
Reliable Compu t ing 2 (4) (1996), pp. 357-372

Improving the efficiency index in enclosing a
root of an equation
Y~XUN S~

Recently several algorithms have been deveh|ped which achieve high e|tMent:y index in enclosing a na~t
of the equati|m f (x) = 0 in an interval [a, b] ,ver whk:h f (x) is continu|ms and f (a) f (b) < 0. The
highest efficiency index, 1.6686 was achieved in [4] using the inveme cuhic interl~|latitat. This paper
studies the po.~sibility of impr|wing eftlciency index by using high order inverse interpolations. A cla.~s of
algorithms are presented and the optimal |me |ff the clags has achieved t|*e efficim~cy index 1.7282...
With a user-given accurary e and starting with the initial interval [a~, bt] = [a, hi, these algorithms
g~mrantee to find in finitely many iterations an end|ruing interval [an,bn] thai ~a|ntains a ~ t of the
equati|m and who~ length b n - an is smaUer than e. Numerk.~d experiments indicate that the new
algorithm perfi|rms very well in practice.

I]0BblmeHHe
HaX0>KheHm I
l ~ c y ~ III~

 HAeKca
0LIeHKtl K0p ypaBneami

S iloGlellltee gpeM/.l 6M210 pa3patSoTarlo HecgoJIbg(} a/n'opH'rMoB, i|o:ll~):|illOll|t|x j|l)(:'|'ntlb lihl{'.ogoro }llt-

1tezca M/~gra~aocm np~t waxo~eana ,ueag~t g, Vaa ypatiaemta f (x) = 0 , aaTepBaae [a, b], .a
goxopou dpyazua, f (x) .enpepuaaa u f (a) f (b) < 0. H : , . ay . .n .n . . . eKe ~,lxlbe~'nma,~rr., p a a a ~
1.6686..., 6~a aocrarHyv ~ paCk~/e [4] c m:aoab~.t~mtte,~t ~xfip;rra.~ gygw~ecg.;I ~aTepn~mamm. B
8ac'n)smef~ pa&lre ttccaeltye'l'Ca Bil3MOXKHllL'Tb lt~'121bltefllllel'O y'lytlllleltll~l lllt/leg{~l :}I~eKTIIBttI}CTll (:

IICIIO2Ib3OBaHHeM (ffipaTHOfl tlH'repnoJlgRtti~ ~ a e e sbtCogoro IIO1)Hltga. I'Ipencras~teH g:tacc a2m~puvMoB,

Har*ay,~m**~ npeacramn'eab gov.p.r, a,~'m~,er tlltllegca :}I~f~eKT}IIt, Itf|CT|I 1.7282 . . . Ha,~an c IICXO/Iltl}-
,'. mrrep-;,aa [a l , bz] : [a, hi, ~'nt aa,'opn'r.~b, ,ap;,HTnl~,-;,am, aax- .a ' r :mg, me.m.e re,ca, mepa,nff~
ag.mo~as~m~ft ~mTepnaa [an, bn]. c|mep~gmms~ g.perm ypa~em|a , m.a mnpnna bn - an ae Hl~=a~nra-
eT 3R/IRFII-IOI:I llO.rllb3OBaTe/leM Be2lltqlnlbl IIor'pelnll |}CTll ~. LII, R:IIeHHIge :}gf:llel)l.~MellTbl llogaabnNllOT~ tiT|}

IIpOtI3NIrtttTC/INItOCTh llaHltOl'O aJlropl.iTMa Ha ItpagTlttlt2l:gllX 3a2taqax 21|RTFWI'O~IH¢} Be,ltlga.

1. Introduction
Recently several a lgor i thms have been developed in [2 -4] which achieve high efficiency index,

in the sense of Ostrowski [9], in enclosing a root x . o f the equat ion

f (x) - 0 (I)

in a n interval [a, b], where f (x) is con t inuous over [a, b] a n d f (a) f (b) < 0. Star t ing with

the initial e n d o s i n g interval [al , hi] = [a, b], these a lgor i thms produce a sequence of intervals
b ~o {[a,~, '~]}n: l such that

l im (b,~ - a,~) = 0.

@ Y. 8hi, 1996

358 Y. SHI

Let us first give the definition of efficiency index referred throughout this paper. The
following definitions are also given in [10], where {e,} is a sequence of positive numbers such
that lira e,~ = 0.

n ~ O O

Definition 1.

I. {en} converges with Q-order 7" > 1 i f there are two lx~sitive constants m and &l such
< < Me~ for all n; tahat m E n ~n+l _

2. {~n} converges with R-order r > 1 if there are two positive constants m and M and two
sequences {~,~} and {r/n} that converge to zero with Q-order 7" such that rn~ < ~,~ <_ Mr~n
fbr all n;

3. / f an algorithm produces a sequence of enclosing intervals { [an, bn] },L°¢_- 1 such that (b,, - an)
converges to zero with R-order or Q-order 7" > 1, and i f asymptotically k fimction
evaluations are required in each iteraton, then fl~e dticiency htdex of the algorithm
equals 7"1/k

Obviously, if a sequence converges to zero with Q-order r then it also has the. R-order
7". Combining this fact with the above definition, one sees that roughly speaking Q-order
and R-order "equally well ~ describe the convergence speed of an algorithm. This is why the
efficiency index is universally defined for both Q-order and R-order. The significance of the
efficiency index is that it describes the asymptotic average improvement obtained fi'om each
function evaluation. In other words, this is a measure of "gain versus cost". The purpose of
this paper is to propose new algorithms that achieve higher efficiency index while gtmrantee
to approximate the root to any given accuracy in finitely many iterations.

