,4]
Te~* otherwise
14 { x5 tsina—1) fz20 (—10¢,7/2) n = 10,20, 30, 40
% otherwise
e —1.859 if x> 220
15 { e=¥E0' 1850 ifze (0,2 [-10%,107 n = 20,30, 40

~0.859

fz<0

n = 100(100)1000

Table 1. Test problems

used was AT&T 3B2—1000 Model 80, and double precision was used. The test problems are
listed in Table 1. The termination criterion was the one suggested by Brent {3}, ie.

b—a<2-tolela,b)

where [a,b] is the current enclosing interval, and

tole(a, b) = 2 - |u| - macheps + tol.

(30)

Here u € {a,b} such that |f(u)| = min{|f(a)], |f(b)|}, macheps is the relative machine precision
which in our case is 1.9073486328 x 107, and (ol is a user-given nonnegative number.

Due to the above termination criterion, a natural modification of the subroutine bracket
was employed in our implementation of the two algorithms. The modified subroutine is as

follows.



370 Y. SHI

Subroutine bracket(a, b, c, @, b, d)
set 6 = X - tole(a, b) for some user-given fixed XA € (0,1) (in our experiments we took
X =0.7).
if b~ a < 48, then set ¢ = (a + b)/2, goto 10;
if ¢ < a+ 26, then set ¢ = a + 26, goto 10;
if ¢ > b— 26, then set ¢ = b — 26, goto 10;

10 if f(c) =0, then print ¢ and terminate;
if f(a)f(c)<0,thena=a, b=c, d=1b;
if f(b)f(c) <0, then @ =g, b=b, d=a;
calculate tole(a, b);
fb—-a<2- tole(a, 1-7) then terminate. #

We tested all the problems listed in Table 1 with different user-given tol (ol =
10-7,1071°, 10715, and 0). The total number of function evaluations in solving all the prob-
lems (100 cases) are listed in Table 2. From there we see that the performance of these two
algorithms are well comparable, and the behavior of Algorithm 2 is slightly better than that of
Algorithm 1.

We also tested two special problems. In one problem,
flz)=2" and [a,b]=[-1,10] (31)

with n being 5, 7, 9, 11, 13, and 15. In this case, the root z, = 0 is not a simple root. Hence
the assumptions in Section 3 are not satisfied. Another problem is that

flz)=z"" -1 and [a,b]=]0,10] (32)

with the same values of n. Now z, = 1 is a simple root and f™'(y) = (y+1)" is a
polynomial. All the assumptions of Section 3 are satisfied in this case. In both of those two
cases, Algorithm 2 works much better than Algorithm 1. The corresponding numerical results
are listed in Table 3 and Table 4.

In order to show the effectiveness of “improving efficiency index”, we list in Table 5
the following numerical results: for Problem 15 with n = 40 (listed in Table 1) and tl =
1077, Algorithm 2 uses 31 function evaluations to obtain an enclosing interval that meets the
termination criterion (30) while Algorithm 1 uses 32 function .evaluations. Both algorithms
start with the same initial interval whose length is about 10000. After using 21 function
evaluations, Algorithm 1 obtains an enclosing interval with length 0.1104E—~2 (here 0.1104E-2
stands for 0.1104 x 10~2, and similar notations are also used below), and Algorithm 2 gets one
whose length is 0.1021E—2. Table 5 lists the length of enclosing intervals obtained after each
function evaluation, starting with the 21st function evaluation, upto the termination under the
criterion (30). The results reconfirms the fact that “improving efficiency index” increases the
ASYMPTOTIC AVERAGE improvement obtained from each function evaluation.

