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This e~)llective monograph describes several versions of hltem,d tmnporrd logit. (i.e.. a logic in which 
knowledge alxmt time is represented by using time intervals as a basic notion) and their u ~  in actions 
planning. 

M. Beltran 

Little, Th. D. C. and Ghafoor, A. Interval-based conceptual models for time-dependent multimedia data. 
IEEE Transactions on Knowledge and Data Engineering 5 (4) (1993), pp. 551-563. 

In scheduling multi-media presentations (be., in amigning tinm intervals u~ different events like showing a 
videodip), one mu~ take into tamsideraticm that some events must be scheduled during the others, ~,me 
after the others, etc. To describe the ordering relatkm between time intervals correstxmding to different 
events, the authors use Allen's interval algebra of  ordering retatkms. In addititm to ordering, we also 
know the dwratimls of different events (mmetimes, we only knuw the hlter~ds tff ix~ssible dur'ations). The 
attthors design an algx~rithm that checks whether given requirements cm ordering and durations are 
consistent, and, if they are, prcmltmes a corresponding schedule. 

D. E. Ga~ke 

Pnueli, A. and Zuck, L. D. Probabitistic verification. Information and Computation 108 (1) (t993), 
pp. t - 2 9 .  

Probabilistic elements are often introduced in c(mcurrent programs in order to mlve problems that either 
cannot be solved efficiently or cannot be r~)lved at all by deternfinistic programs. Interval-based temtx)ral 
logic is often used to Slxcify corret-~ness conditions ~ff etmcurrent programs. The paper presents a 
procedure that, given a probabilistic finite state pr(~rant and a (restricted) temporal logic spedficatitm, 
decides whether the program sadsfies its spedficatkm with probability L 

From the attthors' abstract 
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Levin, V. I. Imem~d discrete programming. Cybernetics and Systems Analysis 80 (6) (I994), pp. 866-  
874. 

The ideal dedsi~m making situa&m is when we know what characteristic d we want m nhaximize, and 
we kmJw the values d(a) ~ff this characteristic fig all alternatives a. In real life, even when we know 
J ,  we often do not know d ( a )  precisely; we only know the intentd [ d - ( a ) ,  J* ( a ) ]  o f  p~mible values of  
d(a). How do we then choose a? 

It is dear  that if for ~mle alternatives a and b, we have d-(a) > d+(b), then b is worse than 
a. and thus, b will not be chosen. In many cases, however, after applying this ~rule " we liil  have a 
lot of alternatives to ch,x~se front. Fnr example, if we want to buy the most fuel efficiem car, and the 
choice is between a car C1 with fuel ¢xJmumption Of 8-10 liters per t00 km and a car .O2 with fitd 
consumpticm 9-12, then, acc~n`ding to the above criteri~m, both cars have to he c~msidered. Gmm~on 
.sense .says that it is reasonable to c h ~ s e  the sectmd car. 

In general, if d-(a) > J-(b) and d+(a) > d+(b), then we can prefer a to b. 
The attthtn` applies this approach to 0 -1  linear prt~ramming problems (~c#a:.i --+ max  under the 

conditions ~-~aLix j ~ b~, x j  ~ {0, I~), with interval hounds ¢)n the o~efficients ai~, hi, and Cj. Every 
prtxblem of this type is reduced to two similar pnahlenl, s with real-valued coefficients. 

V. Krelnovich 

P6revGonzAlez, F., Docampo, D., and Abdallah, C. Bounding the frequency response for digital transfer 
functions: results and applications. In: "Proc. of IEEE Digital Signal Processing Workshop", 1994, 
pp. I5-t8.  

A diglud filter ks a linear pn~cegsing device that transfi~nns the incoming signal x{n), n = . . . .  0, I ,  2 . . . .  
into a f'durM .signal y(n)  ~ that 

fi~r some coefficients ak and b~. Digital filters can incre,xse signal-to-mfise ratio and compenmte fin, 
the distortions imposed by the measuring device. An imponam characteristic of a filter ks its (c~anplex) 
freqr~u:y dwat~eristit. If(z) = H(exp( iw))  that describes how the filter tranfforms a sinusoidal peri, riic 
signal: if x(n) = x(w) exp(iwn), then y(n) = y(w) exp(/.wn), where y(w) = If(exp(iw))x(w). 

If we know the ctmfficients ak, bk precisely, then, fin` every re, we can c~mlpttte H(z) as H(z) = 
B(z)/A(z),  where B(z) --- ~ b~zk and A(z) .= 1 + ~ at~z k. In real life, we often know only the 
i)uem, h ak and bk of IX)ssible values of the coeffidents aft and hi; in this case. w emu s t  describe the 
set of possible values of  H(z). 

in principle, we can consider real and inmginary parts of H(z), and apply interval computatitms to 
f ind  a box that c~mtains all possible vahtes of H(z) .  However, this box is an m~,r~c~tuaitm of  the desired 
set (in the sense that not all values from the box are lX~ssible). 

In the paper imder review., the attthors describe a simple (quadratic-time) algorithm that, given 
and the intervals ak and bk,  describes the exact l:aflygons ~ff p~sible values of A(z) and B(z ) ,  and 
thus, enables us to describe the set of  p~sible vahms of  the ratk~ H(z) = A(z)/B(z).  As a resuk, the 
authors get exact b~mnds on the magnitude and phase of the frequency response H(z). 

