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Linear interval equations:
Computing enclosures with bounded relative
or absolute overestimation is NP-hard

Viabix KreinovicH and Anatory V. Lakeyev

It is proved that for every § > 0, if there exists a polynomialtime algorithm for enclosing solutions
of linear interval equations with relative (or absolute) overestimation better than 8, then P = NP. The
result holds for the symmetric case as well.
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CHNMETPHUHBIX CHOTEM,

1. Introduction

For a system of linear interval equations
Alz =¥ (1)

where A! is an interval matrix (i.e., matrix with interval components), and b is an interval vector
(i.e., vector with interval components), a solution set is defined as follows:

X ={z; Az =b for some A€ Al be bl}.

Ideally, for a given linear interval equation, we would like to know the exact bounds of
possible values of z,, i.e, the interval vector [z,Z] given by

z, = m\in z;, and TI; = MAX Z;.
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In [5], it is proven that the problem of computing the exact bounds is NP-hard (computationally
intractable).

Comment. Crudely speaking, NP-hardness of a problem P means that if we are able to solve
this problem in reasonable time, then we would be able to solve all problems from a very large
class of complicated problems {called class NP) in reasonable time, and this possibility is widely
believed to be impossible. Heve, by a reasonable time, we mean a time that does not exceed some
polynomial of the length of the input. For exact definitions see, e.g., [3].

The vesult from [5] was proven for rectangular (non-square) matrices. In {11}, it was shown
that even if we restrict ourselves to quadratic interval matrices 4', computing the exuct bounds
z; and Z; is still NP-hard. So, if P # NP, no feasible (polynomial time} algorithm can compute
the exaet bounds.

These results do not mean that solving linear interval equations is a hopeless task. There
exist many efficient algorithms that produce good approximations to the desired bounds; these
algorithms can be found. eg., in Alefeld and Herzberger [2], and in Neumaier [8] These
algorithms do not always produce the exact bounds, but it has been proven [7] that if the
interval components of A’ and b’ are “hin” enough, then there exists a polynomial-time
algorithm that computes the exact bounds for X in “almost all” cases (“almost all” in some
reasonable sense).

Since we cannot always compute the exsct bounds, the natural question is: would it be
possible to have a feasible algorithm if we only want to compute approximations to the bounds
of X?

In [6], it is shown that for each § > 0, if we want to compute the bounds that are
§-accurate (i.e., estimates that differ by < é from the actual bounds) then the problem is also
NP-bard. This result is proved for generic rectangular matrices.

J- Rohn [9, 10] has shown that for square matrices, computing approximate bounds is also
NP-hard. To formulate his resuit, we will need the following definition:

Definition 1.
1) For a system of linear interval equations (1), enclosure is defined as an interval vector [g, 7l
satistying X C [y, T}, where X is the solution set of (1).
2) An interval matrix A! = [A.— A. A.+ A] is called strongly regular if p(]|A7|A) < 1 (where

p denotes a spectral radius of a matrix).

Comment. The condition of strong regularity is known to guarantee that every matrix A € Al
is regular.

Theorem (Rohn [10]). Suppose there exists a polynomial-time algorithm which for each strongly
regular n x n interval matrix A" and each b' (both with rational bounds) computes a rational
enclosure [y, 7} of X satistving

!Zﬁl <2 (2)
n2
for each i with T; # 0. Then P = NP.

This theorem shows that computing “sufficiently accurate enclosures” is NP-hard, ie,
if P#NP, then every algorithm that computes sufficiently accurate estimates requires lots of
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computation time. Rohn’s result is based on the assumption that the larger n, the more
accurately we want to compute the enclosures. The natural next question is: what if we
want an algorithm to compute all enclosures with the same accuracy? Will it still be an NP-
hard problem? In other words, for a given 6 > 0, is the problem of computing é-accurate
enclosure for solutions of interval linear systems with square A’ NP-hard? This problem was
first formulated by A. Neumaier, whose hypothesis was that this problem was NP-hard.

In this paper, we prove Neumaier’s hypothesis (Theorems 1 and 2). We also prove that a
similar result is true for the symmetric case (Theorems 3 and 4).

2. The main results

Theorem 1. Suppose for some real number § > 0, there exists a polvnomial-time algorithm
which for each strongly regular n x n interval matrix Al and cach b (both with rational
bounds) computes a rational enclosure [y, J| of X satistying

B < ®)
for each i with F; % 0. Then P = NP.

