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Improving the efficiency index in enclosing a 
root of an equation 
Y~XUN S~ 

Recently several algorithms have been deveh|ped which achieve high e|tMent:y index in enclosing a na~t 
of the equati|m f (x )  = 0 in an interval [a, b] ,ver whk:h f ( x )  is continu|ms and f (a) f (b)  < 0. The 
highest efficiency index, 1.6686 . . . .  was achieved in [4] using the inveme cuhic interl~|latitat. This paper 
studies the po.~sibility of impr|wing eftlciency index by using high order inverse interpolations. A cla.~s of 
algorithms are presented and the optimal |me |ff the clags has achieved t|*e efficim~cy index 1.7282... 
With a user-given accurary e and starting with the initial interval [a~, bt] = [a, hi, these algorithms 
g~mrantee to find in finitely many iterations an end|ruing interval [an,bn] thai ~a|ntains a ~ t  of the 
equati|m and who~ length b n - an is smaUer than e. Numerk.~d experiments indicate that the new 
algorithm perfi|rms very well in practice. 

I]0BblmeHHe 
HaX0>KheHm I 
l ~ c y ~  III~ 

 HAeKca 
0LIeHKtl K0p  ypaBneami 

S iloGlellltee gpeM/.l 6M210 pa3patSoTarlo HecgoJIbg(} a/n'opH'rMoB, i|o:ll~):|illOll|t|x j|l)(:'|'ntlb lihl{'.ogoro }llt- 

1tezca M/~gra~aocm np~t waxo~eana ,ueag~t g, Vaa ypatiaemta f (x)  = 0 , aaTepBaae [a, b], .a 
goxopou dpyazua, f ( x )  .enpepuaaa u f (a ) f (b )  < 0. H : , . ay . .n .n  . . . eKe  ~,lxlbe~'nma,~rr., p a a a ~  
1.6686..., 6~a aocrarHyv ~ paCk~/e [4] c m:aoab~.t~mtte,~t ~xfip;rra.~ gygw~ecg.;I ~aTepn~mamm. B 
8ac'n)smef~ pa&lre ttccaeltye'l'Ca Bil3MOXKHllL'Tb lt~'121bltefllllel'O y'lytlllleltll~l lllt/leg{~l :}I~eKTIIBttI}CTll (: 

IICIIO2Ib3OBaHHeM (ffipaTHOfl tlH'repnoJlgRtti~ ~ a e e  sbtCogoro IIO1)Hltga. I'Ipencras~teH g:tacc a2m~puvMoB, 

Har*ay,~m**~ npeacramn'eab gov.p.r,  a,~'m~,er tlltllegca :}I~f~eKT}IIt, Itf|CT|I 1.7282 . . .  Ha,~an c IICXO/Iltl}- 
,'. mrrep-;,aa [a l ,  bz] : [a, hi, ~'nt aa,'opn'r.~b, ,ap;,HTnl~,-;,am, aax- .a ' r  :mg, me.m.e re,ca, mepa,nff~ 
ag.mo~as~m~ft ~mTepnaa [an, bn]. c|mep~gmms~ g.perm ypa~em|a ,  m.a mnpnna bn - an ae Hl~=a~nra- 
eT 3R/IRFII-IOI:I llO.rllb3OBaTe/leM Be2lltqlnlbl IIor'pelnll |}CTll ~. LII, R:IIeHHIge :}gf:llel)l.~MellTbl llogaabnNllOT~ tiT|} 

IIpOtI3NIrtttTC/INItOCTh llaHltOl'O aJlropl.iTMa Ha ItpagTlttlt2l:gllX 3a2taqax 21|RTFWI'O~IH¢} Be,ltlga. 

1. Introduction 
Recently several a lgor i thms have been  developed in [2 -4 ]  which achieve high efficiency index,  

in the sense of Ostrowski [9], in enclosing a root  x .  o f  the equat ion 

f ( x )  - 0 ( I )  

in  a n  interval  [a, b], where  f ( x )  is con t inuous  over  [a, b] a n d  f ( a ) f ( b )  < 0. Star t ing  with 

the initial e n d o s i n g  interval  [al ,  hi] = [a, b], these a lgor i thms produce a sequence of  intervals  
b ~o {[a,~, '~]}n: l  such that  

l im  (b,~ - a,~) = 0. 

@ Y. 8hi, 1996 
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Let us first  give the definition of efficiency index referred throughout this paper. The 
following definitions are also given in [10], where {e,} is a sequence of positive numbers such 
that lira e,~ = 0. 

n ~ O O  

Definition 1. 

I. {en} converges with Q-order 7" > 1 i f  there are two lx~sitive constants m and &l such 
< < Me~ for all n; tahat m E  n ~n+l _ 

2. {~n} converges with R-order r > 1 if  there are two positive constants m and M and two 
sequences {~,~} and {r/n} that converge to zero with Q-order 7" such that rn~ < ~,~ <_ Mr~n 
fbr all n; 

3. / f  an algorithm produces a sequence of enclosing intervals { [an, bn] },L°¢_- 1 such that (b,, - an) 
converges to zero with R-order or Q-order 7" > 1, and i f  asymptotically k fimction 
evaluations are required in each iteraton, then fl~e dticiency htdex of the algorithm 
equals 7"1/k 

Obviously, if a sequence converges to zero with Q-order r then it also has the. R-order 
7". Combining this fact with the above definition, one sees that roughly speaking Q-order 
and R-order "equally well ~ describe the convergence speed of an algorithm. This is why the 
efficiency index is universally defined for both Q-order and R-order. The significance of the 
efficiency index is that it describes the asymptotic average improvement obtained fi'om each 
function evaluation. In other words, this is a measure of "gain versus cost". The purpose of 
this paper is to propose new algorithms that achieve higher efficiency index while gtmrantee 
to approximate the root to any given accuracy in finitely many iterations. 

