Reviews
Applications of Reliable Scientific Computing

Pedeparter

[Ipuroxennst HapeXHBIX HayIHBIX BBIYMCACHIN]

Allen, ]. F, Kautz, H. A, Pelavin, R. N, and Tenenberg, J. D. Reasoning about plans. Morgan
Kaufmann, San Mateo, CA, 1991.

This eollective monograph describes several versions of mtermal temporal logic (ie. a logic in which
knowledge about time is represented by unsing time intervals as a basic notion) and their use in actions
planning.

M. Beltran

Little, Th. D. C. and Ghafoor, A. Interval-based conceptual models for time-dependent multimedia data.
IEEE Transactions on Knowledge and Data Engineering 5 (4) (1993), pp. 551—563.

In scheduling multi-media presentations {ie, in assigning time intervais to different events like showing a
videodlip), one must take into consideration that some events must be scheduled during the others, sume
after the others, etc. To describe the ordering relation between time intervals corresponding to different
events, the authors use Allen’s interval algebra of ordering relations. In addition to ordering, we aiso
know the durations of different events (sometimes, we only know the mtersals of possible durations). The
authors design an algorithm that checks whether given requirements on ordering and durations are
consistent, and, if they are, produees a corresponding schedule.

D. E. Cooke

Pnueli, A. and Zuck, L. D. Probabilistic verification. Information and Computatien 163 (1) (1993),
pp. 1-29.

Probabilistic elements are often introduced in concurrent programs in order to solve problems that either
cannot be solved efficiently or cannot be solved at all by deterministic programs. Interval-based temporal
logic is often used to specify correctness conditions of eoncurrent programs. The paper presents a
procedure that, given a probabilistic finite state program and a (restricted) temporal logic specification,
decides whether the program satisfies its specification with probability I,

From the authors’ abstract
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REVIEWS

Interval discrete frogramming. Cybernetics and Systems Analysis 30 (6) (1994), pp. 866—

The ideal decision making situation is when we know what characteristic J we want to maximize, and
we knew the values J{a) of this characteristic for all alternatives . In real life, even when we know
J, we aften do not know J{a) precisely; we only know the interudd [J= (), J*(a)] of possible values of
J(a). How do we then choose a?

It is clear that if for some alternatives a and b, we have J~(a) > J*(b), then b is worse than
@, and thus, b will not be chosen. In many cases, however, after applying this “rule” we still have a
ot of a!ternmivcs to choose from. For example, if we want to buy the most fuel efficiemt ear, and the
choice is between a car €y with fuel eonsumption of 8—10 liters per 100 km and a car €2 with fuel
consumption 9-12, then, aecording to the above eriterion, both cars have o be considered. Common
sense says that it is reasonable to choose the second car.

In general, if J~(a) > J™(b) and J*{a} > JT(b), then we can prefer a to b.

The author applies this approach t 6—1 linear programming problems (3 ¢j2; — max under the
conditions 3 a;;%; < by, z; € {0,1}), with interval bounds on the cweffidents agj, by, and ¢;. Every
problem of this type is reduced to two similar problems with real-valued eoefficients,

V. Kreinovich

Pérez-Gonzilez, F., Docampo, D., and Abdallah, C. Bounding the frequency response for digitat transfer
functions: results and applications. In: “Proc. of IEEE Digital Signal Processing Workshep”, 1994,

pp- 15—18.

A digital filter is a linear processing device that transfurms the incoming signal z{n), n=...,0,1,2,...
into a filtered signal yfn) so that

y(n) - Z ory{n - k) =Y _ bez(n ~ k)

for sume coefficients @ and bx. Digital filters can increase signalto-noise ratio and compensate for
the distortions imposed by the measuring device, An important characteristic of a filter is its {complex)
frequency characteristic H{z) = H({exp(iw)) that describes how the filter transforins a sinusoidal periodic
signal: if z(n) = z{w) exp(iwn), then y{n) = y{w) exp{iwn), where y{w) = H{exp(iw))z{w).

If we know the coefficients ag, by precisely, then, for every w, we can compute H{z) as H{z) =
B(2)/A(z), where B(z) = Y brzi and A{z) = 1 + 3 axz®. In real fife, we often know only the
intervals &, and by of possible values of the coefficients ag and bg; in this case. we must describe the
set of possible values of H(z).

In prindple, we can consider real and imaginary parts of H(z), and apply interval computations o
find a box that contains all possible values of H{z). However, this box is an ewerestimation of the desired
set {in the sense that not all values from the box are possible).