Theorem 2. Suppose for some real number § > 0. there exists a polynomial-time algorithm
which for each strongly regular n x n interval matrix A" and each B! (both with rational
bounds) computes a rational enclosure [g, 7] of X satistying |§; — T;) < & for all i. Then
P = NP.

Comments.

1) Hence, the problem of computing sufficiently accurate enclosures is very difficult: an
existence of a polynomial-time algorithm yielding the accuracy (3) would imply polynomial-
time solvability of all problems in the dass NP. As we have already mentioned, this
possibility is considered highly unlikely.

2) If P # NP, then for absolute accuracy, not only we cannot compute enclosures with one
and the same accuracy (i.e., with one and the same bound for absolute overestimation) for
all n in reasonable time, but even if we allow accuracy to decrease polynomially with n,
we still will not be able to compute these “relaxed-accuracy” enclosures:

Theorem 2'. Suppose for some polynomial §(n). there exists a polynomial-time algorithm which
for each strongly regular n x n interval matrix A" and each b (both with rational bounds)
computes a rational enclosure |y, g| of X satisfying |§, — il < 6(n) for all i. Then P = NP.

Proofs: Main Lemma. Our proofs of Theorems 1, 2, and 2" will use the proof from [10].
In {10}, it was proven not only that the problem of computing (4/n?)-accurate enclosures is
NP-hard for arbitrary square matrices AT but that this problem is NP-hard even if we restrict
ourselves to the following special class of linear systems. Let us {ix an integer p, and denote
e=(1.1.....1)7 € R*. We will use the matrix norm

“A’[”s = ETUVI]C = ZZ |7”'iji~
LI |
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A real symmetric p X p matrix M = (m;;) is called an MC-matrix if it is of the form

s if i =j,
) € {0 -1} ifi#j
(i, = 1,...,p). For a given p x p MC-maurix M, Rohn [10] considers the linear interval
system (1) with AT = [A; — A, A+ A], b = [be = 6, b, + 8] given by
0 -I 0 00 O
Ac=| -1 0 M|, A=]100 0 (4)
0 Mt M! 0 0 Bee”

{all the blocks are p x p, [ is the unit matrix),

0 0
be=| 01}, &=|0 (5)
0 fe
(all the blocks are p x 1) and
1
F = e 3
O T ©

For each MC-matrix M, the matrix A’ is strongly regular, and the problem of computing the
(4/n?)-accurate bounds for the resulting system A’z = b! is NP-hard.

In [10], it is also shown that for each system of this type, we have T, =Ty = -+ =TI, 2
1/(2p%), and that the vector T is achieved as the solution of a system Azr = b, where b € b
and

0 -I 0
A=| -1 0 AM-! e AL
0 MU M-8z

We will use these results from [10] as the Main Lemma for our Theorems.

Proof of Theorem 1. Suppose that for some real number 6 > 0, there exists a polynomial-time
algorithm U that for each strongly regular n X n interval matrix Al and each interval vector
b’ computes an enclosure that satisties the inequality |§; — Z:|/Z; < 6 for all i for which T; # 0.

To prove that P = NP, we will only need this algorithm applied to systems Al = bt
described in the lemma, and to the following simple modifications of these systems: To describe
these modifications, we must consider the following auxiliary vector

For the interval matrix A! (from (4)), the only difference between 3p x 3p matrices A € Al
and A, can be in the right lower p X p part (because this is where A has non-zero elements).
Since owr vector v has 0 values for its last p elements, we can conclude that for every A € Al
we have Av = A. Therefore, for every real number p, if Az = b for some A € Al and
be b, then A(x — p-v) = Az — - (Av) = b— - Acv. In other words. if = belongs to the
solution set X of the original interval system, then Z = z — - v belongs to the solution set X
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of the auxiliary system AlZ = b, where b = b/ — ju- Aw. This auxiliary system is the desired
modification.

Vice versa, if Z belongs to X, this means that A% = b for some A € A’ and b € bY. Then,
for £ = Z+p-v, we have Az = AZ+p- Av = b+ - Acv and therefore, Az € bl = b + pu- Aw.
So, if 2 € X’, thenz=%+pu-ve X.