Among the algorithms developed in [2-4], the Algorithm 4.2 of [4] has achieved the
highest efficiency index 1.6686... by using the inverse cubic interpolation. Numerical exper-
iments show that these algorithms compare well with the efficient solvers of Dekker [7], Bus
and Dekker [6], Brent [5], and Le [8]. The Algorithm 4.2 of [4] has the best behavior in the
experiments. The basic idea of this algorithm, which is described as the Algorithm t in this
secdon, is to repeatedly use the inverse cubic interpolation in Steps 1.3 and 1.5. In these two
steps, either an inverse cubic interpolation is applied or an approximate quadratic intertx~lation
in employed. It is proved in [4] that asymptotically the inverse cubic interpolation will always
be applied and thus higher efficiency index is achieved. Steps 1.7 and 1.8 form a double-size
secant step. Together with Steps 1.9-1.11 they guarantee the convergence of the algorithm as
well as a high efficiency index. Please see [4] for details.

Before giving Algorithm 1, let us first list out two subroutines bracket and NeTvton-Quadratic
that are being called by the algorithm. The inputs a, b, c for the subroutine bracket are such
that c E (a, b), f (x) is continuous on [a, hi, and f (a)y(b) < o.

Subroutine bracket(a, b, c, d, b, d)

compute/(c);
If f(c) = 0, then print c and stop;

I f f (a) f (c) < o, then rz = a, ~ = c, d = b;

If f (b) f (c) < O, then ~ = c, b = b, d = a. #

Newton-~uadratic has a, b, d, and k as inputs and r as output, f (x) is continuous on [a, b]
and f (a) f (b) < O. It is also assumed that d ~ [a,b] and that f (d) f (a) > 0 if d < a and

IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 359

f (d) f (b) > 0 if d > b. k is a positive integer and r is an approximation of the unique zx:ro z
of the quadratic polynomial

P(x) = P(a, b, d)(x) = f (a) + f[a, b](x - a) + f[a, b, dl(x - a)(x - b)

in [a, b] where

Y[a,b] = (y (b) - Y (a)) / I b - ~)

and
f[a, b, d] = (fib, d] - f[a, bl)/(d - a).

Note that P(a) = f (a) and P(b) = f(b) . Hence P(a)P(b) < O.

Subroutine Newton-Quadratic(a, b, d, r, k)

Set A = y[a ,b .d] , B = f[a,b];

If A = 0, then r = a - B - I f (a) ;

If" A f (a) > 0, then r0 = a, else r0 = b;

F o r i = l , 2 k do:

Ti ~l r i_ t
P (~ , - ,)

P'(ri-1)
P(r i - t)

- - = r~-i - B + A(2r~_l - a - b)

r = r k . #

We are now in the position to describe the tbllowing Algorithm 1.

Algorithm 1 (Algorithm 4.2 of [4]).

1.1 set a l = ~, b~ = b, c l = a t - f [a ~ , b l i - V (a l) ;

t.2 call bracket(a1, bl, c~, a2, b2, d2);

For n = 2, 3 do:

1.3 if n = 2 or if n > 2 but l 'Ii#j(fi - f j) = 0 (where f l = f(a,,) , f2 = f(b,,), f.., = f(d,~),
A = f (e ,)) then call Newtmt-Quadratic(an, bn, d,., cn, 2) and goto Step 1.4.

Otherwise compute cn = I291(0) where IP l (y) is the polynomial obtained by the inverse
cubic interpolation at the points (a,~, f(a,,)), (b,,, f(b,,)), (d,,, Y(4,)), a .d (c,,, /(e,,)).
If (cm - a,~)(c~ - bn) > O, then call Naoton-Qtuldreaic(a,,, b,,, d,,, c,,, 2). Goto Step 1.4.

t.4 set ~,, = d,~, call bracket(an, bn, %, 5,,, bn, ~) ;

1.5 if ~ i# j (] i - ~) = 0 (where]1 = f(a,~),]2 = f(/~,~), .~s = f(d, ,) , and f4 = f(e,,)) then call
Newton-Quadratic(~, b,,, d,~, ~ , 3) and goto Step 1.6.

Otherwise compute ~ = / P 2 (0) where IP2(y) is the polynomial obtained by the inverse
cubic interpolation at the points (a,~, f(5,,)), (b,, f(b,~)) z (d,, f (~)) , and (en, f (en)) .
If (~ - ~) (~ , - b,,) > 0, then call Newton-~.uul,'eaic(5,,, b,,, d,,, t,,, 3). Goto Step 1.6.

1.6 call bracket(5,,b,,,~,~,5,,,b,,,cln);

1.7 if l f (~ ,) l < If(fi~)i, then set u~ --- a,,, else set u,, = ~,~;

1.8 set cn = un - 2 f[Sn,bn]- l f (un);

360 ¥. SHI

1.9 if I ~ - ~ 1 > 0.5(8. - a .) , then & = 0.5(8. + a~), else ~ = ~;

1.10 call bracket(an, bn, ~ , a~,/~,, d~);

1.11 if ~ - a~ < , (b , - ~),
then an+l = &n, bn+l = bn, dn+, = dn, en+l = tin,

else
en+l = &,

call ~-~k,t(a~, ~ . 0.5(a~ + ~) . an+,. b~.~. d,+~),
endi£ #

The idea used in Algorithm 1 to achieve the higher efficiency index is to employ the
inverse cubic interpolation instead of classical linear or quadratic interl~lations whenever pos-
sible. Thus it becomes interesting to study the possibility of improving the efficiency index by
applying higher order inverse interpolations. In this paper, we propose a class of enclosing
algorithms which, in the n-th iteration, uses all the function values computed in the previous
iteration as well as those already computed in the current iteration to form an inverse inter-
polation with the highest possible order. With a user-glven accurary ¢ and starting with the
initial interval [al, bl] = [a, b], these algorithms guarantee to find in finitely many iterations
an enclosing interval [an, bn] that contains a root of the equation and whose length bn - an is
smaller than ¢. The optimal algorithm of this class has achieved the efficiency index 1.79.82...
The algorithms are presented in the next section. In Section 3 the results on effidency index
are derived. Numerical experiments are reported in Section 4.