Among the algorithms developed in [2-4], the Algorithm 4.2 of [4] has achieved the 
highest efficiency index 1.6686... by using the inverse cubic interpolation. Numerical exper- 
iments show that these algorithms compare well with the efficient solvers of Dekker [7], Bus 
and Dekker [6], Brent [5], and Le [8]. The Algorithm 4.2 of [4] has the best behavior in the 
experiments. The basic idea of this algorithm, which is described as the Algorithm t in this 
secdon, is to repeatedly use the inverse cubic interpolation in Steps 1.3 and 1.5. In these two 
steps, either an inverse cubic interpolation is applied or an approximate quadratic intertx~lation 
in employed. It is proved in [4] that asymptotically the inverse cubic interpolation will always 
be applied and thus higher efficiency index is achieved. Steps 1.7 and 1.8 form a double-size 
secant step. Together with Steps 1.9-1.11 they guarantee the convergence of the algorithm as 
well as a high efficiency index. Please see [4] for details. 

Before giving Algorithm 1, let us first list out two subroutines bracket and NeTvton-Quadratic 
that are being called by the algorithm. The inputs a, b, c for the subroutine bracket are such 
that c E (a, b), f ( x )  is continuous on [a, hi, and f (a)y(b) < o. 

Subroutine bracket(a, b, c, d, b, d) 

compute/(c); 
If f(c) = 0, then print c and stop; 

I f  f ( a ) f ( c )  < o, then  rz = a, ~ = c, d = b; 

If f (b) f (c )  < O, then ~ = c, b = b, d = a. # 

Newton-~uadratic has a, b, d, and k as inputs and r as output, f ( x )  is continuous on [a, b] 
and f (a ) f (b )  < O. It is also assumed that d ~ [a,b] and that f (d ) f (a )  > 0 if d < a and 
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f ( d ) f ( b )  > 0 if d > b. k is a positive integer and r is an approximation of the unique zx:ro z 
of the quadratic polynomial 

P(x)  = P(a,  b, d)(x) = f (a )  + f[a,  b](x - a) + f[a, b, dl(x - a)(x - b) 

in [a, b] where 

Y[a,b] = ( y ( b ) -  Y ( a ) ) / I b -  ~) 

and 
f[a, b, d] = (fib,  d] - f[a, bl)/(d - a). 

Note that P(a) = f (a )  and P(b) = f(b) .  Hence P(a)P(b)  < O. 

Subroutine Newton-Quadratic(a, b, d, r, k) 

Set A = y[a ,b .d] ,  B = f[a,b];  

If A = 0, then r = a - B - I f ( a ) ;  

If" A f ( a )  > 0, then r0 = a, else r0 = b; 

F o r i = l , 2  . . . . .  k do: 

Ti ~l r i_  t 
P ( ~ , - , )  

P'(ri-1)  
P(r i - t )  

- -  = r~-i - B + A(2r~_l - a - b) 

r = r k .  # 

We are now in the position to describe the tbllowing Algorithm 1. 

Algorithm 1 (Algorithm 4.2 of [4]). 

1.1 set  a l  = ~, b~ = b, c l  = a t  - f [ a ~ ,  b l i - V ( a l ) ;  

t.2 call bracket(a1, bl, c~, a2, b2, d2); 

For n = 2, 3 . . . .  do: 

1.3 if n = 2 or if n > 2 but l 'Ii#j(fi - f j )  = 0 (where f l  = f(a,,) ,  f2 = f(b,,), f.., = f(d,~), 
A = f ( e , ) )  then call Newtmt-Quadratic(an, bn, d,., cn, 2) and goto Step 1.4. 

Otherwise compute cn = I291(0) where IP l (y )  is the polynomial obtained by the inverse 
cubic interpolation at the points (a,~, f(a,,)), (b,,, f(b,,)), (d,,, Y(4,)), a .d  (c,,, /(e,,)). 
If (cm - a,~)(c~ - bn) > O, then call Naoton-Qtuldreaic(a,,, b,,, d,,, c,,, 2). Goto Step 1.4. 

t.4 set ~,, = d,~, call bracket(an, bn, %, 5,,, bn, ~ ) ;  

1.5 if ~ i# j ( ] i  - ~ )  = 0 (where ]1 = f(a,~), ]2 = f(/~,~), .~s = f(d, ,) ,  and f4 = f(e,,)) then call 
Newton-Quadratic(~, b,,, d,~, ~ ,  3) and goto Step 1.6. 

Otherwise compute ~ = / P 2 ( 0 )  where IP2(y) is the polynomial obtained by the inverse 
cubic interpolation at the points (a,~, f(5,,)),  (b,, f(b,~)) z (d,,  f ( ~ ) ) ,  and (en, f (en)) .  
If ( ~  - ~ ) ( ~ ,  - b,,) > 0, then call Newton-~.uul,'eaic(5,,, b,,, d,,, t,,, 3). Goto Step 1.6. 

