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Linear interval equations: 
Computing enclosures with bounded relative 
or absolute overestimation is NP-hard 
VLADIK" KREINOVICH and ANATOLY V. LAKEY-EV 

It is proved that tbr every 6 > 0, if" there extsts a i~lynonfial-time algorithm fin' em:h~sing i~lutions 
,~t" linear interval etltl;ltittn.'.i with relative (or absolute) t}verestimath)ll better thill| ~, thet! P = N-P. The  
resuh ht~lds ti.- the symlnetric ease its well. 
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1. Introduction 
For  a system of  lineal" in terval  equat ions  

A I z  = b I ( t )  

where  A t is all inten~l matrix (i.e., ma t r ix  with in terval  components ) ,  and  b I is an inten~,d vectw 

(i.e., vec tor  with in terval  components ) ,  a solution set is de f ined  as fi)llows: 

X = { z ;  A x  = b fbr some A E A t , b E bl}. 

Ideal ly,  for a g iven l inear  in terval  equat ion ,  we would  like to know the exact  bounds  of  
possible values of  a:,, i.e., the in terval  vector  [_z, ~] given by 

x,_ = nfin x~, a n d  : i  = n~x.o x~. 

(~) v. Kreinm'ich. A. V. i~lkeyev. 1996 
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In [5], it is proven that the problem of computing the exact tx~unds is NP-hard (computationally 
intractable). 

Commem. Crudely speaking, NP-hardness of a problem P means that if we are able to solve 
this problem in reasonable time, then we would be able to solve all problems fi'om a very large 
class of complicated problems (called class NP) in reasonable time. and this possibility is widely 
believed to be impossible. Here, by a reeasormble time, we mean a time that does not exceed some 
polynomial of the length of the input. For exact definitions see, e.g., [3], 

The result from [5] was proven for rectangular (non-square) matrices. In [11], it was shown 
that even if we restrict ourselves to quadratic interval mattices A t, computing the exact bounds 
x_ i and ~i is still NP-hard. So. if P :~ NP, no feasible (polynomial time) algorithm can compute 
the ex(~t bounds. 

These results do not mean that solving linear interval equations is a hopeless task. There 
exist many efficient algorithms that pr~luce good approximations to the desired bounds; these 
atgotithms can be foun.d.e.g., in Alefetd and Herzberger [2], and in Neumaier [8]. "l'he.~ 
algorithms do not always produce the exact ~mnds, but it has been proven [7] that if the 
intelwal components of A t and b t are "thin" enough, then there exists a polynomial-time 
algorithm that computes the exact bounds ~br X in "almost all" cases ("ahn~rst air' in some 
reasonable sense). 

Since we cannot always compute d*e exact txmnds, the natural question is: would it be 
possible to have a feasible algorithm if we only want to compute approximations to the bounds 
of X? 

In [6], it is shown that tbr each 6 > 0, if we want to compute the t~)unds that are 
b-accurate (i.e., estimates that differ by <_ 6 fi'om the actual bounds) then the problem is also 
NP-hard. This result is proved for genetic rectangular matrices. 

J. Rohn [9, 10] has shown that for square matrices, computing approximate bounds is also 
NP-hard. To formulate his result, we will need the foUowing definition: 

Definition 1. 

1) For a system of linear interval equa6ons (I), endosure is detined as an inteival vector [y, Tj] 
saris(ring X C [y, ~], where X is the solution set of (1). 

2) An interval matrix A t = [Ac - A.  A~ + A} is called stroo,gly regular it" p(JA~ *! A) < 1 (where 
p denotes a spectral radius of a matrix). 

Comment. The condition of strong regularity is known to guarantee that every mattix A E A t 
is regular. 

Theorem (Rohn [10]). Suppose there exists a polynomial-time algorithm which tbr each st~'ongly 
regular n x n interval matrix A l and each b t (both with rat/onal bomlds) compntes a rational 
enclosure [y_, ~] of X satisfying 

~ - -  ~ <_ 4 
• ~ n- 5 (2) 

tbr each i with ~ # 0. Then P = NP. 