2. Algorithm
In this section we present a class of algorithms, universally described as the following Algo-
rithm 2, for enclosing a root x. of (1) in an interval [a, b], where f (x) is continuous over [a, b]
and f(~):(b) < O.

The basic idea used in Algorithm 2 is that in the n-th iteration, the algorithm uses all
the funcdon values computed in the (r~- 1)-th iteration as well as those already computed
in the current iteration to form and apply, whenever possible, the corresponding high order
inverse interpolation. When that is not possible, an approximate quadratic interpolation is used
by calling the subroutine Newton-Quadratic described in Section 1. It is proved in Section 3
that asymptotically the inverse interpoladon will always be applied and thus a high efficiency
index may be achieved. This idea is implemented in Step 2.3. Each algorithm of this class is
associated with an integer parameter k such that k ~ 4. At the n-th iteration when n >_ k, the
inverse interpolation (or an approximate quadratic interpolation, but asymptotically always the
inverse interpolation) is repeated for k - 3 times. A more detailed discussion is provided after
the presentation of Algorithm 2. The algorithm also needs to call the subroutine bracket. There
is another parameter/z such that # E (0, 1), usually chosen as # = 0.5. For convenience, let us
give the following definition.

Definition 2. Suppose xl, x2, . . . , x 3 are j distinct values and so are the function values f(Xl),
f (x 2) , . . . , f (x j) . Suppose IP(y) is the polynomial of degree j - 1 obtained by the inverse
interpolation at the points (xl, f (x l)) , (x2, f (x2)) , . . . , (xj-, f (x j)) . We say that 5" is obtained
by the inverse interpolation at xl, x2 , . . . , x i i f

= IP(0) . (2)

IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 361

We also need to introduce some notations used in Algorithm 2, In the following Algo-
rithm 2, the current enclosing interval at the begining of a general iteration, say n-th iteration
with n > k, is denoted by [a,~, bn]. After Step 2.3 an intermediate interval [~n, bn] is obtained.
Then at Step 2.7 we get [&,~,/~n]. From that we obtain [a~+l, b,~+l] at Step 2.8. They satisfy
that

b.+,] c [a., b.] c k] c b.].
More notations such as a(~), b(~), d(~) are used in Steps 2.3 and 2.9. Here a(n/) and b(~) satisfy
that

[a., = c . . . _ c_ [aC2), 11] = [a., b.]

while d~) are generated in the procedure for use in the next iteration as explaned aRer the
presentation of the algorithm.

Algorithm 2.

2.1 set al = a, bx = b, cl = at - f (a l) / f [a l , bl];

2.2 call bracket(a1, bl, cl, a2, b2, d~l));

For n = 2 ,3 , . . . execute Step 2.3 through to Step 2.9:

2.3 execute the computations below:

2.3.1 if n = 2 then
cat1 Newton-Quadratic(a2, b2, d~ 1), temp, 2);

call bracket(a2, b2, temp, a2, b2, d~l));

goto Step 2.4;

2.3.2 if n = 3 then
if f(a3), f (b3) , f(d~l)), f (d~ 2)) are distinct and if .~ obtained by the inverse inter-

polation at a3, ba, d(1),2 d~ 2) satisfies ~ E (aa, b:~), then temp = Y:. Otherwise call

Newton-Quadratic(aa, ba, d~ 2), temp, 2);

call bracket(a3, b3, temp, aa, b3, d~l));

goto Step 2.4;

2.3.3 if 3 < n < k 1 then set a 0) = an, b(n 1) = bn, and d(n °) "4('~-2)

For i = 1 , 2 , . . . , n - 2 do:
if f(a~)) , f(b~)), f (d ?)) (= f(d~,iS~))), f(d~,~)),..., f(d~-~)), f(dC,'_~) , f(d~'_-¢))

are distinct and if Y: obtained by the inverse interpolation at a(~), b(~), d (°) (=
d(~2)) , d~l) , . . . , d(~ -1), d(~l)t , . . . , d(~'~ a) satisfies that ~" E (a~), b(~)), then temp = Y:.
Otherwise call Newton-Quadratic(a(~), b(~) , d(~ - I) , temp, 2);

call bracket(a(~), h (~) t,,,,~, n(TM) h(i+1) d(~)~ •
end do;

~,~ = a(~ '~-~), b,~ = b!~ -~), goto Step 2.4;

2.3.4 if n > k then set a(n ~) = an, b (~) bn, and d(n °) ,~(~-2)

For i = 1, 2 , . . . k - 3 do:
if f(a(~)), f(b~)), f(d~ °)) (= f(d(~q:))), f(d(1)),..., f(d(~-~)), f(d~2~),..., f(d~:i ~))

362 ¥. SHI

are distinct and if if: obtained by the inverse interpolation at a(~), b~), d (°) (=

d(nk_~2)), d ~) , . . . , d(~ -1), d(nl)l , d(n~_?) satisfies that ~ E (a(~), b(nO), then temp = ~.
Otherwise call Nezoton-Quadratic(a(~), b(~) , d(~ -1), temp, 2);

call bracka ,(a (i)n , b(On , tamp, -na(i+t) , -nh(i+t), d(~));
end do;

an = a (k-2), bn = b!~ -2), goto Step 2.4;