Therefore, a vector  belongs to the solution set X of the original system iff the vector
I =1 v belongs to the solution set of the auxiliary system. Hence, the optimal enclosure
T for the new system is related to the optimal endosure Z for the original system Alz = b
by a simple formula:

Fi=Ti~p i=1,....p (7)

We will show that for interval systems described in the lemma and for their above-described
modifications, by applying the given algorithm U several times (to different auxiliary interval
systems), we can design new algorithms U(k) that compute enclosures J(k), k = 1,2,... for
these systems, and for which |;(k) — Til/Z; < 6k with decreasing 6. As a result (as we will
show), after no more than a polynomial number of applications of U, we will get an enclosure
with a relative accuracy 4/n? (the value of paramcter k that corresponds to this accuracy will
depend on the size n of the system). The number of applications of U does not exceed a
polynomial of n. and each application requires a computation time -bounded by a polynomial
of n. Therefore, all computations that result in a (4/n%)-accurate enclosure, are performed in
polynomial time. Hence, from the lemma, we will conclude that P = NP,

Base. First, we apply U to such systems, and get an enclosure [y, 7] for which |7, - Z;|/Z: < 6.
So, the first algorithm U(1) is simply U, and we have the first enclosure (1) = § with §; = 4.

Iteration step. Suppose that we have an algorithm U(k) that for systems from the lemma and
for the above-described auxiliary systems, computes an enclosure (k) satistying the inequality
g,(k) ~ T
i'yL(—%“——t' < b
i Iy i
for all i < p for which Z, # 0. In other words, F; < (k) < T;-(1+4,) (the left inequality stems
from the fact that F(k) is an enclosure). Since we know that for our systems of linear equations,
the actual upper bounds T, .. . E, are equal, we can take the smallest of the computed bounds

—y—min ( k ) = 11%1{1%1}) ?ji (1‘.)

as the enclosure for all these upper bounds T;, 1 <& < p. From

we can conclude that (k)
% <T, < ymin(k)'
Let us choose ¢ € (0.1) (eg., € = 1/2), and apply the algorithm U(k) to the auxiliary
system A'Z = b7 with
1z
146 '

Ho= e = Ty—min(l"“) )
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As a result, we get an enclosure § for this auxiliary system, ie. a vector for which
zZ; < Yy (9)

The actual upper bound T; for this new system js related to the actual upper bound Z; for the
original system by a formula (7). Let us first show that the actual upper bound Z; is non-zero.
Indeed, from (8) and from the definition of zy, we conclude that

1—-¢

1+ 6

1-
Sffi(1+5k)'r:%=~*~ffi(1*5)<fz

Hie = ylniu(k") '

{for the last inequality, we used the fact that € < 1). Therefore, Zi=T - e > 0 for i < p.
Hence, for this system, the result § of applying the algorithm U(]|) satisfies the inequality

[9; = %) < 6k - T (10)

Adding g to both sides of (9), we conclude that Z; < §;(k+ 1), where we denoted J;(k+1) =
¥; + ur. Therefore, T;(k + 1) is indeed an enclosure (for i < p). Let us find the value iy
that corresponds to this new enclosure.

Since T; = T; + pr and F;(k+1) = §; + pe, we conclude that §; — %; = F;(k + 1) = Z;, and
therefore, (10} lead to the inequality

[Gi(k+1) —Fi| < 8- Zu. (11)

So, to estimate fp,;, we must estimate Z; = Z; — g From 3, (k) = T; and the definition of
Bk, we have
l-¢

. > Ty ———.
Be =50 705,
Therefore, .
_ —£
T: = T; — < F,; - -_ .
TEL TS (1 1+ 6;;)

Hence, from (11}, we get the desired inequality

-ik‘i‘l —T,"
lu-":')—— < Okt
Z;
with 1—e
5k =5'(1— '“).
k+1 k 1+ 6,

Estimating the number of computation steps. Each algorithm U(k + 1) consists of two applications
of an algorithm U(k). Therefore, the algorithm U(k) consists of 2¥ applications of U. So, to
estimate the running time of this algorithm, we must estimate k.

Since 0 < 1 — £ < 1 + &3, we conclude that

1-¢
- <1
0<1 146,

and therefore, that &) < 8. So, the sequence & is decreasing. Hence, 6 < 6; = 6 for all k.
Therefore, 1 + 6, <1+ 6, and

l1-¢ 1-¢

1‘1+5k- 146
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Hence, for every k,

1~-¢
5”’55"'(1_“5)'

1 —g\*!
<§-{1- )
Sesé (1 1+6>

SO,

To get 6, < 4/ n2, we thus need k for which

11—\t 4
. - L
d (1 1+5) - n?