This theorem shows that computing %ui~icienfly accurate enclosures" is NP-hard, i.e., 
if P~NP, then every algorithm that computes sufficiendy accurate estimates requires lots of 
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computat ion time. Rohn's result is based on the assumption that the larger n, the more  
accurately we want to compute the enclosures. The  natural next question is: what if we 
want an algorithm to compute all enclosures with the same accuracy? Will it still be an NP- 
hard problem? In other words, for a given ~ > 0, is the problem of computing b-accurate 
enclosure t~n" .~)lutions of  interval linear systems wit|] square A I NP-hard? This problem W~LS 
first formulated by A. Neumaier,  whose hypothesis was that this problem was NP-hard. 

In this paper, we prove Neumaier 's  hypothesis (Theorems 1 and 2). We als0 prove that a 
similar result is true for the symmetric case (Theorems 3 and 4). 

2I The main results 
Theorem L Suppose tbr some real nmnber ¢5 > O, there exists a polynomial-time algorithm 
which tbr each strongly regular ~ x ~, interval matrix A I and each h t (both with rational 
bounds) computes a rational enclosm'e ['y_, TJ] o f  X satisfying 

,g~ - ~,~ < / ~  (3 )  
I "Xi I-- 

for each i with ~£~ ~ O. Then P = NP. 

Theorem 2, Suppose tbr some real number ?~ > O, there exists a polynomial.time atgolqthm 
which tbr each strongly regular  n x n interval matrix A t and each b t (both with rational 
bounds) computes a 171tional enclosure [y,~] af  X satisfying ]Yj~- Y,i] <_ 6 for all i. Then 
P =  NP. 

Corn recalls. 

1) Hence, the problem of computing sufficiently accurate enclosures is vet')' diflicult: an 
existence of a potynomiafl-time algorithm yielding the accuracy (3) would imply polynomial- 
t ime solvability of  all problems in the class NP. As we have ah'eady mentioned, this 
possibility is considered highly unlikely. 

2) If P # NP, then fbr absolute accuracy, not only we cannot compute enclosures with one 
and the same accuracy (i.e., with one and the same txmnd for absolute overestimation) fi)r 
all .n, in reasonable time, but even if we allow accuracy t o  decrease polynomially with 'n,, 
we still will not be able to compute these "relaxed-accuracy" enclosures: 

Theo rem 2'.  Suppose tbr some polynomial 6(n).  there exists a polynomial-time algorithm ~q]idt 
for each strongly regular  n × n interval matrix A t and each b I (both with rational bomJds) 
computes a rational enclosure ['g_, ~] of  X satisfying 1~ - Y.i[ <_ 6(n) for all i. Then I ' =  NP. 

Proofs:  Main Lemma.  Our  proofs of  Theorems  1, 2, and 21 will use the proof  from [10]. 
In [10], it was p r o v e n  not only that the problem of computing (4/n.~)-accurate enclosures is 
NP-hard for arbitrary square matrices A/,  but that this problem is NP-hard even if we restrict 
ourselves to the following special class of  linear systems. Let us lix an integer p. and denote 
e = (1, 1 . . . . .  1) r E R v. We will use the matrix norm 

IIMII, = erlMle = ~Y2~  I'm~jl. 
i j 
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A real symmetric p x p matrix M = (Irtij) is called an MC-matrix if it is of the form 

= p  i f i  = j ,  
mij  E { 0 , - 1 }  i f i # j  

( i , j  = 1 , . . . , p ) .  For a given p x p M C - m a t r i x  M ,  Rohn [10] considers the linea," interwd 
system (1) with A t = [A,, - A ,  A~. + A], b t = [b~ - 6, be + 6] given by (o_, o) (ooo) 

A ~ =  - I  0 M - I  , A = 0 0 0 
0 M - ~  3,f-1 0 0 .[3ee r 

(4) 

(all the blocks a,'e p x p, I is the unit matrix}, (o) (o) 
b ~ =  0 , 6 =  0 

0 ~e 
(5) 

(all the blocks are p x 1) and 

1 
/3 = (6) 

I IMII ,  + 1 

For each MC-matrix 3.f, the matrix A l is strongly regular, and the problem of computing the 
(4/n2)-accurate bounds for the resuhing system A t x  = b t is NP-hard. 