1.6 call bracket(5,,b,,,~,~,5,,,b,,,cln); 

1.7 if l f ( ~ , ) l  < If(fi~)i, then set u~ --- a,,, else set u,, = ~,~; 

1.8 set cn = un - 2 f[Sn,bn]- l f (un);  
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1.9 if I ~  - ~ 1  > 0.5(8. - a . ) ,  then & = 0.5(8. + a~), else ~ = ~; 

1.10 call bracket(an, bn, ~ ,  a~,/~,, d~); 

1.11 if ~ - a~ < , ( b ,  - ~), 
then an+l = &n, bn+l = bn, dn+, = dn, en+l = tin, 

else 
en+l = &,  

call ~-~k,t(a~, ~ .  0.5(a~ + ~ ) .  an+,. b~.~. d,+~), 
endi£ # 

The idea used in Algorithm 1 to achieve the higher efficiency index is to employ the 
inverse cubic interpolation instead of classical linear or quadratic interl~lations whenever pos- 
sible. Thus it becomes interesting to study the possibility of improving the efficiency index by 
applying higher order inverse interpolations. In this paper, we propose a class of enclosing 
algorithms which, in the n-th iteration, uses all the function values computed in the previous 
iteration as well as those already computed in the current iteration to form an inverse inter- 
polation with the highest possible order. With a user-glven accurary ¢ and starting with the 
initial interval [al, bl] = [a, b], these algorithms guarantee to find in finitely many iterations 
an enclosing interval [an, bn] that contains a root of the equation and whose length bn - an is 
smaller than ¢. The optimal algorithm of this class has achieved the efficiency index 1.79.82... 
The algorithms are presented in the next section. In Section 3 the results on effidency index 
are derived. Numerical experiments are reported in Section 4. 

2. Algorithm 
In this section we present a class of algorithms, universally described as the following Algo- 
rithm 2, for enclosing a root x. of (1) in an interval [a, b], where f ( x )  is continuous over [a, b] 
and f(~):(b) < O. 

The basic idea used in Algorithm 2 is that in the n-th iteration, the algorithm uses all 
the funcdon values computed in the ( r~-  1)-th iteration as well as those already computed 
in the current iteration to form and apply, whenever possible, the corresponding high order 
inverse interpolation. When that is not possible, an approximate quadratic interpolation is used 
by calling the subroutine Newton-Quadratic described in Section 1. It is proved in Section 3 
that asymptotically the inverse interpoladon will always be applied and thus a high efficiency 
index may be achieved. This idea is implemented in Step 2.3. Each algorithm of this class is 
associated with an integer parameter k such that k ~ 4. At the n-th iteration when n >_ k, the 
inverse interpolation (or an approximate quadratic interpolation, but asymptotically always the 
inverse interpolation) is repeated for k -  3 times. A more detailed discussion is provided after 
the presentation of Algorithm 2. The algorithm also needs to call the subroutine bracket. There 
is another parameter/z such that # E (0, 1), usually chosen as # = 0.5. For convenience, let us 
give the following definition. 

Definition 2. Suppose xl,  x2, . . . ,  x 3 are j distinct values and so are the function values f(Xl), 
f ( x 2 ) , . . . ,  f ( x j ) .  Suppose IP(y )  is the polynomial of degree j - 1 obtained by the inverse 
interpolation at the points (xl, f ( x l ) ) ,  (x2, f (x2 ) ) , . . . ,  (xj-, f (x j ) ) .  We say that 5" is obtained 
by the inverse interpolation at xl,  x2 , . . . ,  x i i f  

= IP(0) .  (2) 
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We also need to introduce some notations used in Algorithm 2, In the following Algo- 
rithm 2, the current enclosing interval at the begining of a general iteration, say n-th iteration 
with n > k, is denoted by [a,~, bn]. After Step 2.3 an intermediate interval [~n, bn] is obtained. 
Then  at Step 2.7 we get [&,~,/~n]. From that we obtain [a~+l, b,~+l] at Step 2.8. They satisfy 
that 

b.+,] c [a., b.] c k] c b.]. 
More notations such as a(~ ), b(~ ), d(~ ) are used in Steps 2.3 and 2.9. Here a(n/) and b(~ ) satisfy 
that 

[a., = c . . . _  c_ [aC2), 11] = [a., b.] 

while d~ ) are generated in the procedure for use in the next iteration as explaned aRer the 
presentation of the algorithm. 

Algorithm 2. 

2.1 set al = a, bx = b, cl = at  - f ( a l ) / f [ a l ,  bl]; 

2.2 call bracket(a1, bl, cl, a2, b2, d~l)); 

For n = 2 ,3 , . . .  execute Step 2.3 through to Step 2.9: 

2.3 execute the computations below: 

2.3.1 if n = 2 then 
cat1 Newton-Quadratic(a2, b2, d~ 1), temp, 2); 

call bracket(a2, b2, temp, a2, b2, d~l)); 

goto Step 2.4; 

2.3.2 if n = 3 then 
if f(a3),  f (b3) ,  f(d~l)),  f (d~  2)) are distinct and if .~ obtained by the inverse inter- 

polation at a3, ba, d(1),2 d~ 2) satisfies ~ E (aa, b:~), then temp = Y:. Otherwise call 

Newton-Quadratic( aa, ba, d~ 2), temp, 2); 

call bracket(a3, b3, temp, aa, b3, d~l)); 

goto Step 2.4; 

2.3.3 if 3 < n < k 1 then set a 0) = an, b(n 1) = bn, and d(n °) "4('~-2) 

For i = 1 , 2 , . . . , n -  2 do: 
if f(a~)) ,  f(b~)), f ( d ? ) ) ( =  f(d~,iS~))), f(d~,~)),..., f(d~-~)),  f(dC,'_~) . . . .  , f(d~'_-¢ )) 

are distinct and if Y: obtained by the inverse interpolation at a(~ ), b(~), d (°) (= 
d(~2)) ,  d~l ) , . . . ,  d(~ -1), d(~l)t , . . . ,  d(~'~ a) satisfies that ~" E (a~), b(~)), then temp = Y:. 
Otherwise call Newton-Quadratic( a(~ ), b(~ ) , d(~ - I) , temp, 2); 

call bracket(a(~ ), h (~) t,,,,~, n(TM) h(i+1) d(~)~ • 
end do; 

~,~ = a(~ '~-~), b,~ = b!~ -~), goto Step 2.4; 

2.3.4 if n > k then set a(n ~) = an, b (~) bn, and d(n °) ,~(~-2) 