2.4 if I f (a ,) l < lf(bn)l, then set un = an, else set u~ = bn;

2.5 set ~,, = un - 2f[an, bnl-lf(u,~);

2.6 if t¢, - Uni > 0.5(bn - ~) , then ~-n = 0.5(b,, ÷ 5,,), else 6,, = ~ ;

2.7 call l ,r~t(a, , , ~n, ~,, an, ~n, d~);

2.8 if bn - a n </z(bn - an),
then an+l = 5m, bn+l =/gn,

else
call ~ - ~ t (a ~ , t,~, 0.5(an + t,~), an+~, bn+~, &) ,

endif;

2.9 if n = 2, set d~ 2) = d2,

if 3 < n < k - 1, set d (n-l) = d n ,

ii: ~ _> k, set d(2-") = &. #

We see that Step 2.8 guarantees that

bn+l - an+x <_ #l(bn - an) (3)

with/~1 = max{/z, 0.5} < 1. Hence, either a root of (1) is found in a finite number of iterations,
or there is a remt x . of (1) in [a, b] such that

z , e [an+~, b~+~] C Jan, b,] C_.-. C_ [al, b~] = [a, b] (4)

and

bn - an , 0 (~)

with at least linear convergence. In this case, for any user-given accuracy e, the algorithm
obtains in finitely many iterations an enclosing interval [an, bn] such that b,~ - an < e.

At the end of the n-th iteration when 3 < n < k - 1, n + 1 points (an+l, f (an+l)) ,
(b,~+l,f(bn+O), (d(~l),f(d(nl))), . . . , (d~'~-l),f(d~n-1))) are available for the use in the next
iteration. They satisfy that

and

(an, b~} c (an+l, bn+l, e(~l),..,, 4 n - ' /) ,
{an+l,b~+,, d~l),. : . ,4~-1)} C[an, bnl

(6)
(7)

d(2 ¢ [o~+i, bn+l], Vi = 1, 2, . . . , n - 1. (s)

IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 363

Therefore at the begining of k-th iteration, k points (ak, f(ak)), (bk, f(b~:)), rd(D etd (1) ~ k k - l) d k I c - l l] ~ ' ' ' ~

(d(~_~ 2), f(d(kk_~2))) are available, for which (6)-(8) hold with ,rt = k - I.

Starting with k-th iteration, Algorithm 2 computes only k - 3 points at Step 2.3 in each
iteration. Therefore at the end of the n-th iteration when n > k, k points (a~+1, f(a,~+1)),
(b,+l, f(bn+l)), (d O), f (d~))) , . . . , (d(r, k-~), f(dk*-z))) are ready to be used in the next iteration.
(6)-(8) remain true if we replace d(n '~-1) by d~ -2). To sum it up, in the n-th iteration when
.n> k,

(I) k points (a,,,f(a,~)), (b,,, f(b,,)), (d(~l)l,f(d~l)_,)),..., (d~k_-la),f(d(~k..-12))) are carried over
from the previous iteration;

(II) k - 3 new points are computed in Step 2.3, each is obtained, whenever possible, by using
the inverse interpolation at the]c carried-over points as well as the points already computed
in Step 2.3 of the current iteration;

(III) One new point is computed in Steps 2.7-2.9. This point may cost an additional flmction
evaluation at Step 2.8. However, in next section we will show that when n is big enough,

g,~ - a~ < ~(b~ - an)

always holds. Therefore, asymptotically Algorithm 2 requires only k - 2 function evaluations
per iteration;

(IV) The points (an, f(an)), (ha, f(bn)), plus the k - 2 points computed in the n-th iteration,
form the group of k points:

(a,,+,, f(a,,+~)), (b,,+l, f(bn+l)), (d (t), f(d(nl))),..., (d~ -2)' f(d~-2)))

for the use in (n + 1)-th iteration.

3. Efficiency index of Algorithm 2
In this section we show that under certain smoothness assumptions the asymtotic efficiency
index of Algorithm 2 is

1

Ik

for each integer /c > 4. We will also show that Ik ~ Is for all k ~ 4. Hence /c = 5 yields
the optimal procedure of this class, achieving the efficiency index "Is = 1.7282.. . In this case
at most four and asymptotically only three function evaluations are needed in each iteration.
The total number of function evaluations thus will be bounded by four times of that needed
by the bisection method.

In the rest of this section, the following assumptions (A), (B), and (C) are assumed to be
true.

(A) f (x) is continuously differentiable in [a, b] and f (a) f (b) < O.

(~) z . i, a , im#e ~e~o or f (z) i , [a, hi.

364 Y. SHI

(C) Algorithm 2 does not terminate after a finke number of iterations. (4) and (5), plus
assumptions (A) and (B), then imply that f ' (x) ?£ 0 in tan, bn] when n is big enough.
Therefore without loss of generality we assume that f ' (x) ~ 0 in [a, b].

We first prove the following Lemma 1.