In [10], it is also shown that for each system of this type, we have ~l = ~2 . . . . .  x~, > 
1/(2p'2), and that the vector ~ is achieved as the solution of a system Ax = b, where b E b t 

and 
0 - I  0 ) 

A = - I  0 M -~ E A t. 
0 /14- 

We will use these resuhs f rom [10] as 

Proo]" o]" Theorem I.  Suppose t h a t  hn" some 

M - ~  _ [Jzz r 

the Main Le,nma for our Theo,'ems. 

real number  di > 0, there exists a polynomial-time 
algori thm /./ that for each strongly regular  n x n interval matrix A t and each interval vector 
b I computes an enclosure that satisfies the inequality [gji - ~i l /~i  <_ 6 for all i for which xi # 0. 

T o  prove that P = NP, we will only need this algorithm applied to systems A t x  = b t 
described in the lemma, and to the following simple modifications of these systems: T o  describe 
these modifications, we must consider the following auxiliary vector (e) 

V ~ 0 • 

0 

For the intelwal matr ix  A t (fi'om (4)), the only difference between 3p x 3p matrices A E A t 
and Ac can be in the right lower p × p part  (because this is where A has non-zero elemeuts). 
Since our vector v has 0 values for its last p elmnents, we can conclude that for every A E A/,  
we have Av  -- Acv. Therefore ,  for every real rtumber l~, if Ax = b for some A E A 1 and 
b E  b I, then A ( x - / ~ . v )  = A z : - I L . ( A v )  = b - ~ . A e ' v .  In other words, i f z  belongs to the 
sohttion set X of the original interwd system, then ~: = z - IL • v belongs to the solution set .~ 
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of the auxiliary system AI~, = / ~ l  where/~I = b ! _ # .  Aev. "1 his auxiliary system is the desired 
nmdificati~m. 

Vice versa, if 0? belongs to X ,  this means that A~ "= h fiw some A ~ A t and b ~ bt. Then,  
for z = ~ + #-  v, we have A z  = Aft: + #-  A v  = b + # .  Aev and therefore, A z  ~ b ! = ~1 + tt" Aev. 
So, i f  Y: ~ X,  then z = ~ + # . v  ~ X .  

Therefore,  a vector z belongs to the solution set X of the original system iff the vector 
]: = .~ - It .  v belongs to the solution set of  the auxiliary system. Hence, the optimal encloa~re 

for the new system is related to the optimal endosure  ~ for the original system A t z  = b t 
bv a simple formula: 

~i  = z i  - # ,  i = l . . . .  , p .  ( 7 )  

We will show that fi)r intetwal systeras described in the lemma and fi)r their ab~we-described 
modifications, by applying the given algori thm b/ several times (to different auxiliary interval 
systems), we can design new algorithms L/(k) that compute enclosures Tj(k), k = 1,2 . . . .  fi)r 
these systems, and for which I ~ i ( k ) -  ~ i l / ~  < 6k_ wi thdecreas ing  5~. As a result (as we will 
show), after no more than a polynomial number  of  applications of L/, we will get an enclosure 
with a relative accuracy 4 / n  2 (the value of  paramete r  k that corresponds to this accuracy will 
depend on the size "n of the system). T h e  number  of  applications o f / , /  does not exceed a 
polynomial of  n, and each application requires a computation time bounded  by a polynomial 
of  'n. Therefin-e, all computations that result in a (4/'n2)-accurate enclosure, are perfl~rmed in 
polynomial time. Hence, fl 'om the lemma, we will conclude that P = NP. 

~ze. First, we a p p l y / g  to such systems, and get an enclosure [_y, ff] for wtfich 171i - ~ i l / ~ i  < ~. 
So. the first algorithm /2(1) is simply/at, and we have the first enclosure Tj(1) = ff with 51 = 5. 

Iteratim~ step. Suppose that we have an algorithm Lt(k) that for systems fl'ont the lemma and 
for the above-described auxiliary systems, computes an enclosure if(k) satisfying the inequality 

iY ' (k )_-  z i !  < 6k 
1 2Q ! 

for all i < p tbr which ~, ¢ 0. In other words, ~i <_ ~i(k) _< ~-i ' ( l+~k)  (the left inequality stems 
fi'om the fhct that ~(k) is an enclosure). Since we know that for our systems of linear equations, 
the actual upper  bounds z l  . . . . .  ~p are equal, we can take the smallest of the computed bounds 

l<i<p 

as the enclosure for all these upper  bounds ~i, 1 < i < p. From 

z, S ~,,~(k) S ~,.(1 + ~)  (s) 

we can conclude that 
~min(k) 
t + 6 k  

Let us choose z E (0, 1) (e.g., E = 1/2), and apply the algorithm L/(k) to the auxitial 3, 
system AI~  = ~t with 