S. Czabrera 

Shaked, M. and Shanthukumar, J. G. Stochaaic orders and their applications. Academic Press, San 
Diego, CA, 1994. 

In many real-life problems, e.g., in economi~s, reliability thexn`y, medicine, etc., we nmst chcmse between 
two alternatives whose consequences are not annpletely known. The b~x~ks amsiders the case when we 
know the pro&tbili~itn of  different results; hence, each alternatives is represented by a/yad~tdaility d~trib~t 
on the set of ptrssible results, i.e.. as a random to, riptide. How can we compare two random variables X 
and Y? One possibility (called .¢~g/uL¢/r. order) is as fifllows: 
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• In prcrbability the~ry, a random variable X is ustmlly defined as a prtk~abllity me~sure on the set 
of  all real nmnbers (that describes the pr~bahifity of  different values of  this variable). 

• The common-sense understanding of a randl~m variable is better described by an alternative 
(equivalent) definiti~m: a random variable ks a mapping from a set f~ with a probability measure/~ 
on it to the set of real mtmbers (fi~r which z(w) has the desired probabilities). 

We .say that a random variable X is .nJud/er than a random variable Y in the .sense of  stcw.hagic ordering 
(and denote it by X <st  Y) if there exists a set (f/,/z) and two mappings z ,  It : f / --~ R that represent, 
correspondingly, variables X and Y, and for which x(w) < I/(w) fi~r all w. The main resnh of sttw.hastic 
ordering theory is a condition necessary and snffident fi~r X <~t Y: this condition is the inequality 
between diaribution functitms: P { X  <_ u} >_ P { Y  < u} for all real numbers u. 

There also exist mc~re complicated modifications of this definitkm. 
The remits presented in this I~x)k are based ~m the assumption that we know the probabilities; in 

many real-life sitnati~ms, we do not know them. Many methods and ideas presented in the bxx~k can be 
naturally extended to this more general type of uncertainty, 

For example, a similar c~fice problem ocalrs when we only know imer~.dx X = [ x - , x  +] and 
Y = [[/-, y+] of p0~sible values of z and y that corresl~md to two alternatives. In this case, we can 
n.~ the alx)ve-defined idea: Namely: 

• Each interval X can be represented as a mapping x : f~ --* R fr(an ~nne set N to the ~ t  of  real 
munbers, for which the .set of  possible values of x(w) is exaaly this interval X.  

• We can say that X is smtdler than Y (and denote it by X <st Y)  iff there exist two mappings 
x,  V : s2 --. R for which x represents X ,  !t represents Y ,  and ::t,(w) < y(ca) for al~ w E ft. 

A direct anah~ale ~ff the main the~wem mentioned al~)ve can be easily proven fiw intervals: 

Proposition L [ x - , x  +] <st [~/-,it+] i f f z -  <_ It- and x + < It÷. 

erc~af If x -  < It- and z ÷ < I t  + . then we can take f l =  [0,1], x(w) = w . x  + + ( l - w ) . z - . a n d  
It(~)  = ~ .  It+ + (~ - ca).  I t - .  

Vice versa, if [ z - , x  +] <s~ [It-,It+], i.e., if there exists a jtfint representation x, It : f~ -*  ~ ,  then 
z + = z(0;) fnr some w ~ ft. For this ca, we have z + = z ( ~ )  < It(w); htt  It(ca) < !/+; hence, z + < y+. 
Similarly, there exists an w fi~r which It-  = It(ca). Fnr this ca, ! / -  = V(w) _> x(W) > Z-~ f"] 

The [xx~k's theory is thus extendih!e to the case when we do not know pr~babilities at all. It 
is desirable to extend the l~a~k's results to the intermediate cases when we know stone hut not ~dl 
pn~babilities, e.g., to the case when we know the bam,ds of  po,~sible values of probabilities. 

tn the majnrity of  applicati~ms presented in the Ixa~k, we do not really kn~ra all the probabilities, 
at, it looks like this generalizatitm will be not technically difficuh and very practically usefid. 

H. T. Ngatyen and V. Kreinovich 

A a l s t  v a n  d e r ,  W .  M. P. a n d  O d i j k ,  M. A.  Analysis of railway stations by means of interval timed 
coloured Petri nets. R e a l - T i m e  S y s t em s  9 (1995),  p p .  2 4 t - 2 6 3 .  

S~cheduling algorithms are u~lally based on the assumptkm that we know the exact durations d./ of all 
the tasks that we want to schedule. In real life, the duratkms d/ may vary. In rare cases when we 
know the prckJabitities of  different durations, we can apply stochastic .scheduling methods. Most often, 
however, we do not know the probabilities, we only know the upper b~mnd d~i and the lower I'~mnd d~- 
tbr the duration d~; in other words, we knov¢ an haerT~td [d~', d~'i] of possible values of  duration d~. In 
these situations, we want a schedule that satisfies the given constraints fi~r all ~ s i b l e  values of  durations 
d/ frnm the given intervals. An algorithm fi~r pr~ducing such a schedule is given in this paper. As an 
examp|e, this algorithm is applied to a railway station. 

V. Kreinovich 