For i = 1, 2 , . . . k  - 3 do: 
if f(a(~)), f(b~)), f(d~ °)) (= f(d(~q:))), f(d(1)),..., f(d(~-~)), f(d~2~),..., f(d~:i ~)) 
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are distinct and if if: obtained by the inverse interpolation at a(~ ), b~), d (°) (=  

d(nk_~2)), d ~ ) , . . . ,  d(~ -1), d(nl)l . . . .  , d(n~_? ) satisfies that ~ E (a(~), b(nO), then temp = ~. 
Otherwise call Nezoton-Quadratic( a(~ ), b(~ ) , d(~ -1), temp, 2 ); 

call bracka ,(a (i)n , b(On , tamp, -na(i+t) , -nh(i+t), d(~)); 
end do; 

an = a (k-2), bn = b!~ -2), goto Step 2.4; 

2.4 if I f (a , ) l  < lf(bn)l, then set un = an, else set u~ = bn; 

2.5 set ~,, = un - 2f[an,  bnl-lf(u,~); 

2.6 if t¢, - Uni > 0.5(bn - ~ ) ,  then ~-n = 0.5(b,, ÷ 5,,), else 6,, = ~ ;  

2.7 call l ,r~t(a, , ,  ~n, ~,,  an, ~n, d~); 

2.8 if bn - a n  </z(bn - an), 
then an+l = 5m, bn+l =/gn, 

else 
call ~ - ~ t ( a ~ ,  t,~, 0.5(an + t,~), an+~, bn+~, & ) ,  

endif; 

2.9 if n = 2, set d~ 2) = d2, 

if 3 < n < k - 1, set d (n-l)  = d n ,  

ii: ~ _> k, set d(2-") = &.  # 

We see that Step 2.8 guarantees that 

bn+l - an+x <_ #l(bn - an) (3) 

with/~1 = max{/z, 0.5} < 1. Hence, either a root of (1) is found in a finite number of iterations, 
or there is a remt x .  of  (1) in [a, b] such that 

z ,  e [an+~, b~+~] C Jan, b,] C_.-. C_ [al, b~] = [a, b] (4) 

and 

bn - an .... , 0  (~) 

with at least linear convergence. In this case, for any user-given accuracy e, the algorithm 
obtains in finitely many iterations an enclosing interval [an, bn] such that b,~ - an < e. 

At the end of the n-th iteration when 3 < n < k - 1, n + 1 points (an+l, f (an+l ) ) ,  
(b,~+l,f(bn+O), (d(~l),f(d(nl))), . . . ,  (d~'~-l),f(d~n-1))) are available for the use in the next 
iteration. They satisfy that 

and 

(an, b~} c (an+l, bn+l, e(~l),..,, 4 n - ' / ) ,  
{an+l,b~+,, d~l),. : . ,4~-1)} C[an, bnl 

(6) 
(7) 

d(2 ¢ [o~+i, bn+l], Vi = 1, 2, . . . ,  n - 1. (s) 
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Therefore at the begining of k-th iteration, k points (ak, f(ak)), (bk, f(b~:)), rd(D etd (1) ~ k k - l ) d k  I c - l l ] ~ ' ' ' ~  

(d(~_~ 2), f(d(kk_~2))) are available, for which (6)-(8) hold with ,rt = k -  I. 

Starting with k-th iteration, Algorithm 2 computes only k -  3 points at Step 2.3 in each 
iteration. Therefore at the end of the n-th iteration when n > k, k points (a~+1, f(a,~+1)), 
(b,+l, f(bn+l)), (d O), f (d~))) , . . . ,  (d(r, k-~), f(dk*-z))) are ready to be used in the next iteration. 
(6)-(8) remain true if we replace d(n '~-1) by d~ -2). To sum it up, in the n-th iteration when 
.n> k, 

(I) k points (a,,,f(a,~)), (b,,, f(b,,)), (d(~l)l,f(d~l)_,)),..., (d~k_-la),f(d(~k..-12))) are carried over 
from the previous iteration; 

(II) k - 3 new points are computed in Step 2.3, each is obtained, whenever possible, by using 
the inverse interpolation at the ]c carried-over points as well as the points already computed 
in Step 2.3 of the current iteration; 

(III) One new point is computed in Steps 2.7-2.9. This point may cost an additional flmction 
evaluation at Step 2.8. However, in next section we will show that when n is big enough, 

g,~ - a~ < ~(b~ - an) 

always holds. Therefore, asymptotically Algorithm 2 requires only k - 2  function evaluations 
per iteration; 

(IV) The points (an, f(an)),  (ha, f(bn)), plus the k -  2 points computed in the n-th iteration, 
form the group of k points: 

(a,,+,, f(a,,+~)), (b,,+l, f(bn+l)), (d (t), f(d(nl))),..., (d~ -2)' f(d~-2)))  

for the use in (n + 1)-th iteration. 

3. Efficiency index of Algorithm 2 
In this section we show that under certain smoothness assumptions the asymtotic efficiency 
index of Algorithm 2 is 

1 

Ik 

for each integer /c > 4. We will also show that Ik ~ Is for all k ~ 4. Hence /c = 5 yields 
the optimal procedure of this class, achieving the efficiency index "Is = 1.7282.. .  In this case 
at most four and asymptotically only three function evaluations are needed in each iteration. 
The total number of function evaluations thus will be bounded by four times of that needed 
by the bisection method. 

In the rest of this section, the following assumptions (A), (B), and (C) are assumed to be 
true. 

(A) f (x)  is continuously differentiable in [a, b] and f (a) f (b)  < O. 