Lemma 1. Under assumptions (A), (B), (C), also assume that f (x) is j times continuously
differentiable in [a, hi. Suppose {x: t , . . . ,x j} C_ [a, b] and also suppose that ~ is obtained by
the inverse interpolation at x l , . . . , xj, then there is a constant number Mj, independent of
z~ x~, such that

I~ - x,I S M y (x l) l . . . If(x~)l. (~o)

Proof Since we assume that f ' (x) y~ 0 in [a, hi, the inverse function f - l (y) exists tbr y E f([a, b])
where f([a,b]) stands for the image of [a,b] under the function f (x) . It is clear that ibr ,all
y = f(z) e / ([~ , hi),

1
[f-~(y)]' = f,(~)

and

For l < j , suppose

-f"(x)
[f-1(y)]# = (f'(x)) 3"

[: - l (y)](0 = P~(x)
(: ,(~))2,-1

where Pt(x) is a polynomial of f '(x), f"(x) , . . . , f(l)(x). Then

:'(x)~'(z) - (2 t - 1)f"(x)~(z) ~+l(z)
(f'(x)) 21+I (f'(x))2(/÷l) -I

with Pl+l(x) being a polynomial of f ' (x) , fV(x) , . . . , f(t+1)(x). Hence by induction we see that
for any y = f (x) E f([a, b]), [f-l(y)](j) exists and

Pj(x) (11)
[f-l(y)](j) = (f ' (x)) 2j-1

where Pj(x) is a polynomial of f t (x) , F (x) ; . . . , f(J)(x). Since y(x) is j times continuously
differentiable, above arguments indicate that f - l (y) is also j times continuous in f([a, hi). The
facts that x. = f - t (0) and 5: = IP(0) (where IP(y) is the inverse interpolation polynomial at
x l , . . . , z j) imply that

1~ - z,I < M j l f (x l) l . . . [f (x j) l

with

(10) is therefore proved. []

Lemma 2. Under assumptions (A), (B), (C), also assume that f (x) is 2k - 4 times continuously
clifferentiable in [a, b]. Then there is an r > 0 and an integer N >_ k such that the high order

IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 365

inverse interpolations are always used at &ep 2.3 o f n . th iteration when n >_ N , and that the
un obtained at Step 2.4 satisfies that

[f(un)[< r(b,~ - a~)~(b~_l - an_l) ~, Vn > N (12)

(k-S)(k-2) ~ t h ~ = 2 + 1 a n d ~ = (k - 3) (k - 2) .

Proof. Consider n > k and i e {1, 2 , . . . , k - 3}. Since we assume that f ' (x) 7~ 0 in [a, b], f (x)
is monotone and thus all the function values involved in Step 2.3 are distinct. Therefore we
only need to prove that when n is big enough

~ E r~(~) /g% gi = I, 2, k - 3 (13)

where £i is obtained by the inverse interpolation at a(~), b(~), d ~) (= ,~(k-2)~ d~l) d(i_l)

d(~) ,~(k-a)

By Lemma 1 we see that

]~ - x.1 <_ Mk+i - l l f (a~)) I [f(b(~))l l f(d~))] l f (dkt)) l . . .If(d(d-1))t
(1)

x I f (d ,~_ l) l . . . If(d~k_-~3))l
= M~+,_11f(a~))t tf(b~))l lf(dk1>)t...If(d~-x))t

× If(d(ff_~)l... tf(d~-~)l lf(d~-~))[
< M k + i _ l m k+i-lrbk ~ - a,)i+l(b,~_ 1 - a,,_l) k-2 (14)

where m = max I f ' (z) l . Since x . e (a, b) and bn - an converges to zero, (14) implies that
a<_~'<_b

there is an N1 > k such that when n >__ N1, xi ~ (a,b) for all i = 1 , 2 , . . . , k - 3 . It then
follows that

l f (~ i) l = If(:~i) - f (x .) l < mlS:i - z , I .

Therefore, when n > N~, for all i = 1 , 2 , . . . , k - 3 we have

[f(ei) I < M~+i-~m~+i-~(b,~ - a,Oi(bn-x - a,~-~)~-2lf(a(~))l (15)

and

M mk+~-1'b - a,~)i(b,~_1 - an_l)k-2tf(b(~))]. (16) If(5:OI <_ k+i-1 t ,~

From (15) and (16) we see that there is an N > N1 such that when n > N

l f (:~d] < m i n { l f (a ~)) l , l f (@) l } , v i = 1, 2 k - 3. (17)

(13) follows immediately because f (x) is monotone on [a, b].

We now show that (12) holds when n > N. Let us consider Step 2.3 of the n-th iteration
for n > N and apply induction on i.

For i = 1, (14) indicates that

lYc.t - x . l < M~mk(b~ - a,~)2(b,~_l - an_l) k-2.

Therefore

I f (2q) t <_ M k m k + 1 (b ~ - a~)2(b~_1 - a~_1) k-2

= rl(b,~ - an)2(b,~-i - a n - l) k-2 (18)

366

where r l = M k m k+l > O.

Similarly,

l f (~2)l <-
<

<

where r2 = r l M ~ + l m k+~ > O.

Y. SHI

ro l e : - z . I

Mk+lmk+l(b,~ - a~)2(bn_l - an_l)k-2lf(£1) [

r2(bn - an)a(bn-1 - an- l) 2(k-2) (19)

Suppose for 2 < l < k - 3 we have that

[f(5:l)[_< rt(b. - a.)(:+2+3+'"+O(bn-1 - a . -1) t(k-~) (20)

for some rl > O. then

l:(~z÷1)l <-- ml~,+1 - z.l
<_ mMk+llf(a~+X))[tf(b~+~))t l f (d(~)) l . . . l f(d~))[lf(d(~_)x)].., lf(d~k_-;2))[

< Mk+vnk+t(bn - an)l+l(bn_l - an_l)k-2lf(:~t) I

<_ rt+l(bn - an)(2+2+3+"'+t+i~+l))(bn-1 - an- l) (z+l)(k-2) (21)

ln(~+l) h(~+l) d(1), - . ,d~)}. with rl+l = r lMk+im k+l > 0. Here we notice that ~l E t - n , -n , •

Therefore , by induction we see that there is an r > 0 such that when n >_ N

[f(ff:~-z)[< r(bn - an)(~+2+a+'"+(k-a))(bn-1 - an- l) (k-3)(k-2)

= r(bn - an)a(b,~-I - an- l) ~ (22)

where o~ = [(k - 3)(k - 2)] /2 + 1 and /3 = (k - 3)(k - 2).