Applying binary logarithm to both sides of this inequality, we get

l-¢
— . - <%~ 2. logln
log(6) + (k—1) log (1 1+¢5) <2-2-log(n)

s0, it is sufficient to take & ~ ¢y log{n) + ¢; for some constants ¢;. For this k., the total numbey
of applications of U is 28 ~ 26118tz = 9ex . pet e it is polynomial in n. Therefore, the
total algorithm that computes the 4/n®-accurate enclosure. is time-polynomial. Hence, due to
lemma, P = NP. O

Proof of Theorems 2 and 2'. Suppose that for some §(n) > 0. there exists a polynomial-time
algorithm U that for each strongly regular n x n interval matix A’ and for each interval
vector b! computes a rational enclosure [y, 7} of the solution X satisfying [7; — Ti| < 8(n) for
all 4.

Let M be an arbitrary p x p MC-matrix, and let A/z = b be an n x n (n = 3p) interval
system constructed in the lemma. Then, for every positive real number A > 0, we can consider
a new interval system A’Z = ', where b = Ab!. We did not change the matrix A!, so this
matrix is stll strongly regular. A vector = belongs to the solution set X of the original system
iff the vector # = Az belongs to the solution set X of the new system. Therefore, the optimal
enclosure Z for the new system is related to the optimal encloswre T for the original system
Alz = by a simple formula: T = A-Z. Let us apply the algorithm U to the new system. As
a result, we get an enclosure g for which

9 = Zil = [5; = A T| < 6(n).
Dividing both sides of this in equality by A, and denoting § = (1/A)7, we conclude that

&(n
9 - Tl £ ——-& ) (12)
For our original interval system, for i < p, we have T; > 1/(2p%) (this inequality, proven jn [10],
is part of what we have called our Main Lemma). Since p = n/3, we have

> =
= 2(n/3)2  2n?

Therefore, for these i, we have 1 < (2/9)n?Z;. Multiplying both sides of this inequality by
8(n)/ A, we can conclude that

n) _ oln) 2,
AT X9
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and therefore, from {12), we can conclude that

é(n) 2 .

- p-

- %l < N gt

For A = §(n) - n?/18, the right hand side side of this inequality turns into (4/n?)Z;. So, if
we first apply the polynomial-time algorithm U to a system A!Z = b with this A, and then
compute divide the resulting enclosures y; by A, we get the enclosures J; for the original
system A’z = b! that satisfy the inequality

¥ "‘fi‘ < i
T; ~ n?
for i < p. We have computed this new enclosure 7; in polynomial time, so, from lemma, it
follows that P = NP. O
3. The symmetric case

Let A = [A. - A, Ac+ A] be a symmetric interval matrix (i.e., the bounds Ac — A and A.+ A
are symmetric) and let X* be the set of solutions of (1) corresponding to systems with symmetric
matrices only:

X® = {z: Az =bfor some A€ A", bed', Asymmetric}.

Enclosure methods for the symmetric case were given by Jansson [4] and Alefeld and Mayer [1].
J. Rohn has shown {10}

¢ that computing the exact bounds
il = n{_ip T, and o= mAX 7
is an NP-hard problem, and
e that computing (4/n?)-accurate enclosures is also NP-hard.

In this paper, we will show that for every § > 0. computing §-accurate enclosures is NP-hard,
Formally. [y, 7] is called an enclosure of X* if X* C [y, 7] holds.

Theorem 3. Suppose that for some 6 > 0, there exists a polynomial-time algorithm which for
each strongly regular symmetric n x n interval matrix A’ and each b (both with rational
bounds) computes a rational enclosure [y, 7] of X* satisfying

= &

S

iy* “Z<s

H

for each i with T} # 0. Then P = NP,

Theorem 4. Suppose that for some § > 0. there exists a polynomial-time algorithm which for
each strongly regular symmetric n X n interval matrix A’ and each b’ (both with rational
bounds) computes a rational enclosure [y, 7] of X* satisfying the inequality |§; —Z;| < é for all
i. Then P = NP.
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Theorem 4'. Suppose that for some polynomial §(n) > 0, there exists a polynomial-time
algorithm which for each strongly regular symmetric n X n interval matrix A’ and each b
(both with rational bounds) computes a rational enclosure [y, 7] of X* satistying the inequality
|7; — Z;| < & for all i. Then P = NP.

Proof. The system (4)—(5) constructed in the Main Lemma has a symmetric interval matrix A’
and each T, i = 1,...,n, is achieved at the solution of a system whose matrix is of the form

0 I 0
-I 0 M1
0 MY M™'-pzT

(this is part of what we have called the Main Lemma), hence it is symmetric (since an MC-
matrix M is symmetric). Thus we have

I, =

i3

(13)

-,

for i =1.....n. and the proofs of Theorems 1, 2, and 2’ apply to this case as well. O
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