(~) z .  i, a , im#e  ~e~o or f ( z )  i ,  [a, hi. 
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(C) Algorithm 2 does not terminate after a finke number of  iterations. (4) and (5), plus 
assumptions (A) and (B), then imply that f ' (x )  ?£ 0 in tan, bn] when n is big enough. 
Therefore without loss of  generality we assume that f ' (x)  ~ 0 in [a, b]. 

We first prove the following Lemma 1. 

Lemma 1. Under assumptions (A), (B), (C), also assume that f ( x )  is j times continuously 
differentiable in [a, hi. Suppose {x: t , . . . ,x  j} C_ [a, b] and also suppose that ~ is obtained by 
the inverse interpolation at x l , . . . ,  xj, then there is a constant number Mj, independent of  
z~ . . . . .  x~, such that 

I~ - x,I S M y ( x l ) l . . .  If(x~)l. (~o) 

Proof Since we assume that f ' (x )  y~ 0 in [a, hi, the inverse function f - l ( y )  exists tbr y E f([a, b]) 
where f([a,b]) stands for the image of [a,b] under the function f (x) .  It is clear that ibr ,all 
y = f(z) e / ( [~ ,  hi), 

1 
[f-~(y)]' = f,(~) 

and 

For l < j ,  suppose 

-f"(x) 
[f-1(y)]# = (f'(x)) 3" 

[ : - l (y)](0 = P~(x) 
(: ,(~))2,-1 

where Pt(x) is a polynomial of f '(x), f"(x) , . . . ,  f(l)(x). Then 

:'(x)~'(z) - ( 2 t -  1)f"(x)~(z)  ~+l(z)  
(f'(x)) 21+I (f'(x))2(/÷l) -I 

with Pl+l(x) being a polynomial of f ' (x) ,  fV(x) , . . . ,  f(t+1)(x). Hence by induction we see that 
for any y = f ( x )  E f([a, b]), [f-l(y)](j) exists and 

Pj(x) (11) 
[f-l(y)](j) = ( f ' (x))  2j-1 

where Pj(x) is a polynomial of f t ( x ) , F ( x ) ; . . . ,  f(J)(x). Since y(x) is j times continuously 
differentiable, above arguments indicate that f - l ( y )  is also j times continuous in f([a, hi). The 
facts that x. = f - t ( 0 )  and 5: = IP(0)  (where IP(y )  is the inverse interpolation polynomial at 
x l , . . . , z j )  imply that 

1~ - z,I < M j l f ( x l ) l . . . [ f ( x j ) l  

with 

(10) is therefore proved. [] 

Lemma 2. Under assumptions (A), (B), (C), also assume that f ( x )  is 2k - 4 times continuously 
clifferentiable in [a, b]. Then there is an r > 0 and an integer N >_ k such that the high order 
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inverse interpolations are  always used at &ep  2.3 o f  n . th  iteration when n >_ N ,  and  that the 
un obtained at Step 2.4 satisfies that 

[f(un)[ < r(b,~ - a~)~(b~_l - an_l )  ~, Vn  > N (12) 

(k-S)(k-2) ~ t h  ~ = 2 + 1 a n d  ~ = ( k  - 3 ) ( k  - 2) .  

Proof. Consider n > k and i e {1, 2 , . . . ,  k - 3}. Since we assume that f ' ( x )  7~ 0 in [a, b], f ( x )  
is monotone and thus all the function values involved in Step 2.3 are distinct. Therefore  we 
only need to prove that when n is big enough 

~ E r~(~) /g% gi = I, 2, k - 3 (13) 

where £i is obtained by the inverse interpolation at a(~ ), b(~ ), d ~ ) ( =  ,~(k-2)~ d~l) d(i_l) 

d(~) ,~(k-a) 

By Lemma 1 we see that 

]~ - x.1 <_ Mk+i - l l f ( a~ ) ) I  [f(b(~))l l f(d~))]  l f (dkt)) l  . . .If(d(d-1))t 
(1) 

x I f (d ,~_ l ) l . . .  If(d~k_-~3))l 
= M~+,_11f(a~))t tf(b~))l lf(dk1>)t...If(d~-x))t 

× If(d(ff_~)l... tf(d~-~)l lf(d~-~))[ 
< M k + i _ l m  k+i-lrbk ~ -  a,)i+l(b,~_ 1 - a,,_l) k-2 (14) 

where m = max I f ' ( z ) l .  Since x .  e (a, b) and bn - an converges to zero, (14) implies that 
a<_~'<_b 

there is an N1 > k such that when n >__ N1, xi ~ (a,b) for all i =  1 , 2 , . . . , k - 3 .  It then 
follows that 

l f ( ~ i ) l  = If(:~i)  - f ( x . ) l  < mlS:i  - z , I .  

Therefore,  when n > N~, for  all i = 1 , 2 , . . . , k -  3 we have 

[f(ei) I  < M~+i-~m~+i-~(b,~ - a,Oi(bn-x - a,~-~)~-2lf(a(~))l (15) 

and 

M mk+~-1'b - a,~)i(b,~_1 - an_l)k-2tf(b(~))].  (16) If(5:OI <_ k+i-1 t ,~ 

From (15) and (16) we see that there is an N > N1 such that when n > N 

l f ( :~d ]  < m i n { l f ( a ~ ) ) l ,  l f ( @ ) l } ,  v i  = 1, 2 . . . . .  k - 3. (17 )  

(13) follows immediately because f ( x )  is monotone on [a, b]. 

We now show that (12) holds when n > N.  Let us consider Step 2.3 of the n-th iteration 
for n > N and apply induction on i. 

For i = 1, (14) indicates that 

lYc.t - x .  l < M~mk(b~ - a,~)2(b,~_l - an_l) k-2. 

Therefore  

I f (2q) t  <_ M k m k + 1 ( b ~ -  a~)2(b~_1 - a~_1) k-2 

= rl(b,~ - an)2(b,~-i - a n - l )  k-2 (18) 
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where r l  = M k m  k+l > O. 