1 - ¢ .  
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As a result, we get an enclosure ~ tbr this auxiliary system, i.e,, a ~ector for which 

L < ~,.  (9) 

The  actual upper bound ~i for this new system is related to the actual upper b~mnd ~,i fbr the 
original system by a tbrmula (7). Let tts first show that the actual upper hound ~i is non-zero. 
Indeed, fi'om (8) and fi'om the definitio.n of/zk,  we concl.ude that 

1 - ~  1 - e  
Pk = ~,.t,,(k) " I + 6"----~. < ~i( l  + 6k)" i + +-----~, = Y,i(l - +) < ~, 

(tbr the last inequality, we used the fact that ~ < 1). "lllerefore. ~,i = .'2i - l~k > 0 for i _< p. 
Hence, ~br this system, the result ~ of  applying the algorithm u(ft) satisfies the inequality 

t~ - ;~1 <- 6~-E~. ( i 0 )  

Adding #k to both sides of (9), we condude that Y.i < ~ i (k+ 1), where we denoted ~(k  + I) = 
~i + #~" Therefore,  ~i(k + 1) is indeed an enclosure (fbr "i < p).. Let tls find the value ~5~+i 
that corresponds to ttfis new enclosure. 

Since zi  = ~i + #~ and ~i(k + i )  = Yi + #~, we conclude that Yi - .~i = ~i(k + I) - ~i, and 
therefore, (10) lead to the inequality 

I~(h: + i)  - ~1 <- ~ "  ~.  ( l i )  

So,. to estimate 6~+i, we must estimate ~i = xi - -  ~k. Fr(nn ffmin(k) > xi and the definition of 
p~, we have 

~ > z~" 1 + 6-"---~." 
Therefore ,  

/ 
= ~ I  - t~k _< xi • ~ 1  

Hence, from (11), we get the desired inequality 

with 

I+6~ " 

+.)) - _< ~ 

i-~--g~)" 

Estimating the number of computation steps. Each algorithm /d(k + 1) consists of  two applications 
of an algorithm U(k) .  T h e r d b r e ,  the a lgor i thm/d(k)  consists of  2 k applications of/at. So, to 
estimate the running time of  this algorithm, we must estimate k. 

Since 0 < 1 - x < 1 + 6 k, we conclude that 

0<i---<I 
1 +6k 

and therefore, that 6~+1 < 6t¢. So, the sequence 8k is deo'easing. Hence, 6re _< 81 = 6 for all k. 
Therefore ,  1 + ~5~: < 1 + 6, and 

1 - ~  1 - e  
- - < 1 - - -  

1 1 + 6 k  - 1 + 6 "  
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Hence, fi~r every k, 

~ + ,  < ~k. (~ ~ - ~ )  
- 1 " ~  " 

So, 

6 k < 6 . ( 1 _  i~I--~) k- t  

T o  get 6t¢ <_ 4/n 2, we thus need k for which 

I - e ' ~  k - t  4 
~. 1 - - - ~ ]  < 1 - ~  

Applying binary logarithm to both sides of  this inequality, wc get 

1 +  o /  - \ 

so, it is sufficient to take k ,-~ cl tog(n) + c2 for some const,~nts ci. For this k, the total manbet" 
of  applications o f /A is 2 ~: "~ 2 ~L ~oa,)+e~ = 2~., . n ~ ,  i.e.. it is polynomial in n. Therehn 'e ,  the 
total algorithm that computes the 4/n2-accurate enclosure, is time-polynomial. Hence, d, ue to 
lemma, P = NP. [] 

Proof of Theorems 2 and 2 I, Suppose that for some 6(n) > 0, there exists a polynomial-time 
algorithm U that for each strongly regular  n x n interval matrix A t and fi~r each int¢lwa| 
vector b t computes a rational enclosure [_y, YJ] of  the solution X satisfying tYi - x~] <- 6(n)  for 
all i. 