As a conclusion from our preliminary numerical experiments, we see that in general
Algorithm 2 is very well comparable to Algorithm 1. We have also considered two special cases:
Problem (31) whose solution is not a simple root and thus the assumptions in Lemma 1—
Corollary are not satisfied, and Problem (32) where all assumptions in Section 3 are satisfied.
In both cases Algorithm 2 works much better than Algorithm 1. From Table 5 we also
see that with a higher efficiency index, the Algorithm 2 does have a higher asymptotic



IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 371

tol 1077 107 1078 0
Alg 1 1480 1555 1609 1631
Alg. 2 1462 1529 1597 1627

Table 2. Total number of function evaluations in solving all the problems listed in Table 1

tol 1077 10710 1015 @
Alg.1 470 636 895 2143
Alg. 2 385 482 735 1713

Table 3. Total number of function evaluations in solving problem (31) with n = 5.7,9,11,13,15

w107 1070 10°® 0
Alg. 1 78 8 87 87
Alg.2 72 13 T4 T3

Table 4. Total number of function evaluations in solving problem (32) with n = 5,7,9,11,13,15

function evaluation Algorithm 1 Algorithm 2

21st 0.1104E-2 0.1021E-2
22nd 0.4205E-3 0.5107E-3
23rd 0.1716E-3  0.1946E-3
24th 0.8580E~4 0.7926E—-4
25th 0.4064E—4  0.3963E—4
26th 0.2919E—-4  0.3180E-4
27th 0.9509E~-5  0.1914E-5
28th 0.5009E~5  0.4862E-6
29th 0.4914E-5  0.2390E-6
30th 0.2234E--8  0.2380E~6
31st 0.1175E~8  (0.1400E-14
32nd 0.1400E-14

Table 5. Length of enclosing intervals obtained after each function evaluation in solving
Problem 15 with n = 40 and tof = 10715, starting with the 21st function evaluation, upto the
termination

AVERAGE convergence speed. We wish to mention that Algorithm 2 uses the fifth order
inverse interpolation to achieve a higher efficiency index than Algorithm 1 which uses the
third order inverse interpolation. Both algorithms require at most four function evaluations
per iteration and asymptotically only three. Since a function evaluation usually costs much
more than the computation of Z = I P(0) defined in (2), Algorithm 2 in general will not have
a higher computational complexity than Algorithm 1 does.

Finally, we notice that our analyses in Section 3 indicate that Algorithm 2 achieves the
efficiency index 1.7282... when the function f(z) is six times continuously differentiable. In
[4], it is proved that in order for Algorithm 1 to achieve the efficiency index 1.6686... the



372 Y. SHI

function f(z) only needs to be four times continuously differentiable. This makes Algorithm 2
seem more restrictive than Algorithm 1. Fortunately, both algorithms guarantee the linear
convergence shown in (3) as long as f(z) itself is continuous. Our experiment with problem
(31) also show that Algorithm 2 may perform better than Algorithm 1 even if the assumptions
in Section 3 are not satisfied.

Acknowledgement

The author would like to thank the referees for their valuable comments and suggestions.

References
[1} Alefeld, G. and Potra, F. A. On two higher order enclosing methods of J. W. Schmidt. Z. angew.
Math. Mech 68 (8) (1988), pp. 331—337.

{2] Alefeld, G. and Potra, F. A. Some efficient methods for enclosing simple zevos of nonlinear equations.
BIT 32 (1992), pp. 334—344.

[3] Alefeld, G., Potra, F. A, and Shi, Yi. On enclosing simple roots of nonlinear equations. Mathematics
of Computation 61 (1993), pp. 733—744.

[4] Alefeld, G., Potra, F. A., and Shi, Yi. Enclosing zeros of continuous functions. TOMS 21 (1995),
pp- 327-344.

[5] Brent, R. P. Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs, New
Jersey, 1972.

[6] Bus, ]. C. P. and Dekker, T. J. Two efficient algorithms with guaranteed convergence for finding a
zero of a function. TOMS 1 (1975), pp. 330—345.

[7] Dekker, T. J. Finding a zero by means of successive linear interpolation. In: Dejon, B. and
Henridi, P. “Constructive Aspects of the Fundamental Theorem of Algebra”, Wiley Inter-
science, 1969.

[8] Le, D. An efficient derivative—free method for solving nonlinear equations. TOMS 11 (1985),
pp- 250—262.

[9] Ostrowski, A. M. Solution of equations in Banach spaces. Acedemic Press, New York, 1973.

[10] Potra, F. A. On Qorder and R-order of convergence. . Optim. Theory Appl. 63 (1989), pp. 415—
431

Received:  December 1, 1995 Department of Mathematics and Computer Science
Revised version:  June 27, 1996 Bloomsburg University of Pennsylvania
Bloomsburg

PA 17815

UsA