Similarly, 

l f (~2)l  <- 
< 

< 

where r2 = r l M ~ + l m  k+~ > O. 
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ro l e :  - z . I  

Mk+lmk+l(b,~ - a~)2(bn_l - an_l)k-2lf(£1) [ 

r2(bn - an)a(bn-1 - an- l )  2(k-2) (19) 

Suppose for 2 < l < k - 3 we have that 

[f(5:l)[ _< rt(b.  - a.)(:+2+3+'"+O(bn-1 - a . -1)  t(k-~) (20) 

for some rl > O. then 

l:(~z÷1)l <-- ml~,+1 - z.l 
<_ mMk+llf(a~+X))[ tf(b~+~))t l f (d(~)) l . .  . l f(d~))[ lf(d(~_)x)].., lf(d~k_-;2))[ 

< Mk+vnk+t(bn - an)l+l(bn_l - an_l)k-2lf(:~t) I 

<_ rt+l(bn - an)(2+2+3+"'+t+i~+l))(bn-1 - an- l )  (z+l)(k-2) (21) 

ln(~+l) h(~+l) d(1), - . ,d~)}. with rl+l = r lMk+im k+l > 0. Here we notice that ~l E t - n  , -n  , • 

Therefore ,  by induction we see that there is an r > 0 such that when n >_ N 

[f(ff:~-z)[ < r(bn - an)(~+2+a+'"+(k-a))(bn-1 - an- l )  (k-3)(k-2) 

= r(bn - an)a(b,~-I - an- l )  ~ (22) 

where o~ = [(k - 3)(k - 2)] /2 + 1 and /3  = (k - 3)(k - 2). 

From Step 2:3 of Algorithm 2 we see that 5:k-3 E {fin, bn} when n ~ N. From Step 2.4 
we see that tf(u~)l  = min{lf(~n)f  , If(bn)]} for all n. Therefore  If(un)l < tf(xk-3)! for  n > N 
and (22) thus implies (12). [] 

T h e  following Lemma 3 is adopted from Alefeld and Potra [2], and the same proof  in [2] 
applies. 

Lemma 8 (see Alefeld and Potra [2]). Under assumptions (A), (B), (C), there is an nx such that 

for all n > nl ,  ca and un in Step 2.5 satisfy that 

f ( ~ ) f ( u n )  < 0 .  (23) 

We are now ready to prove the assymptotic convergence property of Algorithm 2. 

Theorem 1. Under the assumptions o f  Lemma  2, the sequence o f  diameters { ( b n -  an)}~=~ o f  
the enclosing intervals produced by Algori thm 2 converges to zero, and there is an L > 0 such 

that 

bn+l - a~+l <_ L(bn - an)a(bn-1 - an- i )  ~, Vn = 2, 3 , . . .  (24) 

where a = [(k - 3)(k - 2)]/2 + 1 and /3  = (k - 3)(k - 2). Moreover, there is an n2 such that 

for all n > n2 
an+l = gzn and bn+l = t)n. 

Hence when n > n2, Algori thm 2 requires only k -  2 function evaluations per  iteration. 
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Proof. Let us recall that in this section we assume without loss of generality that f ' (x)  -~ 0 for 
all x E [a, b]. Thus we may assume that 

ml = rain ]f'(x)l > 0. 
a<z<b 

Consider the integers N of Lemma 2 and nl of Lemma 3. Let n2 > max{N, nl}. Then by 
Lemma 3, (23) holds when 'n > n2. From Steps 2.5-2.7 of Algorithm 2 and the thct that 
'urn, ~ E Jan, bn] we see that 

/~. - a,~ < [ ~  - u . t ,  v n  > n 2 .  ( 2 5 )  

From Step 2.5 we also see that 

le. - u.[ = 12f[~ . ,bn]- l f (un) t  < -~7~ lf(u,,)l  • (26) 

(25), (26), and (12) now imply that 

2r 
/9, - &,~ <_ - - ( b ,  - a,~)'~(bn-1 - a,,-i)/~, Vn > n2. (27) 

' /n  t 

Since {(bn-  an)}n=l~¢ converges to zero, if n2 is large enough then 

b = -  6~ < / z ( b n -  a,~), "qn>n2 .  

This shows that for all n > r/. 2 

a n + l = S n  and bn+l=bn.  

Finally (24) follows by using (27) and taking 

L > max ' - t m l  (b,~ - a , ~ ) ~ ( b , ~ _ l  - a , ~ - l ) ~ ;  n = 2 , 3 ;  . . . .  n2  • 

The proof is therefore completed. [] 

a Corollary. Under the assumptions o f  Theorem 1, {(bn - ,~)},~=1 converges to zero with an 

R-order at least a / 2 + ~ ' ~ c ~ 2 / 4  where 

= [ (k  - 3 ) ( k  - 2 ) ] / 2  + 1 

and 
= (k  - 3 ) ( k  - 2).  

Since asymptofically Algori thm 2 requires k - 2 fimction evaluations per  iteration, its efticiency 

index is 

Ik = (a /2+~/ /3+o~z14)  r~-2 
1 

= [ ( k - a ) ( k - 2 ) / 4 +  (28) 

Proof. By Theorem 1, {e~}n~__l converges to zero and for all n = 2, 3 . . . .  
a ~  

Cn+ I "~ LtnCn_ 1. 

The result follows by invoking Theorem 2.1 of [10]. ['-I 

The next theorem indicates that the optimal procedure of this class of algorithms repre- 
sented by Algorithm 2 is obtained when k = 5. In this case, at most four aud asymptotically 
only three function evaluations are needed in each iteration, and the efficiency index is 
Is = 1.7282... 
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Theorem 9.. Let [k be as given in (28). Then Ik S A fbr a/1 k > 4. 