From Step 2:3 of Algorithm 2 we see that 5:k-3 E {fin, bn} when n ~ N. From Step 2.4
we see that tf(u~)l = min{lf(~n)f , If(bn)]} for all n. Therefore If(un)l < tf(xk-3)! for n > N
and (22) thus implies (12). []

T h e following Lemma 3 is adopted from Alefeld and Potra [2], and the same proof in [2]
applies.

Lemma 8 (see Alefeld and Potra [2]). Under assumptions (A), (B), (C), there is an nx such that

for all n > nl , ca and un in Step 2.5 satisfy that

f (~) f (u n) < 0 . (23)

We are now ready to prove the assymptotic convergence property of Algorithm 2.

Theorem 1. Under the assumptions o f Lemma 2, the sequence o f diameters { (b n - an)}~=~ o f
the enclosing intervals produced by Algori thm 2 converges to zero, and there is an L > 0 such

that

bn+l - a~+l <_ L(bn - an)a(bn-1 - an- i) ~, Vn = 2, 3 , . . . (24)

where a = [(k - 3)(k - 2)]/2 + 1 and /3 = (k - 3)(k - 2). Moreover, there is an n2 such that

for all n > n2
an+l = gzn and bn+l = t)n.

Hence when n > n2, Algori thm 2 requires only k - 2 function evaluations per iteration.

IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 367

Proof. Let us recall that in this section we assume without loss of generality that f ' (x) -~ 0 for
all x E [a, b]. Thus we may assume that

ml = rain]f'(x)l > 0.
a<z<b

Consider the integers N of Lemma 2 and nl of Lemma 3. Let n2 > max{N, nl}. Then by
Lemma 3, (23) holds when 'n > n2. From Steps 2.5-2.7 of Algorithm 2 and the thct that
'urn, ~ E Jan, bn] we see that

/~. - a,~ < [~ - u . t , v n > n 2 . (2 5)

From Step 2.5 we also see that

le. - u.[= 12f[~ . ,bn]- l f (un) t < -~7~ lf(u,,)l • (26)

(25), (26), and (12) now imply that

2r
/9, - &,~ <_ - - (b , - a,~)'~(bn-1 - a,,-i)/~, Vn > n2. (27)

' /n t

Since {(bn- an)}n=l~¢ converges to zero, if n2 is large enough then

b = - 6~ < / z (b n - a,~), "qn>n2 .

This shows that for all n > r/. 2

a n + l = S n and bn+l=bn.

Finally (24) follows by using (27) and taking

L > max ' - t m l (b,~ - a , ~) ~ (b , ~ _ l - a , ~ - l) ~ ; n = 2 , 3 ; n2 •

The proof is therefore completed. []

a Corollary. Under the assumptions o f Theorem 1, {(bn - ,~)},~=1 converges to zero with an

R-order at least a / 2 + ~ ' ~ c ~ 2 / 4 where

= [(k - 3) (k - 2)] / 2 + 1

and
= (k - 3) (k - 2).

Since asymptofically Algori thm 2 requires k - 2 fimction evaluations per iteration, its efticiency

index is

Ik = (a /2+~/ /3+o~z14) r~-2
1

= [(k - a) (k - 2) / 4 + (28)

Proof. By Theorem 1, {e~}n~__l converges to zero and for all n = 2, 3
a ~

Cn+ I "~ LtnCn_ 1.

The result follows by invoking Theorem 2.1 of [10]. ['-I

The next theorem indicates that the optimal procedure of this class of algorithms repre-
sented by Algorithm 2 is obtained when k = 5. In this case, at most four aud asymptotically
only three function evaluations are needed in each iteration, and the efficiency index is
Is = 1.7282...

368 Y. SHI

Theorem 9.. Let [k be as given in (28). Then Ik S A fbr a/1 k > 4.

Proof For x >_ 4, consider

I t (x) = (X - 2) (x - 3) / 4 + l / 2 ,

t . (x) = ¢ (x - 2) (~ - 3) + (~l(z)) ",

h(x) = l,(x) + /u(X)

and
1

g(x) = x - 2 ln(h(x)).

Then Ik = exp(g(k)) for all k > 4. It is easy to see that h(x) > I for
In(h(x)) > 5//2 for all x > 8. Hence when x > 8,

all x > 4 and

(x 2)h'(x) (x - 2)(x - 3) (x - 2) 2 (x - 2)(2x - 5) - - = -t- ~ q- +

4 4 2/2(x)

< (~ - 2) (~ - 3) + (~ - 2)_____~ ~ + 2 (Z - 2) (2 ~ - 5)

- 4 4 (x - 2) (x - 3)

x - 2 2
= (x - 2) (x - 3) + - - ~ + 4 + ~

x - 3

_< (~ - 2) (x - a) 1 + 2 (~ - 3-------~ + 2 (~ - 2) (x - 3)

5 2)(x 3) < ~ (z - -

< 56(z)

+

(x - 2)(2x - 5)/t(x)

412(x)

(x - 2)(2x - 5)

4

< h(x)

< h(x)ln(h(x)) .