Let M be an arbitrary p × p MC-mat r ix ,  and let Atx  = b I be an n × n (n = 3/)) interwd 
system constructed in the lemma. Then,  fbr every positive real number A > 0, we can consider 
a new intelwal system AIY: = ~l, where ~I = Abl We did not change the matrix A t, so this 
matrix is still strongly regular. A vector x be longs  to the mlution set X of  the original system 
iff the vector ~. = Az belongs to the solution set X of  the new svstem. Therefore ,  the optimal 
enclosure ~ fbr the new system is related to the optimal enclosure Y. fin" the original system 
Atx  = b I by a simple fbrmula: ~ = A. 3. Let us apply the algorithm H to the new system. As 
a result, we get an enclosure ~ for which 

t}, - ~.,1 = i~, - :,-3,1 _/- ,~(.n0. 

Dividing both sides of  this in equality by A, and denoting 7] = (1/A).~, we conclude ttmt 

1~,- 3~1 < --3- (12) 

For our original interval system, for i < p, we have ~i >_ 1/(2P 2) (this inequality, proven j,n [10], 
is part  of  what we have called our Main Lenanm). Since p = n/3, we have 

1 9 

3 i ~  2 (n /3 )  2 = 2n 2. 

Therefore,  for these i, we have 1 < (2/9)n2"~i. Multiplying both sides of  tiffs inequ,'dity by 
6(n)/A, we can conclude that 

6(n) < 6(n) 2 2 
. . . . . .  ~n  3i 

A - A 
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and therefore, from (12), we can conclude that 

- A 

For A = 6 (n ) .  ha~18, the right hand side side of this inequality turns into (4/n'~)~i. So, it" 
we first apply the polynomial-time algorithm /.d to a system AI~  -- ~I with this A, and then 
compute divide the resulting enclosures Yi by A, we get the enclosures Yi fi~r the original 
system A l z  = b I that satis|~v the inequality 

for i <_ p. We have computed this new enclosure Yl in polynomial time, so, from lemma, it 
follows that P = NP. [] 

3. The symmetric case 

Let A I = [Ae-  A, A~ + A] be a symmetric interval matrix (i.e., the bounds A e -  A and Ac + A 
are symmetric) and let X s be the set of solutions of (1) corresponding to systems with symmetric 
matrices only: 

X ~ = {z; A z  = b for some A E A I, b E b t, A symmetric}. 

Enclosure methods fi)r the symmetric case were given by Jansson [4] and Alef~ld and Mayer [1]. 

J. Rohn has shown [10]: 

• that computing the exact bounds 

~ s  = t IZ. / ,  a d d  Z i ,~- IlI?G'~;Ei 
X" 

is an NP-hard problem, and 

• that computing (4/r~)-accurate enclosures is also NP-hard. 

In this paper, we will show that for evet'y 6 > 0, computing 6-accurate enclosures is NP-hard, 
Formally, [y, ~]~ is called an enclosure of X s if X s C [y, ~] holds. 

Theorem 3. Suppose that tbr some 6 > O, there exists a polynomial-time algorithm which for 
each strongly regular symmetric r~ x "n intem,al matrix A I and each b 1 (boil2 with rational 
bounds) computes a rational endosm~ [y_, ~] o f  X ~ satisfying 

It,, _ ~sl ~ < ~  

for each i with -sa: i ~ O. Then P = NP. 

Theorem 4. Suppose that tbr some ~ > O, there exists a polynomial-time algorithm which tbr 
each strongly regular symmetric n x n interval matrix A ! and each b I (both with rational 
bounds) computes a rational enclosmTe [y, ~] o f  X s satisfying' the inequality tYi - "£~] <- 6 for all 
L Then P - - N P ,  
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Theorem 4'. Suppose that fbr some polynomial 6(n)  > O, there exists a polyntnnial-time 
algorithm whid~ for each strongly regular symmetric n x n huerval matrix A t and each b I 
(both with rational bounds) computes a rational enclosure [y, ~] of  X ~ satisllving the inequality 
]Y~ - ~$t <- 6 tbr all i. Then P = NP. 

Proof The system (4)-(5) constructed in the Main Lemma has a symmetric interval matrix A t 
and each xi, i = 1 . . . . .  n, is achieved at the solution of a system whose matrix is of the form 

0 - I  0 ) 
- I  0 M -1 
0 M -1 M -1 - f i zz  T 

(this is part of what we have called the Main Lemma), hence it is symmetric (since an M C -  
matrix M is symmetric). Thus we have 

• , = ~$ (13) 

for i = 1 . . . . .  n. and the proofs of Theorems 1, 2, and 2 ~ apply to this case as well. [] 
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