Proof For x >_ 4, consider 

I t (x )  = (X - 2 ) ( x  - 3 ) / 4  + l / 2 ,  

t . (x )  = ¢ ( x  - 2 ) ( ~  - 3) + (~l(z))  ", 

h(x) = l,(x) + /u(X) 

and 
1 

g(x) = x - 2 ln(h(x)). 

Then Ik = exp(g(k)) for all k > 4. It is easy to see that h(x) > I for 
In(h(x)) > 5//2 for all x > 8. Hence when x > 8, 

all x > 4 and 

(x 2)h'(x) (x - 2)(x - 3) (x - 2) 2 (x - 2)(2x - 5) - -  = -t- ~ q-  + 

4 4 2/2(x) 

< ( ~  - 2 ) ( ~  - 3 )  + ( ~  - 2 )_____~  ~ + 2 ( Z  - 2 ) ( 2 ~  - 5)  

- 4 4 ( x  - 2 ) ( x  - 3 )  

x - 2  2 
= ( x - 2 ) ( x - 3 ) + - - ~ + 4 + ~  

x - 3  

_< (~ - 2 ) ( x  - a )  1 + 2 ( ~  - 3-------~ + 2 ( ~  - 2 ) ( x  - 3)  

5 2)(x 3) < ~ ( z -  - 

< 56(z)  

+ 

(x - 2)(2x - 5)/t(x) 

412(x) 

(x - 2)(2x - 5) 

4 

< h(x) 

< h(x)ln(h(x)) .  

Therefore 

g ' ( x ) =  (z - 2 ) h ' ( x )  - h(x)In(h(x)) 
( x - 2 ) 2 h ( x )  < 0 ,  V x ~ 8 .  (29) 

(29) implies that I~ <Is for all k .> 8. Direct calculation shows that 

/5 = max{Ik; k = 4, 5, 6, 7, 8}. 

The theorem is thus proved. [] 

4. Preliminary numerical experiments 
The numerical results reported in [4] show that Algorithm 1 has the best behavior in comparison 
with several widely used equation solvers such as the algorithms of Dekker [7], Brent [5], Bus 
and Dekker [6], and Le [8]. In this section we present some_preliminary numerical experiments 
comparing Algorithms 1 and 2 with k = 5. The parameter/z was chosen as 0.5. The machine 
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# fu. o. [a, b] parameter 

1 s i n x  - z / 2  ['x/2, rr] 

2 a [a. ,b.]  2 - 2_,~=t tz* - 
a~ = n a + 10 -9 

b . = ( n + l )  2 - 1 0  -9 n=1(1)10 

3 axe  ~ [ -9 ,  31] a = - 4 0 ,  b = - 1  
a = - 1 0 0 .  b = - 2  
a = -200, b = - 3  

4 x = -  a [0,5] a = 0.2, 1, n = 4(2)12 

[ -0 .95 ,  4.0st = 1, = 8(2)14 

5 sin x - 0.5 [0, 1.5] 

6 2ze -~ - 2e -~= + 1 [0, t] n = 1(1)5, 20(20)100 

7 [1 + (1 - n)" lx  - (1 - nx )  2 [0, 1] n = 5, 10, 20 

S z 2 -  ( 1 -  z ) "  [0,1] n = 2 ,5 ,10 ,15 ,20  

9 [1 + (1 - n)4]x - (1 - nx )  4 [0, 11 n = 1, 2, 4, 5, 8, 15, 20 

10 e - ' = ( z  - 1) + z"  [0, 1] n = 1, 5, 10, 15, 20 

11 (nx  - 1) / ( (n  - 1)x) [0.01, 1] n = 2, 5, 15, 20 

12 x,'} - n~ [1,1001 n = 2(1)6, 7(2)33 

13 0 if x = 0 [ -1 ,4 ]  
xe  -z-= otherwise 

14 

15 

~ (  ~--- + s i n x -  1) i f x > O  2o 1.s - [ -  104,1r/2] n = 10, 20, 30, 40 
2~ otherwise 

e - i £ 5 9  if x > 2x1°-~ l+n 
~"+~* In 2×1°-31 [_ 104, 10_4] n = 20, 30, 40 e = ×1°* - 1.859 if x 6 tv, 1"-i7a-~, 

n = 100(100)1000 

-0 .859  if x < 0 

T a b l e  1. Tes t  p rob lems  

used was A T & T  3 B 2 - 1 0 0 0  Model  80, and  double  precis ion was used. T h e  test p rob lems  are  

listed in Tab le  1. T h e  t e r m i n a t i o n  c r i te r ion  was the  one  sugges ted  by Brent  [5], i.e. 

b - a < 2 .  tole(a, b) (30) 

where  [a, b] is the  c u r r e n t  enclosing interval ,  a n d  

tole(a,b) = 2 .  lul " macheps + tol. 

Here  u E { a , b }  such tha t  I f ( u ) t  = m i n { [ f ( a ) t ,  [ f (b ) l} ,  macheps is the  relat ive mach ine  precis ion 

which in o u r  case is 1 .9073486328 × 10 -16, and  tol is  a user-given nonnega t ive  number .  