In the paper iinder review, the authors describe a simple (quadratic-time) algorithm that, given w
and the intervals az and by, describes the exact polygons of possible values of Afz) and B(z), and
thus, enables us to describe the set of possible values of the ratio H{z) = A(z)/B{(z). As a result, the
authors get exact bounds on the magnitude and phase of the frequeney response H {2).

S. Cabrera

Shaked, M. and Shanthukumar, J. G. Stochastic orders and their applications. Academic Press, San

Diego, CA,

1994.

In many realife problems, eg., in economics, refiability theory, medicine, etc, we must choose between
two alternatives whose consequences are not completely known. The books considers the case when we
know the probabilities of different results; hence, each alternatives is represented by a probbility distribution
on the set of possible reswts, ie. as a random variable. How can we compare two random variables X
and Y? One possibility (called stochastic order) is as follows:
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& In probability theory, a random variable X is usually defined as a probability measure on the set
of all real numbers (that describes the probability of different values of this variable).

® The commen-sense understanding of a random variable is bewer described by an alternative
{equivalent) definition: a random variable is 2 mapping from a set { with a probability measure p
om it to the set of real numbers (fur which z{w) has the desired probabilities).

We say that a random variable X is smaller than a random variable Y in the sense of stochastic ordering
{and denote it by X <y Y) if there exists a set {£), ) and two mappings z,y : {1 — R that represent,
correspondingly, variables X and Y, and for which z{w) < y{w) for all w. The main result of stachastic
ordering theory is a condition necessary and suffident for X <, Y: this condition is the inequality
between distribution funcions: P{X < u} > P{Y < u} for all real numbers u.

There also exist more complicated modifications of this definition.

The results presented in this book are based on the assumption that we know the probabilities; in
many real-life situations, we do not know them. Many methods and ideas presented in the book ean be
naturally extended to this more general type of uncertainty,

For example, a similar choice problem occurs when we only know igermds X = [z~,2%] and
Y = [y~,y*] of possible values of & and y that correspond to twe alternatives. In this case, we can
use the above-defined idea: Namely:

o Each interval X ean be represented as a mapping = : Q — R from some set § 1o the set of real
numbers, for which the set of possible values of z{w) is exaatly this interval X.

e We can say that X is maller than Y (and denote it by X <y Y) iff there exist two mappings
z,y: £l — R for which = represents X, y represents Y, and z{w} < y{w) for alt w € Q.

A direct analogue of the main theorem mentioned above ean be easily proven for intervals:
Propesition L. [z7,2%] <, ly~, "] if 2~ <y~ and ¥ < yt.

Proof. If T~ € y~ and z* < y*, then we can take 1 = [0,1], z(w) =w z* + (1 —w) - z~, and
vwj=w gt +(1-w)y.

Vice versa, if fz7,x%] < [y™,y*], ie. if there exists a joint representation z,y : 1 — R, then
zt = g(w) for some w € . For this w, we have 2+ = z{w) < y{w); but y(w) < y*; hence, z+ < y*.
Similarly, there exists an w for which y~ = y{w). For this w, ¥y~ = yfw) > z{w) >z~ 8

The book’s theory is thus extendible to the case when we do nit know probabifities at all. It
is desirable to extend the book’s results to the intermediate eases when we know some but not alf
probabilities, eg., to the case when we know the atermads of possible values of probabilities.

In the majority of applications presented in the book, we do not really know all the probabilities,
s, it looks like this generalization will be not technically difficult and very practieally useful.

H. T. Nguyen and V. Kreinovich

Aalst van der, W. M. P. and Odijk, M. A. Analysis of railway stations by means of interval timed
coloured Petri mets. Real-Time Systems 9 (1995), pp. 241—-263.

Séheduling algorithms are usually based on the assumption that we know the exact durations d; of all
the tasks that we want to schedule. In real life, the durations d; may vary. In rare eases when we
know the probabilities of different durations, we ean apply stochastic scheduling methods. Most often,
however, we do net know the probabilities, we only know the upper hound d and the lower bound d;
for the duration d;; in uther words, we know an iterml [d: ,d:’ } of possible values of duration d;. In
these situations, we want a schedule that satisfies the given constraints for all possible values of durations
d; from the given intervals. An algorithm for producing such a schedule is given in this paper. As an
example, this algorithm is applied to a railway station.

V. Kreinovich