Therefore

g ' (x) = (z - 2) h ' (x) - h(x)In(h(x))
(x - 2) 2 h (x) < 0 , V x ~ 8 . (29)

(29) implies that I~ <Is for all k .> 8. Direct calculation shows that

/5 = max{Ik; k = 4, 5, 6, 7, 8}.

The theorem is thus proved. []

4. Preliminary numerical experiments
The numerical results reported in [4] show that Algorithm 1 has the best behavior in comparison
with several widely used equation solvers such as the algorithms of Dekker [7], Brent [5], Bus
and Dekker [6], and Le [8]. In this section we present some_preliminary numerical experiments
comparing Algorithms 1 and 2 with k = 5. The parameter/z was chosen as 0.5. The machine

IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 3 6 9

fu. o. [a, b] parameter

1 s i n x - z / 2 ['x/2, rr]

2 a [a. ,b.] 2 - 2_,~=t tz* -
a~ = n a + 10 -9

b . = (n + l) 2 - 1 0 -9 n=1(1)10

3 axe ~ [-9 , 31] a = - 4 0 , b = - 1
a = - 1 0 0 . b = - 2
a = -200, b = - 3

4 x = - a [0,5] a = 0.2, 1, n = 4(2)12

[-0 .95 , 4.0st = 1, = 8(2)14

5 sin x - 0.5 [0, 1.5]

6 2ze -~ - 2e -~= + 1 [0, t] n = 1(1)5, 20(20)100

7 [1 + (1 - n)" lx - (1 - nx) 2 [0, 1] n = 5, 10, 20

S z 2 - (1 - z) " [0,1] n = 2 ,5 ,10 ,15 ,20

9 [1 + (1 - n)4]x - (1 - nx) 4 [0, 11 n = 1, 2, 4, 5, 8, 15, 20

10 e - ' = (z - 1) + z" [0, 1] n = 1, 5, 10, 15, 20

11 (nx - 1) / ((n - 1)x) [0.01, 1] n = 2, 5, 15, 20

12 x,'} - n~ [1,1001 n = 2(1)6, 7(2)33

13 0 if x = 0 [-1 ,4]
xe -z-= otherwise

14

15

~ (~--- + s i n x - 1) i f x > O 2o 1.s - [- 104,1r/2] n = 10, 20, 30, 40
2~ otherwise

e - i £ 5 9 if x > 2x1°-~ l+n
~"+~* In 2×1°-31 [_ 104, 10_4] n = 20, 30, 40 e = ×1°* - 1.859 if x 6 tv, 1"-i7a-~,

n = 100(100)1000

-0 .859 if x < 0

T a b l e 1. Tes t p rob lems

used was A T & T 3 B 2 - 1 0 0 0 Model 80, and double precis ion was used. T h e test p rob lems are

listed in Tab le 1. T h e t e r m i n a t i o n c r i te r ion was the one sugges ted by Brent [5], i.e.

b - a < 2 . tole(a, b) (30)

where [a, b] is the c u r r e n t enclosing interval , a n d

tole(a,b) = 2 . lul " macheps + tol.

Here u E { a , b } such tha t I f (u) t = m i n { [f (a) t , [f (b) l} , macheps is the relat ive mach ine precis ion

which in o u r case is 1 .9073486328 × 10 -16, and tol is a user-given nonnega t ive number .

Due to the above t e rmina t i on cr i te r ion , a na tu ra l modif ica t ion of the subrout ine bracket

was e m p l o y e d in ou r i m p l e m e n t a t i o n o f the two a lgor i thms. T h e modi f i ed subrout ine is as

follows.

370

Subroutine bracket(a, b, c, ~, b, d)

Y. SHI

set 5 = A- role(a, b) for some user-given fixed A E (0, 1) (in our experiments we took
= 0 . 7) .

if b - a < 46, then set c = (a + b)/2, goto 10;

if c < a + 2c5, then set c = a + 2& goto 10;

if c > b - 25, then set c = b - 2~5, goto 10;

10 if f (c) = 0, then print c and terminate;

if f(a)/(c) < 0, then ~ = a, b = c, d = b;

i f / (b) / (c) < 0, then ?2 = c, b = b, d = a;

calculate tole(fL, b);

if b - ?2 _< 2 . tole(?2, b), then terminate. #

We tested all the problems listed in "Fable 1 with different user-given tol ~ =
10 -T, 10 -1°, 10 -I5, and 0). The total number of timction evaluations in solving all the prob-
lems (100 cases) are listed in "Fable 2. From there we see that the pertbrmance of these two
algorithms are well comparable, and the behavior of Algorithm 2 is slightly better than that of
Algorithm t.

We also tested two special problems. In one problem,

I (x) = x n and [a, b] = [-1,101 (31)

with n being 5, 7, 9, 11, 13, and 15. In this case, the root x , = 0 is not a simple root. Hence
the assumptions in Section 3 are not satisfied. Another problem is that

f(x)=x 1/"-1 and [a,b]=[O, t0] (32)

with the same values of n. Now x , = 1 is a simple root and f - t (y) = (y + 1)n is a
polynomial. All the assumptions of Section 3 are satisfied in this case. In both of those two
cases, Algorithm 2 works much better than Algorithm 1. The corresponding numerical resuhs
are listed in Table 3 and Table 4.