Due  to the above  t e rmina t i on  cr i te r ion ,  a na tu ra l  modif ica t ion  of  the subrout ine  bracket 

was e m p l o y e d  in ou r  i m p l e m e n t a t i o n  o f  the  two a lgor i thms.  T h e  modi f i ed  subrout ine  is as 

follows. 
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Subroutine bracket(a, b, c, ~, b, d) 

Y. SHI 

set 5 = A- role(a, b) for some user-given fixed A E (0, 1) (in our experiments we took 
= 0 . 7 ) .  

if b - a < 46, then set c = (a + b)/2, goto 10; 

if c < a + 2c5, then set c = a + 2& goto 10; 

if c > b -  25, then set c = b - 2~5, goto 10; 

10 if f (c)  = 0, then print c and terminate; 

if f(a)/(c) < 0, then ~ = a, b = c, d = b; 

i f / ( b ) / ( c )  < 0, then ?2 = c, b = b, d = a; 

calculate tole(fL, b); 

if b - ?2 _< 2 .  tole(?2, b), then terminate. # 

We tested all the problems listed in "Fable 1 with different user-given tol ~ = 
10 -T, 10 -1°, 10 -I5, and 0). The  total number of timction evaluations in solving all the prob- 
lems (100 cases) are listed in "Fable 2. From there  we see that the pertbrmance of  these two 
algorithms are well comparable, and the behavior of Algorithm 2 is slightly better than that of  
Algorithm t. 

We also tested two special problems. In one problem, 

I ( x ) = x  n and [a, b] = [-1,101 (31) 

with n being 5, 7, 9, 11, 13, and 15. In this case, the root x ,  = 0 is not a simple root. Hence 
the assumptions in Section 3 are not satisfied. Another  problem is that 

f(x)=x 1/"-1 and [a,b]=[O, t0] (32) 

with the same values of n. Now x ,  = 1 is a simple root and f - t ( y )  = ( y +  1)n is a 
polynomial. All the assumptions of  Section 3 are satisfied in this case. In both of those two 
cases, Algorithm 2 works much better than Algorithm 1. The  corresponding numerical resuhs 
are listed in Table 3 and Table 4. 

In order  to show the effectiveness of "improving efficiency index", we list in Table 5 
the following numerical results: for  Problem 15 with n = 40 (listed in "Fable 1) and tol = 
10 - is ,  Algorithm 2 uses 31 function evaluations to obtain an enclosing interval that meets the 
termination criterion (30) while Algorithm 1 uses 32 function evaluations. Both algorithms 
start with the same initial interval whose length is about 10000. After using 21 function 
evaluations, Algorithm I obtains an enclosing interval with length 0 .1104E-2  (here 0 .1104E-2  
stands for 0.1104 x 10 -2, and similar notations are also used below), and Algorithm 2 gets one 
whose length is 0 .1021E-2.  Table 5 lists the length of  enclosing intervals obtained after each 
function evaluation, starting with the 21st function evaluation, upto the terminat ion under  the 
criterion (30). The  results reconfirms the fact that "improving efficiency index" increases the 
ASYMPTOTIC AVERAGE improvement  obtained from each function evaluation. 

As a conclusion from our preliminary numerical experiments, we see that in general 
Algorithm 2 is very well comparable to Algorithm 1. We have also considered two special cases: 
Problem (31) whose solution is not a simple root and thus the assumptions in Lemma 1 ~  
Corollary are not satisfied, and Problem (32) where all assumptions in Section 3 are satisfied. 
In both cases Algorithm 2 works much better than Algorithm 1. From "Fable 5 we also 
see that with a higher  efficiency index, the Algorithm 2 does have a higher asymptotic 
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to/ 10 -7 10 -1° 10 -~s 0 

Alg. 1 1480 1555 1609 1631 
A!g. 2 1462 1529 1597 1627 

Table 2. Total number of function evaluations in solving all the problems listed in "Fable 1 

tol 10 -7 10 -~° 10 -is 0 

AIg. 1 470 656 895 2143 
Alg. 2 385 482 735 1715 

"Fable 3. Total number of function evaluationsin solving problem(31) with n = 5 ,7 ,9 ,11,13,15 

to~ 10 -7 10 -m 10 -1~ 0 

Alg. 1 78 82 87 87 
Alg. 2 72 73 74 75 

Table 4~Total number of fhnction evaluationsinsolving problem(32)with n = 5 ,7 ,9 ,11,13,15 

function evaluation Algorithm 1 Algorithm 2 
21st 0.1104E-2 0.1021E-2 
22ud 0.4205E-3 0.5107E-3 
23rd 0.1716E-3 0.1946E-3 
24th 0.8580E-4 0.7926E-4 
25th 0.4064E-4 0.3963E-4 
26th 0.2919E-4 0.3180E-4 
27th 0.9509E-5 0.1914E-5 
28th 0.5009E-5 0.4862E-6 
29th 0.4914E-5 0.2390E-6 
30th 0.2234E-8 0.2389E-6 
31st 0.1175E-8 0.1400E-14 
32nd 0.1400E- t4 

Table 5. Length of enclosing intervals obtained after each function evaluation in solving 
Problem 15 with n = 40 and tol = 10 -15, starting with the 21st function evaluation, upto the 
termination 

AVERAGE convergence speed. We wish to mention that Algorithm 2 uses the fifth order 
inverse interpolation to achieve a higher efficiency index than Algorithm 1 which uses the 
third order inverse interpolation. Both algorithms require at most four fimction evaluations 
per iteration and asymptotically only three. Since a function evaluation usually costs much 
more than the computation of :2 = [P(O) defined in (2), Algorithm 2 in general will not have 
a higher computational complexity than Algorithm 1 does. 

Finally, we notice that our analyses in Section 3 indicate that Algorithm 2 achieves the 
efficiency index 1.7282.. .  when the function f (x )  is six times continuously differentiable. In 
[4], it is proved that in order for Algorithm 1 to achieve the efficiency index 1.6686.. .  the 
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function f ( x )  only needs to be four times continuously differentiable. This makes Algorithm 2 
seem more restrictive than Algorithm 1. Fortunately, both algorithms guarantee the linear 
convergence shown in (3) as long as f ( x )  itself is continuous. Our experiment with problem 
(31) also show that Algorithm 2 may perform better than Algorithm 1 even if the assumptions 
in Section 3 are not satisfied. 
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