In order to show the effectiveness of "improving efficiency index", we list in Table 5
the following numerical results: for Problem 15 with n = 40 (listed in "Fable 1) and tol =
10 - is , Algorithm 2 uses 31 function evaluations to obtain an enclosing interval that meets the
termination criterion (30) while Algorithm 1 uses 32 function evaluations. Both algorithms
start with the same initial interval whose length is about 10000. After using 21 function
evaluations, Algorithm I obtains an enclosing interval with length 0 .1104E-2 (here 0 .1104E-2
stands for 0.1104 x 10 -2, and similar notations are also used below), and Algorithm 2 gets one
whose length is 0 .1021E-2. Table 5 lists the length of enclosing intervals obtained after each
function evaluation, starting with the 21st function evaluation, upto the terminat ion under the
criterion (30). The results reconfirms the fact that "improving efficiency index" increases the
ASYMPTOTIC AVERAGE improvement obtained from each function evaluation.

As a conclusion from our preliminary numerical experiments, we see that in general
Algorithm 2 is very well comparable to Algorithm 1. We have also considered two special cases:
Problem (31) whose solution is not a simple root and thus the assumptions in Lemma 1 ~
Corollary are not satisfied, and Problem (32) where all assumptions in Section 3 are satisfied.
In both cases Algorithm 2 works much better than Algorithm 1. From "Fable 5 we also
see that with a higher efficiency index, the Algorithm 2 does have a higher asymptotic

IMPROVING THE EFFICIENCY INDEX IN ENCLOSING A ROOT OF AN EQUATION 371

to/ 10 -7 10 -1° 10 -~s 0

Alg. 1 1480 1555 1609 1631
A!g. 2 1462 1529 1597 1627

Table 2. Total number of function evaluations in solving all the problems listed in "Fable 1

tol 10 -7 10 -~° 10 -is 0

AIg. 1 470 656 895 2143
Alg. 2 385 482 735 1715

"Fable 3. Total number of function evaluationsin solving problem(31) with n = 5 ,7 ,9 ,11,13,15

to~ 10 -7 10 -m 10 -1~ 0

Alg. 1 78 82 87 87
Alg. 2 72 73 74 75

Table 4~Total number of fhnction evaluationsinsolving problem(32)with n = 5 ,7 ,9 ,11,13,15

function evaluation Algorithm 1 Algorithm 2
21st 0.1104E-2 0.1021E-2
22ud 0.4205E-3 0.5107E-3
23rd 0.1716E-3 0.1946E-3
24th 0.8580E-4 0.7926E-4
25th 0.4064E-4 0.3963E-4
26th 0.2919E-4 0.3180E-4
27th 0.9509E-5 0.1914E-5
28th 0.5009E-5 0.4862E-6
29th 0.4914E-5 0.2390E-6
30th 0.2234E-8 0.2389E-6
31st 0.1175E-8 0.1400E-14
32nd 0.1400E- t4

Table 5. Length of enclosing intervals obtained after each function evaluation in solving
Problem 15 with n = 40 and tol = 10 -15, starting with the 21st function evaluation, upto the
termination

AVERAGE convergence speed. We wish to mention that Algorithm 2 uses the fifth order
inverse interpolation to achieve a higher efficiency index than Algorithm 1 which uses the
third order inverse interpolation. Both algorithms require at most four fimction evaluations
per iteration and asymptotically only three. Since a function evaluation usually costs much
more than the computation of :2 = [P(O) defined in (2), Algorithm 2 in general will not have
a higher computational complexity than Algorithm 1 does.

Finally, we notice that our analyses in Section 3 indicate that Algorithm 2 achieves the
efficiency index 1.7282.. . when the function f (x) is six times continuously differentiable. In
[4], it is proved that in order for Algorithm 1 to achieve the efficiency index 1.6686.. . the

372 Y.sm

function f (x) only needs to be four times continuously differentiable. This makes Algorithm 2
seem more restrictive than Algorithm 1. Fortunately, both algorithms guarantee the linear
convergence shown in (3) as long as f (x) itself is continuous. Our experiment with problem
(31) also show that Algorithm 2 may perform better than Algorithm 1 even if the assumptions
in Section 3 are not satisfied.

Acknowledgement
The author would like to thank the referees for their valuable comments and suggestions.

References
[1] Alefeld, G. and Potra, F. A. On two higher order enclosing methods of j . w. Schmidt. Z. angew.

Math. Mech 68 (8) (1988), pp. 331-337.

[2] Alefeld, G. and Potra, F. A. Some eff~ent methods for enclosing shnple zeros of nonlinear equations.
BIT 82 (1992), pp. 334-344.

[3] Alefeld, G., Potra, F. A., and Shi, Yi. On enclosing simple roots of nonlinear equations. Mathematics
of Computation 61 (1993), pp. 733-744.

[4] Alefeld, G., Potra, F. A., and Shi, Yi. Enclosing zeros of continuous functions. TOMS 21 (1995),
pp. 327-344.

[5] Brent, R. P. Algorithms for minimization without derhntives. Prentice-Hall, Englewood Cliffs, New
Jersey, t972.

[6] Bus, J. c. P. and Dekker, T. J. Two efficient algorithms with guaranteed convergence for finding a
zero of a function. TOMS 1 (1975), pp, 330-345.

[7] Dekker, T. J. Finding a zero by means of s~cessive linear interpolation. In: Dejon, B. and
Henrici, P. "Constructive Aspects of the Fundamental Theorem of Algebra", Wiley Inter-
science, 1969.

[8] Le, D. An efficient deri~ive--free method for soh~g nonlinear equations. TOMS 11 (1985),
pp. 250-262.

[9] Ostrowski, A. M. Solution of equatiorts in Banach spaces. Acedemic Press, New York, 1973.

[10] Potra, F. A. On Q-order and R-order of convergence, j. Optim. Theory Appl. 68 (1989), pp. 415-
431.

Received: December 1, 1995
Revised version: June 27, 1996

Department of Mathematics and Computer Science
Bloomsburg University of Pennsylvania

Bloomsburg
PA 17815

USA

